Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4Integrator inline methods implementation << 27 // 23 // 28 // Author: V.Grichine, 04.09.1999 - First impl << 24 // $Id: G4Integrator.icc,v 1.9 2002/12/05 15:39:26 gcosmo Exp $ 29 // G4SimpleIntegration class with H.P. << 25 // GEANT4 tag $Name: geant4-05-00 $ 30 // E.TCherniaev advises << 26 // 31 // ------------------------------------------- << 27 // Implementation of G4Integrator methods. >> 28 // >> 29 // 32 30 33 ////////////////////////////////////////////// 31 ///////////////////////////////////////////////////////////////////// 34 // 32 // 35 // Sympson integration method 33 // Sympson integration method 36 // 34 // 37 ////////////////////////////////////////////// 35 ///////////////////////////////////////////////////////////////////// 38 // 36 // 39 // Integration of class member functions T::f << 37 // Integration of class member functions T::f by Simpson method. 40 << 41 template <class T, class F> << 42 G4double G4Integrator<T, F>::Simpson(T& typeT, << 43 G4double << 44 { << 45 G4int i; << 46 G4double step = (xFinal - xInitial) / itera << 47 G4double x = xInitial; << 48 G4double xPlus = xInitial + 0.5 * step; << 49 G4double mean = ((typeT.*f)(xInitial) + (ty << 50 G4double sum = (typeT.*f)(xPlus); << 51 38 52 for(i = 1; i < iterationNumber; ++i) << 39 template <class T, class F> 53 { << 40 G4double G4Integrator<T,F>::Simpson( T& typeT, 54 x += step; << 41 F f, 55 xPlus += step; << 42 G4double xInitial, 56 mean += (typeT.*f)(x); << 43 G4double xFinal, 57 sum += (typeT.*f)(xPlus); << 44 G4int iterationNumber ) 58 } << 45 { 59 mean += 2.0 * sum; << 46 G4int i ; >> 47 G4double step = (xFinal - xInitial)/iterationNumber ; >> 48 G4double x = xInitial ; >> 49 G4double xPlus = xInitial + 0.5*step ; >> 50 G4double mean = ( (typeT.*f)(xInitial) + (typeT.*f)(xFinal) )*0.5 ; >> 51 G4double sum = (typeT.*f)(xPlus) ; >> 52 >> 53 for(i=1;i<iterationNumber;i++) >> 54 { >> 55 x += step ; >> 56 xPlus += step ; >> 57 mean += (typeT.*f)(x) ; >> 58 sum += (typeT.*f)(xPlus) ; >> 59 } >> 60 mean += 2.0*sum ; 60 61 61 return mean * step / 3.0; << 62 return mean*step/3.0 ; 62 } 63 } 63 64 64 ////////////////////////////////////////////// 65 ///////////////////////////////////////////////////////////////////// 65 // 66 // 66 // Integration of class member functions T::f 67 // Integration of class member functions T::f by Simpson method. 67 // Convenient to use with 'this' pointer 68 // Convenient to use with 'this' pointer 68 69 69 template <class T, class F> << 70 template <class T, class F> 70 G4double G4Integrator<T, F>::Simpson(T* ptrT, << 71 G4double G4Integrator<T,F>::Simpson( T* ptrT, 71 G4double << 72 F f, 72 { << 73 G4double xInitial, 73 G4int i; << 74 G4double xFinal, 74 G4double step = (xFinal - xInitial) / itera << 75 G4int iterationNumber ) 75 G4double x = xInitial; << 76 { 76 G4double xPlus = xInitial + 0.5 * step; << 77 G4int i ; 77 G4double mean = ((ptrT->*f)(xInitial) + (pt << 78 G4double step = (xFinal - xInitial)/iterationNumber ; 78 G4double sum = (ptrT->*f)(xPlus); << 79 G4double x = xInitial ; >> 80 G4double xPlus = xInitial + 0.5*step ; >> 81 G4double mean = ( (ptrT->*f)(xInitial) + (ptrT->*f)(xFinal) )*0.5 ; >> 82 G4double sum = (ptrT->*f)(xPlus) ; >> 83 >> 84 for(i=1;i<iterationNumber;i++) >> 85 { >> 86 x += step ; >> 87 xPlus += step ; >> 88 mean += (ptrT->*f)(x) ; >> 89 sum += (ptrT->*f)(xPlus) ; >> 90 } >> 91 mean += 2.0*sum ; 79 92 80 for(i = 1; i < iterationNumber; ++i) << 93 return mean*step/3.0 ; 81 { << 82 x += step; << 83 xPlus += step; << 84 mean += (ptrT->*f)(x); << 85 sum += (ptrT->*f)(xPlus); << 86 } << 87 mean += 2.0 * sum; << 88 << 89 return mean * step / 3.0; << 90 } 94 } 91 95 92 ////////////////////////////////////////////// 96 ///////////////////////////////////////////////////////////////////// 93 // 97 // 94 // Integration of class member functions T::f 98 // Integration of class member functions T::f by Simpson method. 95 // Convenient to use, when function f is defin 99 // Convenient to use, when function f is defined in global scope, i.e. in main() 96 // program 100 // program 97 101 98 template <class T, class F> << 102 template <class T, class F> 99 G4double G4Integrator<T, F>::Simpson(G4double << 103 G4double G4Integrator<T,F>::Simpson( G4double (*f)(G4double), 100 G4double << 104 G4double xInitial, 101 { << 105 G4double xFinal, 102 G4int i; << 106 G4int iterationNumber ) 103 G4double step = (xFinal - xInitial) / itera << 107 { 104 G4double x = xInitial; << 108 G4int i ; 105 G4double xPlus = xInitial + 0.5 * step; << 109 G4double step = (xFinal - xInitial)/iterationNumber ; 106 G4double mean = ((*f)(xInitial) + (*f)(xFin << 110 G4double x = xInitial ; 107 G4double sum = (*f)(xPlus); << 111 G4double xPlus = xInitial + 0.5*step ; 108 << 112 G4double mean = ( (*f)(xInitial) + (*f)(xFinal) )*0.5 ; 109 for(i = 1; i < iterationNumber; ++i) << 113 G4double sum = (*f)(xPlus) ; 110 { << 114 111 x += step; << 115 for(i=1;i<iterationNumber;i++) 112 xPlus += step; << 116 { 113 mean += (*f)(x); << 117 x += step ; 114 sum += (*f)(xPlus); << 118 xPlus += step ; 115 } << 119 mean += (*f)(x) ; 116 mean += 2.0 * sum; << 120 sum += (*f)(xPlus) ; >> 121 } >> 122 mean += 2.0*sum ; 117 123 118 return mean * step / 3.0; << 124 return mean*step/3.0 ; 119 } 125 } 120 126 121 ////////////////////////////////////////////// 127 ////////////////////////////////////////////////////////////////////////// 122 // 128 // 123 // Adaptive Gauss method 129 // Adaptive Gauss method 124 // 130 // 125 ////////////////////////////////////////////// 131 ////////////////////////////////////////////////////////////////////////// 126 // 132 // 127 // 133 // 128 134 129 template <class T, class F> << 135 template <class T, class F> 130 G4double G4Integrator<T, F>::Gauss(T& typeT, F << 136 G4double G4Integrator<T,F>::Gauss( T& typeT, F f, 131 G4double xF << 137 G4double xInitial, G4double xFinal ) 132 { << 138 { 133 static const G4double root = 1.0 / std::sqrt << 139 static G4double root = 1.0/sqrt(3.0) ; 134 << 140 135 G4double xMean = (xInitial + xFinal) / 2.0; << 141 G4double xMean = (xInitial + xFinal)/2.0 ; 136 G4double Step = (xFinal - xInitial) / 2.0; << 142 G4double Step = (xFinal - xInitial)/2.0 ; 137 G4double delta = Step * root; << 143 G4double delta = Step*root ; 138 G4double sum = ((typeT.*f)(xMean + delta) << 144 G4double sum = ((typeT.*f)(xMean + delta) + 139 << 145 (typeT.*f)(xMean - delta)) ; 140 return sum * Step; << 146 >> 147 return sum*Step ; 141 } 148 } 142 149 143 ////////////////////////////////////////////// 150 ////////////////////////////////////////////////////////////////////// 144 // 151 // 145 // 152 // 146 153 147 template <class T, class F> << 154 template <class T, class F> G4double 148 G4double G4Integrator<T, F>::Gauss(T* ptrT, F << 155 G4Integrator<T,F>::Gauss( T* ptrT, F f, G4double a, G4double b ) 149 { 156 { 150 return Gauss(*ptrT, f, a, b); << 157 return Gauss(*ptrT,f,a,b) ; 151 } 158 } 152 159 153 ////////////////////////////////////////////// 160 /////////////////////////////////////////////////////////////////////// 154 // 161 // 155 // 162 // 156 163 157 template <class T, class F> 164 template <class T, class F> 158 G4double G4Integrator<T, F>::Gauss(G4double (* << 165 G4double G4Integrator<T,F>::Gauss( G4double (*f)(G4double), 159 G4double xF << 166 G4double xInitial, G4double xFinal) 160 { 167 { 161 static const G4double root = 1.0 / std::sqrt << 168 static G4double root = 1.0/sqrt(3.0) ; 162 << 169 163 G4double xMean = (xInitial + xFinal) / 2.0; << 170 G4double xMean = (xInitial + xFinal)/2.0 ; 164 G4double Step = (xFinal - xInitial) / 2.0; << 171 G4double Step = (xFinal - xInitial)/2.0 ; 165 G4double delta = Step * root; << 172 G4double delta = Step*root ; 166 G4double sum = ((*f)(xMean + delta) + (*f) << 173 G4double sum = ( (*f)(xMean + delta) + (*f)(xMean - delta) ) ; 167 << 174 168 return sum * Step; << 175 return sum*Step ; 169 } 176 } 170 177 171 ////////////////////////////////////////////// 178 /////////////////////////////////////////////////////////////////////////// 172 // 179 // 173 // 180 // 174 181 175 template <class T, class F> << 182 template <class T, class F> 176 void G4Integrator<T, F>::AdaptGauss(T& typeT, << 183 void G4Integrator<T,F>::AdaptGauss( T& typeT, F f, G4double xInitial, 177 G4double x << 184 G4double xFinal, G4double fTolerance, 178 G4double& << 185 G4double& sum, >> 186 G4int& depth ) >> 187 { >> 188 if(depth > 100) >> 189 { >> 190 G4cout<<"G4Integrator<T,F>::AdaptGauss: WARNING !!!"<<G4endl ; >> 191 G4cout >> 192 <<"Function varies too rapidly to get stated accuracy in 100 steps "<<G4endl ; >> 193 >> 194 return ; >> 195 } >> 196 G4double xMean = (xInitial + xFinal)/2.0 ; >> 197 G4double leftHalf = Gauss(typeT,f,xInitial,xMean) ; >> 198 G4double rightHalf = Gauss(typeT,f,xMean,xFinal) ; >> 199 G4double full = Gauss(typeT,f,xInitial,xFinal) ; >> 200 if(fabs(leftHalf+rightHalf-full) < fTolerance) >> 201 { >> 202 sum += full ; >> 203 } >> 204 else >> 205 { >> 206 depth++ ; >> 207 AdaptGauss(typeT,f,xInitial,xMean,fTolerance,sum,depth) ; >> 208 AdaptGauss(typeT,f,xMean,xFinal,fTolerance,sum,depth) ; >> 209 } >> 210 } >> 211 >> 212 template <class T, class F> >> 213 void G4Integrator<T,F>::AdaptGauss( T* ptrT, F f, G4double xInitial, >> 214 G4double xFinal, G4double fTolerance, >> 215 G4double& sum, >> 216 G4int& depth ) 179 { 217 { 180 if(depth > 100) << 218 AdaptGauss(*ptrT,f,xInitial,xFinal,fTolerance,sum,depth) ; 181 { << 182 G4cout << "G4Integrator<T,F>::AdaptGauss: << 183 G4cout << "Function varies too rapidly to << 184 << G4endl; << 185 << 186 return; << 187 } << 188 G4double xMean = (xInitial + xFinal) / 2 << 189 G4double leftHalf = Gauss(typeT, f, xInitia << 190 G4double rightHalf = Gauss(typeT, f, xMean, << 191 G4double full = Gauss(typeT, f, xInitia << 192 if(std::fabs(leftHalf + rightHalf - full) < << 193 { << 194 sum += full; << 195 } << 196 else << 197 { << 198 ++depth; << 199 AdaptGauss(typeT, f, xInitial, xMean, fTol << 200 AdaptGauss(typeT, f, xMean, xFinal, fToler << 201 } << 202 } << 203 << 204 template <class T, class F> << 205 void G4Integrator<T, F>::AdaptGauss(T* ptrT, F << 206 G4double x << 207 G4double& << 208 { << 209 AdaptGauss(*ptrT, f, xInitial, xFinal, fTole << 210 } 219 } 211 220 212 ////////////////////////////////////////////// 221 ///////////////////////////////////////////////////////////////////////// 213 // 222 // 214 // 223 // 215 template <class T, class F> 224 template <class T, class F> 216 void G4Integrator<T, F>::AdaptGauss(G4double ( << 225 void G4Integrator<T,F>::AdaptGauss( G4double (*f)(G4double), 217 G4double x << 226 G4double xInitial, G4double xFinal, 218 G4double& << 227 G4double fTolerance, G4double& sum, 219 { << 228 G4int& depth ) 220 if(depth > 100) << 229 { 221 { << 230 if(depth > 100) 222 G4cout << "G4SimpleIntegration::AdaptGauss << 231 { 223 G4cout << "Function varies too rapidly to << 232 G4cout<<"G4SimpleIntegration::AdaptGauss: WARNING !!!"<<G4endl ; 224 << G4endl; << 233 G4cout<<"Function varies too rapidly to get stated accuracy in 100 steps " 225 << 234 <<G4endl ; 226 return; << 235 227 } << 236 return ; 228 G4double xMean = (xInitial + xFinal) / 2 << 237 } 229 G4double leftHalf = Gauss(f, xInitial, xMea << 238 G4double xMean = (xInitial + xFinal)/2.0 ; 230 G4double rightHalf = Gauss(f, xMean, xFinal) << 239 G4double leftHalf = Gauss(f,xInitial,xMean) ; 231 G4double full = Gauss(f, xInitial, xFin << 240 G4double rightHalf = Gauss(f,xMean,xFinal) ; 232 if(std::fabs(leftHalf + rightHalf - full) < << 241 G4double full = Gauss(f,xInitial,xFinal) ; 233 { << 242 if(fabs(leftHalf+rightHalf-full) < fTolerance) 234 sum += full; << 243 { 235 } << 244 sum += full ; 236 else << 245 } 237 { << 246 else 238 ++depth; << 247 { 239 AdaptGauss(f, xInitial, xMean, fTolerance, << 248 depth++ ; 240 AdaptGauss(f, xMean, xFinal, fTolerance, s << 249 AdaptGauss(f,xInitial,xMean,fTolerance,sum,depth) ; 241 } << 250 AdaptGauss(f,xMean,xFinal,fTolerance,sum,depth) ; >> 251 } 242 } 252 } 243 253 >> 254 >> 255 >> 256 244 ////////////////////////////////////////////// 257 //////////////////////////////////////////////////////////////////////// 245 // 258 // 246 // Adaptive Gauss integration with accuracy 'e 259 // Adaptive Gauss integration with accuracy 'e' 247 // Convenient for using with class object type 260 // Convenient for using with class object typeT 248 << 261 249 template <class T, class F> << 262 template<class T, class F> G4double 250 G4double G4Integrator<T, F>::AdaptiveGauss(T& << 263 G4Integrator<T,F>::AdaptiveGauss( T& typeT, F f, G4double xInitial, 251 G4d << 264 G4double xFinal, G4double e ) 252 { << 265 { 253 G4int depth = 0; << 266 G4int depth = 0 ; 254 G4double sum = 0.0; << 267 G4double sum = 0.0 ; 255 AdaptGauss(typeT, f, xInitial, xFinal, e, su << 268 AdaptGauss(typeT,f,xInitial,xFinal,e,sum,depth) ; 256 return sum; << 269 return sum ; 257 } 270 } 258 271 259 ////////////////////////////////////////////// 272 //////////////////////////////////////////////////////////////////////// 260 // 273 // 261 // Adaptive Gauss integration with accuracy 'e 274 // Adaptive Gauss integration with accuracy 'e' 262 // Convenient for using with 'this' pointer 275 // Convenient for using with 'this' pointer 263 << 276 264 template <class T, class F> << 277 template<class T, class F> G4double 265 G4double G4Integrator<T, F>::AdaptiveGauss(T* << 278 G4Integrator<T,F>::AdaptiveGauss( T* ptrT, F f, G4double xInitial, 266 G4d << 279 G4double xFinal, G4double e ) 267 { 280 { 268 return AdaptiveGauss(*ptrT, f, xInitial, xFi << 281 return AdaptiveGauss(*ptrT,f,xInitial,xFinal,e) ; 269 } 282 } 270 283 271 ////////////////////////////////////////////// 284 //////////////////////////////////////////////////////////////////////// 272 // 285 // 273 // Adaptive Gauss integration with accuracy 'e 286 // Adaptive Gauss integration with accuracy 'e' 274 // Convenient for using with global scope func 287 // Convenient for using with global scope function f 275 << 288 276 template <class T, class F> << 289 template <class T, class F> G4double 277 G4double G4Integrator<T, F>::AdaptiveGauss(G4d << 290 G4Integrator<T,F>::AdaptiveGauss( G4double (*f)(G4double), 278 G4d << 291 G4double xInitial, G4double xFinal, G4double e ) 279 G4d << 292 { 280 { << 293 G4int depth = 0 ; 281 G4int depth = 0; << 294 G4double sum = 0.0 ; 282 G4double sum = 0.0; << 295 AdaptGauss(f,xInitial,xFinal,e,sum,depth) ; 283 AdaptGauss(f, xInitial, xFinal, e, sum, dept << 296 return sum ; 284 return sum; << 285 } 297 } 286 298 287 ////////////////////////////////////////////// 299 //////////////////////////////////////////////////////////////////////////// 288 // Gauss integration methods involving ortogon 300 // Gauss integration methods involving ortogonal polynomials 289 ////////////////////////////////////////////// 301 //////////////////////////////////////////////////////////////////////////// 290 // 302 // 291 // Methods involving Legendre polynomials << 303 // Methods involving Legendre polynomials 292 // 304 // 293 ////////////////////////////////////////////// 305 ///////////////////////////////////////////////////////////////////////// 294 // 306 // 295 // The value nLegendre set the accuracy requir 307 // The value nLegendre set the accuracy required, i.e the number of points 296 // where the function pFunction will be evalua 308 // where the function pFunction will be evaluated during integration. 297 // The function creates the arrays for absciss << 309 // The function creates the arrays for abscissas and weights that used 298 // in Gauss-Legendre quadrature method. << 310 // in Gauss-Legendre quadrature method. 299 // The values a and b are the limits of integr 311 // The values a and b are the limits of integration of the function f . 300 // nLegendre MUST BE EVEN !!! 312 // nLegendre MUST BE EVEN !!! 301 // Returns the integral of the function f betw << 313 // Returns the integral of the function f between a and b, by 2*fNumber point 302 // Gauss-Legendre integration: the function is 314 // Gauss-Legendre integration: the function is evaluated exactly 303 // 2*fNumber times at interior points in the r << 315 // 2*fNumber times at interior points in the range of integration. 304 // Since the weights and abscissas are, in thi << 316 // Since the weights and abscissas are, in this case, symmetric around 305 // the midpoint of the range of integration, t << 317 // the midpoint of the range of integration, there are actually only 306 // fNumber distinct values of each. 318 // fNumber distinct values of each. 307 // Convenient for using with some class object 319 // Convenient for using with some class object dataT 308 320 309 template <class T, class F> << 321 template <class T, class F> G4double 310 G4double G4Integrator<T, F>::Legendre(T& typeT << 322 G4Integrator<T,F>::Legendre( T& typeT, F f, G4double a, G4double b, G4int nLegendre) 311 G4int nL << 312 { 323 { 313 G4double nwt, nwt1, temp1, temp2, temp3, tem << 324 G4double newton, newton1, temp1, temp2, temp3, temp ; 314 G4double xDiff, xMean, dx, integral; << 325 G4double xDiff, xMean, dx, integral ; 315 << 316 const G4double tolerance = 1.6e-10; << 317 G4int i, j, k = nLegendre; << 318 G4int fNumber = (nLegendre + 1) / 2; << 319 << 320 if(2 * fNumber != k) << 321 { << 322 G4Exception("G4Integrator<T,F>::Legendre(T << 323 FatalException, "Invalid (odd) << 324 } << 325 << 326 G4double* fAbscissa = new G4double[fNumber]; << 327 G4double* fWeight = new G4double[fNumber]; << 328 << 329 for(i = 1; i <= fNumber; ++i) // Loop over << 330 { << 331 nwt = std::cos(CLHEP::pi * (i - 0.25) / << 332 (k + 0.5)); // Initial roo << 333 326 334 do // loop of Newton's method << 327 const G4double tolerance = 1.6e-10 ; 335 { << 328 G4int i, j, k = nLegendre ; 336 temp1 = 1.0; << 329 G4int fNumber = (nLegendre + 1)/2 ; 337 temp2 = 0.0; << 330 338 for(j = 1; j <= k; ++j) << 331 if(2*fNumber != k) 339 { << 332 { 340 temp3 = temp2; << 333 G4Exception("Invalid (odd) n Legendre in G4Integrator<T,F>::Legendre") ; 341 temp2 = temp1; << 334 } 342 temp1 = ((2.0 * j - 1.0) * nwt * temp2 << 335 343 } << 336 G4double* fAbscissa = new G4double[fNumber] ; 344 temp = k * (nwt * temp1 - temp2) / (nwt << 337 G4double* fWeight = new G4double[fNumber] ; 345 nwt1 = nwt; << 338 346 nwt = nwt1 - temp1 / temp; // Newton's << 339 for(i=1;i<=fNumber;i++) // Loop over the desired roots 347 } while(std::fabs(nwt - nwt1) > tolerance) << 340 { 348 << 341 newton = cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation 349 fAbscissa[fNumber - i] = nwt; << 342 350 fWeight[fNumber - i] = 2.0 / ((1.0 - nwt << 343 do // loop of Newton's method 351 } << 344 { 352 << 345 temp1 = 1.0 ; 353 // << 346 temp2 = 0.0 ; 354 // Now we ready to get integral << 347 for(j=1;j<=k;j++) 355 // << 348 { 356 << 349 temp3 = temp2 ; 357 xMean = 0.5 * (a + b); << 350 temp2 = temp1 ; 358 xDiff = 0.5 * (b - a); << 351 temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; 359 integral = 0.0; << 352 } 360 for(i = 0; i < fNumber; ++i) << 353 temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; 361 { << 354 newton1 = newton ; 362 dx = xDiff * fAbscissa[i]; << 355 newton = newton1 - temp1/temp ; // Newton's method 363 integral += fWeight[i] * ((typeT.*f)(xMean << 356 } 364 } << 357 while(fabs(newton - newton1) > tolerance) ; 365 delete[] fAbscissa; << 358 366 delete[] fWeight; << 359 fAbscissa[fNumber-i] = newton ; 367 return integral *= xDiff; << 360 fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; 368 } << 361 } >> 362 // >> 363 // Now we ready to get integral >> 364 // >> 365 >> 366 xMean = 0.5*(a + b) ; >> 367 xDiff = 0.5*(b - a) ; >> 368 integral = 0.0 ; >> 369 for(i=0;i<fNumber;i++) >> 370 { >> 371 dx = xDiff*fAbscissa[i] ; >> 372 integral += fWeight[i]*( (typeT.*f)(xMean + dx) + >> 373 (typeT.*f)(xMean - dx) ) ; >> 374 } >> 375 delete[] fAbscissa; >> 376 delete[] fWeight; >> 377 return integral *= xDiff ; >> 378 } 369 379 370 ////////////////////////////////////////////// 380 /////////////////////////////////////////////////////////////////////// 371 // 381 // 372 // Convenient for using with the pointer 'this 382 // Convenient for using with the pointer 'this' 373 383 374 template <class T, class F> << 384 template <class T, class F> G4double 375 G4double G4Integrator<T, F>::Legendre(T* ptrT, << 385 G4Integrator<T,F>::Legendre( T* ptrT, F f, G4double a, G4double b, G4int nLegendre) 376 G4int nL << 377 { 386 { 378 return Legendre(*ptrT, f, a, b, nLegendre); << 387 return Legendre(*ptrT,f,a,b,nLegendre) ; 379 } 388 } 380 389 381 ////////////////////////////////////////////// 390 /////////////////////////////////////////////////////////////////////// 382 // 391 // 383 // Convenient for using with global scope func 392 // Convenient for using with global scope function f 384 393 385 template <class T, class F> 394 template <class T, class F> 386 G4double G4Integrator<T, F>::Legendre(G4double << 395 G4double G4Integrator<T,F>:: 387 G4double << 396 Legendre( G4double (*f)(G4double), G4double a, G4double b, G4int nLegendre) 388 { 397 { 389 G4double nwt, nwt1, temp1, temp2, temp3, tem << 398 G4double newton, newton1, temp1, temp2, temp3, temp ; 390 G4double xDiff, xMean, dx, integral; << 399 G4double xDiff, xMean, dx, integral ; 391 << 392 const G4double tolerance = 1.6e-10; << 393 G4int i, j, k = nLegendre; << 394 G4int fNumber = (nLegendre + 1) / 2; << 395 << 396 if(2 * fNumber != k) << 397 { << 398 G4Exception("G4Integrator<T,F>::Legendre(. << 399 FatalException, "Invalid (odd) << 400 } << 401 << 402 G4double* fAbscissa = new G4double[fNumber]; << 403 G4double* fWeight = new G4double[fNumber]; << 404 << 405 for(i = 1; i <= fNumber; i++) // Loop over << 406 { << 407 nwt = std::cos(CLHEP::pi * (i - 0.25) / << 408 (k + 0.5)); // Initial roo << 409 400 410 do // loop of Newton's method << 401 const G4double tolerance = 1.6e-10 ; 411 { << 402 G4int i, j, k = nLegendre ; 412 temp1 = 1.0; << 403 G4int fNumber = (nLegendre + 1)/2 ; 413 temp2 = 0.0; << 404 414 for(j = 1; j <= k; ++j) << 405 if(2*fNumber != k) 415 { << 406 { 416 temp3 = temp2; << 407 G4Exception("Invalid (odd) n Legendre in G4Integrator<T,F>::Legendre") ; 417 temp2 = temp1; << 408 } 418 temp1 = ((2.0 * j - 1.0) * nwt * temp2 << 409 419 } << 410 G4double* fAbscissa = new G4double[fNumber] ; 420 temp = k * (nwt * temp1 - temp2) / (nwt << 411 G4double* fWeight = new G4double[fNumber] ; 421 nwt1 = nwt; << 412 422 nwt = nwt1 - temp1 / temp; // Newton's << 413 for(i=1;i<=fNumber;i++) // Loop over the desired roots 423 } while(std::fabs(nwt - nwt1) > tolerance) << 414 { 424 << 415 newton = cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation 425 fAbscissa[fNumber - i] = nwt; << 416 426 fWeight[fNumber - i] = 2.0 / ((1.0 - nwt << 417 do // loop of Newton's method 427 } << 418 { 428 << 419 temp1 = 1.0 ; 429 // << 420 temp2 = 0.0 ; 430 // Now we ready to get integral << 421 for(j=1;j<=k;j++) 431 // << 422 { 432 << 423 temp3 = temp2 ; 433 xMean = 0.5 * (a + b); << 424 temp2 = temp1 ; 434 xDiff = 0.5 * (b - a); << 425 temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; 435 integral = 0.0; << 426 } 436 for(i = 0; i < fNumber; ++i) << 427 temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; 437 { << 428 newton1 = newton ; 438 dx = xDiff * fAbscissa[i]; << 429 newton = newton1 - temp1/temp ; // Newton's method 439 integral += fWeight[i] * ((*f)(xMean + dx) << 430 } 440 } << 431 while(fabs(newton - newton1) > tolerance) ; 441 delete[] fAbscissa; << 432 442 delete[] fWeight; << 433 fAbscissa[fNumber-i] = newton ; >> 434 fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; >> 435 } >> 436 // >> 437 // Now we ready to get integral >> 438 // >> 439 >> 440 xMean = 0.5*(a + b) ; >> 441 xDiff = 0.5*(b - a) ; >> 442 integral = 0.0 ; >> 443 for(i=0;i<fNumber;i++) >> 444 { >> 445 dx = xDiff*fAbscissa[i] ; >> 446 integral += fWeight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx) ) ; >> 447 } >> 448 delete[] fAbscissa; >> 449 delete[] fWeight; 443 450 444 return integral *= xDiff; << 451 return integral *= xDiff ; 445 } << 452 } 446 453 447 ////////////////////////////////////////////// 454 //////////////////////////////////////////////////////////////////////////// 448 // 455 // 449 // Returns the integral of the function to be 456 // Returns the integral of the function to be pointed by T::f between a and b, 450 // by ten point Gauss-Legendre integration: th 457 // by ten point Gauss-Legendre integration: the function is evaluated exactly 451 // ten times at interior points in the range o 458 // ten times at interior points in the range of integration. Since the weights 452 // and abscissas are, in this case, symmetric << 459 // and abscissas are, in this case, symmetric around the midpoint of the 453 // range of integration, there are actually on 460 // range of integration, there are actually only five distinct values of each 454 // Convenient for using with class object type 461 // Convenient for using with class object typeT 455 462 456 template <class T, class F> << 463 template <class T, class F> 457 G4double G4Integrator<T, F>::Legendre10(T& typ << 464 G4double G4Integrator<T,F>::Legendre10( T& typeT, F f,G4double a, G4double b) 458 { 465 { 459 G4int i; << 466 G4int i ; 460 G4double xDiff, xMean, dx, integral; << 467 G4double xDiff, xMean, dx, integral ; 461 << 468 462 // From Abramowitz M., Stegan I.A. 1964 , Ha << 469 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 463 << 470 464 static const G4double abscissa[] = { 0.14887 << 471 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 465 0.67940 << 472 0.679409568299024, 0.865063366688985, 466 0.97390 << 473 0.973906528517172 } ; 467 << 474 468 static const G4double weight[] = { 0.2955242 << 475 static G4double weight[] = { 0.295524224714753, 0.269266719309996, 469 0.2190863 << 476 0.219086362515982, 0.149451349150581, 470 0.0666713 << 477 0.066671344308688 } ; 471 xMean = 0.5 * (a + << 478 xMean = 0.5*(a + b) ; 472 xDiff = 0.5 * (b - << 479 xDiff = 0.5*(b - a) ; 473 integral = 0.0; << 480 integral = 0.0 ; 474 for(i = 0; i < 5; ++i) << 481 for(i=0;i<5;i++) 475 { << 482 { 476 dx = xDiff * abscissa[i]; << 483 dx = xDiff*abscissa[i] ; 477 integral += weight[i] * ((typeT.*f)(xMean << 484 integral += weight[i]*( (typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; 478 } << 485 } 479 return integral *= xDiff; << 486 return integral *= xDiff ; 480 } 487 } 481 488 482 ////////////////////////////////////////////// 489 /////////////////////////////////////////////////////////////////////////// 483 // 490 // 484 // Convenient for using with the pointer 'this 491 // Convenient for using with the pointer 'this' 485 492 486 template <class T, class F> << 493 template <class T, class F> 487 G4double G4Integrator<T, F>::Legendre10(T* ptr << 494 G4double G4Integrator<T,F>::Legendre10( T* ptrT, F f,G4double a, G4double b) 488 { 495 { 489 return Legendre10(*ptrT, f, a, b); << 496 return Legendre10(*ptrT,f,a,b) ; 490 } << 497 } 491 498 492 ////////////////////////////////////////////// 499 ////////////////////////////////////////////////////////////////////////// 493 // 500 // 494 // Convenient for using with global scope func 501 // Convenient for using with global scope functions 495 502 496 template <class T, class F> << 503 template <class T, class F> G4double 497 G4double G4Integrator<T, F>::Legendre10(G4doub << 504 G4Integrator<T,F>::Legendre10( G4double (*f)(G4double), G4double a, G4double b) 498 G4doub << 499 { 505 { 500 G4int i; << 506 G4int i ; 501 G4double xDiff, xMean, dx, integral; << 507 G4double xDiff, xMean, dx, integral ; 502 << 508 503 // From Abramowitz M., Stegan I.A. 1964 , Ha << 509 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 504 << 510 505 static const G4double abscissa[] = { 0.14887 << 511 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 506 0.67940 << 512 0.679409568299024, 0.865063366688985, 507 0.97390 << 513 0.973906528517172 } ; 508 << 514 509 static const G4double weight[] = { 0.2955242 << 515 static G4double weight[] = { 0.295524224714753, 0.269266719309996, 510 0.2190863 << 516 0.219086362515982, 0.149451349150581, 511 0.0666713 << 517 0.066671344308688 } ; 512 xMean = 0.5 * (a + << 518 xMean = 0.5*(a + b) ; 513 xDiff = 0.5 * (b - << 519 xDiff = 0.5*(b - a) ; 514 integral = 0.0; << 520 integral = 0.0 ; 515 for(i = 0; i < 5; ++i) << 521 for(i=0;i<5;i++) 516 { << 522 { 517 dx = xDiff * abscissa[i]; << 523 dx = xDiff*abscissa[i] ; 518 integral += weight[i] * ((*f)(xMean + dx) << 524 integral += weight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx)) ; 519 } << 525 } 520 return integral *= xDiff; << 526 return integral *= xDiff ; 521 } 527 } 522 528 523 ////////////////////////////////////////////// 529 /////////////////////////////////////////////////////////////////////// 524 // 530 // 525 // Returns the integral of the function to be 531 // Returns the integral of the function to be pointed by T::f between a and b, 526 // by 96 point Gauss-Legendre integration: the 532 // by 96 point Gauss-Legendre integration: the function is evaluated exactly 527 // ten Times at interior points in the range o 533 // ten Times at interior points in the range of integration. Since the weights 528 // and abscissas are, in this case, symmetric << 534 // and abscissas are, in this case, symmetric around the midpoint of the 529 // range of integration, there are actually on 535 // range of integration, there are actually only five distinct values of each 530 // Convenient for using with some class object 536 // Convenient for using with some class object typeT 531 537 532 template <class T, class F> << 538 template <class T, class F> 533 G4double G4Integrator<T, F>::Legendre96(T& typ << 539 G4double G4Integrator<T,F>::Legendre96( T& typeT, F f,G4double a, G4double b) 534 { 540 { 535 G4int i; << 541 G4int i ; 536 G4double xDiff, xMean, dx, integral; << 542 G4double xDiff, xMean, dx, integral ; 537 << 543 538 // From Abramowitz M., Stegan I.A. 1964 , Ha << 544 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 539 << 545 540 static const G4double abscissa[] = { << 546 static G4double 541 0.016276744849602969579, 0.048812985136049 << 547 abscissa[] = { 542 0.081297495464425558994, 0.113695850110665 << 548 0.016276744849602969579, 0.048812985136049731112, 543 0.145973714654896941989, 0.178096882367618 << 549 0.081297495464425558994, 0.113695850110665920911, 544 << 550 0.145973714654896941989, 0.178096882367618602759, // 6 545 0.210031310460567203603, 0.241743156163840 << 551 546 0.273198812591049141487, 0.304364944354496 << 552 0.210031310460567203603, 0.241743156163840012328, 547 0.335208522892625422616, 0.365696861472313 << 553 0.273198812591049141487, 0.304364944354496353024, 548 << 554 0.335208522892625422616, 0.365696861472313635031, // 12 549 0.395797649828908603285, 0.425478988407300 << 555 550 0.454709422167743008636, 0.483457973920596 << 556 0.395797649828908603285, 0.425478988407300545365, 551 0.511694177154667673586, 0.539388108324357 << 557 0.454709422167743008636, 0.483457973920596359768, 552 << 558 0.511694177154667673586, 0.539388108324357436227, // 18 553 0.566510418561397168404, 0.593032364777572 << 559 554 0.618925840125468570386, 0.644163403784967 << 560 0.566510418561397168404, 0.593032364777572080684, 555 0.668718310043916153953, 0.692564536642171 << 561 0.618925840125468570386, 0.644163403784967106798, 556 << 562 0.668718310043916153953, 0.692564536642171561344, // 24 557 0.715676812348967626225, 0.738030643744400 << 563 558 0.759602341176647498703, 0.780369043867433 << 564 0.715676812348967626225, 0.738030643744400132851, 559 0.800308744139140817229, 0.819400310737931 << 565 0.759602341176647498703, 0.780369043867433217604, 560 << 566 0.800308744139140817229, 0.819400310737931675539, // 30 561 0.837623511228187121494, 0.854959033434601 << 567 562 0.871388505909296502874, 0.886894517402420 << 568 0.837623511228187121494, 0.854959033434601455463, 563 0.901460635315852341319, 0.915071423120898 << 569 0.871388505909296502874, 0.886894517402420416057, 564 << 570 0.901460635315852341319, 0.915071423120898074206, // 36 565 0.927712456722308690965, 0.939370339752755 << 571 566 0.950032717784437635756, 0.959688291448742 << 572 0.927712456722308690965, 0.939370339752755216932, 567 0.968326828463264212174, 0.975939174585136 << 573 0.950032717784437635756, 0.959688291448742539300, 568 << 574 0.968326828463264212174, 0.975939174585136466453, // 42 569 0.982517263563014677447, 0.988054126329623 << 575 570 0.992543900323762624572, 0.995981842987209 << 576 0.982517263563014677447, 0.988054126329623799481, 571 0.998364375863181677724, 0.999689503883230 << 577 0.992543900323762624572, 0.995981842987209290650, 572 }; << 578 0.998364375863181677724, 0.999689503883230766828 // 48 573 << 579 } ; 574 static const G4double weight[] = { << 580 575 0.032550614492363166242, 0.032516118713868 << 581 static G4double 576 0.032447163714064269364, 0.032343822568575 << 582 weight[] = { 577 0.032206204794030250669, 0.032034456231992 << 583 0.032550614492363166242, 0.032516118713868835987, 578 << 584 0.032447163714064269364, 0.032343822568575928429, 579 0.031828758894411006535, 0.031589330770727 << 585 0.032206204794030250669, 0.032034456231992663218, // 6 580 0.031316425596862355813, 0.031010332586313 << 586 581 0.030671376123669149014, 0.030299915420827 << 587 0.031828758894411006535, 0.031589330770727168558, 582 << 588 0.031316425596862355813, 0.031010332586313837423, 583 0.029896344136328385984, 0.029461089958167 << 589 0.030671376123669149014, 0.030299915420827593794, // 12 584 0.028994614150555236543, 0.028497411065085 << 590 585 0.027970007616848334440, 0.027412962726029 << 591 0.029896344136328385984, 0.029461089958167905970, 586 << 592 0.028994614150555236543, 0.028497411065085385646, 587 0.026826866725591762198, 0.026212340735672 << 593 0.027970007616848334440, 0.027412962726029242823, // 18 588 0.025570036005349361499, 0.024900633222483 << 594 589 0.024204841792364691282, 0.023483399085926 << 595 0.026826866725591762198, 0.026212340735672413913, 590 << 596 0.025570036005349361499, 0.024900633222483610288, 591 0.022737069658329374001, 0.021966644438744 << 597 0.024204841792364691282, 0.023483399085926219842, // 24 592 0.021172939892191298988, 0.020356797154333 << 598 593 0.019519081140145022410, 0.018660679627411 << 599 0.022737069658329374001, 0.021966644438744349195, 594 << 600 0.021172939892191298988, 0.020356797154333324595, 595 0.017782502316045260838, 0.016885479864245 << 601 0.019519081140145022410, 0.018660679627411467385, // 30 596 0.015970562902562291381, 0.015038721026994 << 602 597 0.014090941772314860916, 0.013128229566961 << 603 0.017782502316045260838, 0.016885479864245172450, 598 << 604 0.015970562902562291381, 0.015038721026994938006, 599 0.012151604671088319635, 0.011162102099838 << 605 0.014090941772314860916, 0.013128229566961572637, // 36 600 0.010160770535008415758, 0.009148671230783 << 606 601 0.008126876925698759217, 0.007096470791153 << 607 0.012151604671088319635, 0.011162102099838498591, 602 << 608 0.010160770535008415758, 0.009148671230783386633, 603 0.006058545504235961683, 0.005014202742927 << 609 0.008126876925698759217, 0.007096470791153865269, // 42 604 0.003964554338444686674, 0.002910731817934 << 610 605 0.001853960788946921732, 0.000796792065552 << 611 0.006058545504235961683, 0.005014202742927517693, 606 }; << 612 0.003964554338444686674, 0.002910731817934946408, 607 xMean = 0.5 * (a + b); << 613 0.001853960788946921732, 0.000796792065552012429 // 48 608 xDiff = 0.5 * (b - a); << 614 } ; 609 integral = 0.0; << 615 xMean = 0.5*(a + b) ; 610 for(i = 0; i < 48; ++i) << 616 xDiff = 0.5*(b - a) ; 611 { << 617 integral = 0.0 ; 612 dx = xDiff * abscissa[i]; << 618 for(i=0;i<48;i++) 613 integral += weight[i] * ((typeT.*f)(xMean << 619 { 614 } << 620 dx = xDiff*abscissa[i] ; 615 return integral *= xDiff; << 621 integral += weight[i]*((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; >> 622 } >> 623 return integral *= xDiff ; 616 } 624 } 617 625 618 ////////////////////////////////////////////// 626 /////////////////////////////////////////////////////////////////////// 619 // 627 // 620 // Convenient for using with the pointer 'this 628 // Convenient for using with the pointer 'this' 621 629 622 template <class T, class F> << 630 template <class T, class F> 623 G4double G4Integrator<T, F>::Legendre96(T* ptr << 631 G4double G4Integrator<T,F>::Legendre96( T* ptrT, F f,G4double a, G4double b) 624 { 632 { 625 return Legendre96(*ptrT, f, a, b); << 633 return Legendre96(*ptrT,f,a,b) ; 626 } << 634 } 627 635 628 ////////////////////////////////////////////// 636 /////////////////////////////////////////////////////////////////////// 629 // 637 // 630 // Convenient for using with global scope func << 638 // Convenient for using with global scope function f 631 639 632 template <class T, class F> << 640 template <class T, class F> G4double 633 G4double G4Integrator<T, F>::Legendre96(G4doub << 641 G4Integrator<T,F>::Legendre96( G4double (*f)(G4double), G4double a, G4double b) 634 G4doub << 635 { 642 { 636 G4int i; << 643 G4int i ; 637 G4double xDiff, xMean, dx, integral; << 644 G4double xDiff, xMean, dx, integral ; 638 << 645 639 // From Abramowitz M., Stegan I.A. 1964 , Ha << 646 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 640 << 647 641 static const G4double abscissa[] = { << 648 static G4double 642 0.016276744849602969579, 0.048812985136049 << 649 abscissa[] = { 643 0.081297495464425558994, 0.113695850110665 << 650 0.016276744849602969579, 0.048812985136049731112, 644 0.145973714654896941989, 0.178096882367618 << 651 0.081297495464425558994, 0.113695850110665920911, 645 << 652 0.145973714654896941989, 0.178096882367618602759, // 6 646 0.210031310460567203603, 0.241743156163840 << 653 647 0.273198812591049141487, 0.304364944354496 << 654 0.210031310460567203603, 0.241743156163840012328, 648 0.335208522892625422616, 0.365696861472313 << 655 0.273198812591049141487, 0.304364944354496353024, 649 << 656 0.335208522892625422616, 0.365696861472313635031, // 12 650 0.395797649828908603285, 0.425478988407300 << 657 651 0.454709422167743008636, 0.483457973920596 << 658 0.395797649828908603285, 0.425478988407300545365, 652 0.511694177154667673586, 0.539388108324357 << 659 0.454709422167743008636, 0.483457973920596359768, 653 << 660 0.511694177154667673586, 0.539388108324357436227, // 18 654 0.566510418561397168404, 0.593032364777572 << 661 655 0.618925840125468570386, 0.644163403784967 << 662 0.566510418561397168404, 0.593032364777572080684, 656 0.668718310043916153953, 0.692564536642171 << 663 0.618925840125468570386, 0.644163403784967106798, 657 << 664 0.668718310043916153953, 0.692564536642171561344, // 24 658 0.715676812348967626225, 0.738030643744400 << 665 659 0.759602341176647498703, 0.780369043867433 << 666 0.715676812348967626225, 0.738030643744400132851, 660 0.800308744139140817229, 0.819400310737931 << 667 0.759602341176647498703, 0.780369043867433217604, 661 << 668 0.800308744139140817229, 0.819400310737931675539, // 30 662 0.837623511228187121494, 0.854959033434601 << 669 663 0.871388505909296502874, 0.886894517402420 << 670 0.837623511228187121494, 0.854959033434601455463, 664 0.901460635315852341319, 0.915071423120898 << 671 0.871388505909296502874, 0.886894517402420416057, 665 << 672 0.901460635315852341319, 0.915071423120898074206, // 36 666 0.927712456722308690965, 0.939370339752755 << 673 667 0.950032717784437635756, 0.959688291448742 << 674 0.927712456722308690965, 0.939370339752755216932, 668 0.968326828463264212174, 0.975939174585136 << 675 0.950032717784437635756, 0.959688291448742539300, 669 << 676 0.968326828463264212174, 0.975939174585136466453, // 42 670 0.982517263563014677447, 0.988054126329623 << 677 671 0.992543900323762624572, 0.995981842987209 << 678 0.982517263563014677447, 0.988054126329623799481, 672 0.998364375863181677724, 0.999689503883230 << 679 0.992543900323762624572, 0.995981842987209290650, 673 }; << 680 0.998364375863181677724, 0.999689503883230766828 // 48 674 << 681 } ; 675 static const G4double weight[] = { << 682 676 0.032550614492363166242, 0.032516118713868 << 683 static G4double 677 0.032447163714064269364, 0.032343822568575 << 684 weight[] = { 678 0.032206204794030250669, 0.032034456231992 << 685 0.032550614492363166242, 0.032516118713868835987, 679 << 686 0.032447163714064269364, 0.032343822568575928429, 680 0.031828758894411006535, 0.031589330770727 << 687 0.032206204794030250669, 0.032034456231992663218, // 6 681 0.031316425596862355813, 0.031010332586313 << 688 682 0.030671376123669149014, 0.030299915420827 << 689 0.031828758894411006535, 0.031589330770727168558, 683 << 690 0.031316425596862355813, 0.031010332586313837423, 684 0.029896344136328385984, 0.029461089958167 << 691 0.030671376123669149014, 0.030299915420827593794, // 12 685 0.028994614150555236543, 0.028497411065085 << 692 686 0.027970007616848334440, 0.027412962726029 << 693 0.029896344136328385984, 0.029461089958167905970, 687 << 694 0.028994614150555236543, 0.028497411065085385646, 688 0.026826866725591762198, 0.026212340735672 << 695 0.027970007616848334440, 0.027412962726029242823, // 18 689 0.025570036005349361499, 0.024900633222483 << 696 690 0.024204841792364691282, 0.023483399085926 << 697 0.026826866725591762198, 0.026212340735672413913, 691 << 698 0.025570036005349361499, 0.024900633222483610288, 692 0.022737069658329374001, 0.021966644438744 << 699 0.024204841792364691282, 0.023483399085926219842, // 24 693 0.021172939892191298988, 0.020356797154333 << 700 694 0.019519081140145022410, 0.018660679627411 << 701 0.022737069658329374001, 0.021966644438744349195, 695 << 702 0.021172939892191298988, 0.020356797154333324595, 696 0.017782502316045260838, 0.016885479864245 << 703 0.019519081140145022410, 0.018660679627411467385, // 30 697 0.015970562902562291381, 0.015038721026994 << 704 698 0.014090941772314860916, 0.013128229566961 << 705 0.017782502316045260838, 0.016885479864245172450, 699 << 706 0.015970562902562291381, 0.015038721026994938006, 700 0.012151604671088319635, 0.011162102099838 << 707 0.014090941772314860916, 0.013128229566961572637, // 36 701 0.010160770535008415758, 0.009148671230783 << 708 702 0.008126876925698759217, 0.007096470791153 << 709 0.012151604671088319635, 0.011162102099838498591, 703 << 710 0.010160770535008415758, 0.009148671230783386633, 704 0.006058545504235961683, 0.005014202742927 << 711 0.008126876925698759217, 0.007096470791153865269, // 42 705 0.003964554338444686674, 0.002910731817934 << 712 706 0.001853960788946921732, 0.000796792065552 << 713 0.006058545504235961683, 0.005014202742927517693, 707 }; << 714 0.003964554338444686674, 0.002910731817934946408, 708 xMean = 0.5 * (a + b); << 715 0.001853960788946921732, 0.000796792065552012429 // 48 709 xDiff = 0.5 * (b - a); << 716 } ; 710 integral = 0.0; << 717 xMean = 0.5*(a + b) ; 711 for(i = 0; i < 48; ++i) << 718 xDiff = 0.5*(b - a) ; 712 { << 719 integral = 0.0 ; 713 dx = xDiff * abscissa[i]; << 720 for(i=0;i<48;i++) 714 integral += weight[i] * ((*f)(xMean + dx) << 721 { 715 } << 722 dx = xDiff*abscissa[i] ; 716 return integral *= xDiff; << 723 integral += weight[i]*((*f)(xMean + dx) + (*f)(xMean - dx)) ; >> 724 } >> 725 return integral *= xDiff ; 717 } 726 } 718 727 719 ////////////////////////////////////////////// 728 ////////////////////////////////////////////////////////////////////////////// 720 // 729 // 721 // Methods involving Chebyshev polynomials << 730 // Methods involving Chebyshev polynomials 722 // 731 // 723 ////////////////////////////////////////////// 732 /////////////////////////////////////////////////////////////////////////// 724 // 733 // 725 // Integrates function pointed by T::f from a << 734 // Integrates function pointed by T::f from a to b by Gauss-Chebyshev 726 // quadrature method. 735 // quadrature method. 727 // Convenient for using with class object type 736 // Convenient for using with class object typeT 728 737 729 template <class T, class F> << 738 template <class T, class F> G4double 730 G4double G4Integrator<T, F>::Chebyshev(T& type << 739 G4Integrator<T,F>::Chebyshev( T& typeT, F f, G4double a, 731 G4int n << 740 G4double b, G4int nChebyshev ) 732 { << 741 { 733 G4int i; << 742 G4int i ; 734 G4double xDiff, xMean, dx, integral = 0.0; << 743 G4double xDiff, xMean, dx, integral = 0.0 ; 735 << 744 736 G4int fNumber = nChebyshev; // Try to << 745 G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? 737 G4double cof = CLHEP::pi / fNumber; << 746 G4double cof = pi/fNumber ; 738 G4double* fAbscissa = new G4double[fNumber]; << 747 G4double* fAbscissa = new G4double[fNumber] ; 739 G4double* fWeight = new G4double[fNumber]; << 748 G4double* fWeight = new G4double[fNumber] ; 740 for(i = 0; i < fNumber; ++i) << 749 for(i=0;i<fNumber;i++) 741 { << 750 { 742 fAbscissa[i] = std::cos(cof * (i + 0.5)); << 751 fAbscissa[i] = cos(cof*(i + 0.5)) ; 743 fWeight[i] = cof * std::sqrt(1 - fAbscis << 752 fWeight[i] = cof*sqrt(1 - fAbscissa[i]*fAbscissa[i]) ; 744 } << 753 } 745 << 754 // 746 // << 755 // Now we ready to estimate the integral 747 // Now we ready to estimate the integral << 756 // 748 // << 757 xMean = 0.5*(a + b) ; 749 << 758 xDiff = 0.5*(b - a) ; 750 xMean = 0.5 * (a + b); << 759 for(i=0;i<fNumber;i++) 751 xDiff = 0.5 * (b - a); << 760 { 752 for(i = 0; i < fNumber; ++i) << 761 dx = xDiff*fAbscissa[i] ; 753 { << 762 integral += fWeight[i]*(typeT.*f)(xMean + dx) ; 754 dx = xDiff * fAbscissa[i]; << 763 } 755 integral += fWeight[i] * (typeT.*f)(xMean << 764 delete[] fAbscissa; 756 } << 765 delete[] fWeight; 757 delete[] fAbscissa; << 766 return integral *= xDiff ; 758 delete[] fWeight; << 759 return integral *= xDiff; << 760 } 767 } 761 768 762 ////////////////////////////////////////////// 769 /////////////////////////////////////////////////////////////////////// 763 // 770 // 764 // Convenient for using with 'this' pointer 771 // Convenient for using with 'this' pointer 765 772 766 template <class T, class F> << 773 template <class T, class F> G4double 767 G4double G4Integrator<T, F>::Chebyshev(T* ptrT << 774 G4Integrator<T,F>::Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n) 768 G4int n << 769 { 775 { 770 return Chebyshev(*ptrT, f, a, b, n); << 776 return Chebyshev(*ptrT,f,a,b,n) ; 771 } << 777 } 772 778 773 ////////////////////////////////////////////// 779 //////////////////////////////////////////////////////////////////////// 774 // 780 // 775 // For use with global scope functions f << 781 // For use with global scope functions f 776 << 777 template <class T, class F> << 778 G4double G4Integrator<T, F>::Chebyshev(G4doubl << 779 G4doubl << 780 { << 781 G4int i; << 782 G4double xDiff, xMean, dx, integral = 0.0; << 783 << 784 G4int fNumber = nChebyshev; // Try to << 785 G4double cof = CLHEP::pi / fNumber; << 786 G4double* fAbscissa = new G4double[fNumber]; << 787 G4double* fWeight = new G4double[fNumber]; << 788 for(i = 0; i < fNumber; ++i) << 789 { << 790 fAbscissa[i] = std::cos(cof * (i + 0.5)); << 791 fWeight[i] = cof * std::sqrt(1 - fAbscis << 792 } << 793 782 794 // << 783 template <class T, class F> G4double 795 // Now we ready to estimate the integral << 784 G4Integrator<T,F>::Chebyshev( G4double (*f)(G4double), 796 // << 785 G4double a, G4double b, G4int nChebyshev) 797 << 786 { 798 xMean = 0.5 * (a + b); << 787 G4int i ; 799 xDiff = 0.5 * (b - a); << 788 G4double xDiff, xMean, dx, integral = 0.0 ; 800 for(i = 0; i < fNumber; ++i) << 789 801 { << 790 G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? 802 dx = xDiff * fAbscissa[i]; << 791 G4double cof = pi/fNumber ; 803 integral += fWeight[i] * (*f)(xMean + dx); << 792 G4double* fAbscissa = new G4double[fNumber] ; 804 } << 793 G4double* fWeight = new G4double[fNumber] ; 805 delete[] fAbscissa; << 794 for(i=0;i<fNumber;i++) 806 delete[] fWeight; << 795 { 807 return integral *= xDiff; << 796 fAbscissa[i] = cos(cof*(i + 0.5)) ; >> 797 fWeight[i] = cof*sqrt(1 - fAbscissa[i]*fAbscissa[i]) ; >> 798 } >> 799 // >> 800 // Now we ready to estimate the integral >> 801 // >> 802 xMean = 0.5*(a + b) ; >> 803 xDiff = 0.5*(b - a) ; >> 804 for(i=0;i<fNumber;i++) >> 805 { >> 806 dx = xDiff*fAbscissa[i] ; >> 807 integral += fWeight[i]*(*f)(xMean + dx) ; >> 808 } >> 809 delete[] fAbscissa; >> 810 delete[] fWeight; >> 811 return integral *= xDiff ; 808 } 812 } 809 813 810 ////////////////////////////////////////////// 814 ////////////////////////////////////////////////////////////////////// 811 // 815 // 812 // Method involving Laguerre polynomials 816 // Method involving Laguerre polynomials 813 // 817 // 814 ////////////////////////////////////////////// 818 ////////////////////////////////////////////////////////////////////// 815 // 819 // 816 // Integral from zero to infinity of std::pow( << 820 // Integral from zero to infinity of pow(x,alpha)*exp(-x)*f(x). 817 // The value of nLaguerre sets the accuracy. 821 // The value of nLaguerre sets the accuracy. 818 // The function creates arrays fAbscissa[0,.., << 822 // The function creates arrays fAbscissa[0,..,nLaguerre-1] and 819 // fWeight[0,..,nLaguerre-1] . << 823 // fWeight[0,..,nLaguerre-1] . 820 // Convenient for using with class object 'typ 824 // Convenient for using with class object 'typeT' and (typeT.*f) function 821 // (T::f) 825 // (T::f) 822 826 823 template <class T, class F> << 827 template <class T, class F> G4double 824 G4double G4Integrator<T, F>::Laguerre(T& typeT << 828 G4Integrator<T,F>::Laguerre( T& typeT, F f, G4double alpha, G4int nLaguerre ) 825 G4int nL << 826 { 829 { 827 const G4double tolerance = 1.0e-10; << 830 const G4double tolerance = 1.0e-10 ; 828 const G4int maxNumber = 12; << 831 const G4int maxNumber = 12 ; 829 G4int i, j, k; << 832 G4int i, j, k ; 830 G4double nwt = 0., nwt1, temp1, temp2, << 833 G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ; 831 G4double integral = 0.0; << 834 G4double integral = 0.0 ; 832 << 835 833 G4int fNumber = nLaguerre; << 836 G4int fNumber = nLaguerre ; 834 G4double* fAbscissa = new G4double[fNumber]; << 837 G4double* fAbscissa = new G4double[fNumber] ; 835 G4double* fWeight = new G4double[fNumber]; << 838 G4double* fWeight = new G4double[fNumber] ; >> 839 >> 840 for(i=1;i<=fNumber;i++) // Loop over the desired roots >> 841 { >> 842 if(i == 1) >> 843 { >> 844 newton = (1.0 + alpha)*(3.0 + 0.92*alpha)/(1.0 + 2.4*fNumber + 1.8*alpha) ; >> 845 } >> 846 else if(i == 2) >> 847 { >> 848 newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; >> 849 } >> 850 else >> 851 { >> 852 cofi = i - 2 ; >> 853 newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi))* >> 854 (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; >> 855 } >> 856 for(k=1;k<=maxNumber;k++) >> 857 { >> 858 temp1 = 1.0 ; >> 859 temp2 = 0.0 ; 836 860 837 for(i = 1; i <= fNumber; ++i) // Loop over << 861 for(j=1;j<=fNumber;j++) 838 { << 862 { 839 if(i == 1) << 863 temp3 = temp2 ; 840 { << 864 temp2 = temp1 ; 841 nwt = (1.0 + alpha) * (3.0 + 0.92 * alph << 865 temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; 842 (1.0 + 2.4 * fNumber + 1.8 * alpha << 866 } 843 } << 867 temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; 844 else if(i == 2) << 868 newton1 = newton ; 845 { << 869 newton = newton1 - temp1/temp ; 846 nwt += (15.0 + 6.25 * alpha) / (1.0 + 0. << 870 847 } << 871 if(fabs(newton - newton1) <= tolerance) 848 else << 872 { 849 { << 873 break ; 850 cofi = i - 2; << 874 } 851 nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof << 875 } 852 1.26 * cofi * alpha / (1.0 + 3.5 << 876 if(k > maxNumber) 853 (nwt - fAbscissa[i - 3]) / (1.0 + << 877 { 854 } << 878 G4Exception("Too many (>12) iterations in G4Integration::Laguerre") ; 855 for(k = 1; k <= maxNumber; ++k) << 879 } 856 { << 880 857 temp1 = 1.0; << 881 fAbscissa[i-1] = newton ; 858 temp2 = 0.0; << 882 fWeight[i-1] = -exp(GammaLogarithm(alpha + fNumber) - 859 << 883 GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; 860 for(j = 1; j <= fNumber; ++j) << 884 } 861 { << 885 // 862 temp3 = temp2; << 886 // Integral evaluation 863 temp2 = temp1; << 887 // 864 temp1 = << 888 for(i=0;i<fNumber;i++) 865 ((2 * j - 1 + alpha - nwt) * temp2 - << 889 { 866 } << 890 integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ; 867 temp = (fNumber * temp1 - (fNumber + alp << 891 } 868 nwt1 = nwt; << 892 delete[] fAbscissa; 869 nwt = nwt1 - temp1 / temp; << 893 delete[] fWeight; 870 << 894 return integral ; 871 if(std::fabs(nwt - nwt1) <= tolerance) << 895 } 872 { << 873 break; << 874 } << 875 } << 876 if(k > maxNumber) << 877 { << 878 G4Exception("G4Integrator<T,F>::Laguerre << 879 FatalException, "Too many (> << 880 } << 881 << 882 fAbscissa[i - 1] = nwt; << 883 fWeight[i - 1] = -std::exp(GammaLogarith << 884 GammaLogarithm( << 885 (temp * fNumber * temp2); << 886 } << 887 896 888 // << 889 // Integral evaluation << 890 // << 891 897 892 for(i = 0; i < fNumber; ++i) << 893 { << 894 integral += fWeight[i] * (typeT.*f)(fAbsci << 895 } << 896 delete[] fAbscissa; << 897 delete[] fWeight; << 898 return integral; << 899 } << 900 898 901 ////////////////////////////////////////////// 899 ////////////////////////////////////////////////////////////////////// 902 // 900 // 903 // 901 // 904 902 905 template <class T, class F> << 903 template <class T, class F> G4double 906 G4double G4Integrator<T, F>::Laguerre(T* ptrT, << 904 G4Integrator<T,F>::Laguerre( T* ptrT, F f, G4double alpha, G4int nLaguerre ) 907 G4int nL << 908 { 905 { 909 return Laguerre(*ptrT, f, alpha, nLaguerre); << 906 return Laguerre(*ptrT,f,alpha,nLaguerre) ; 910 } 907 } 911 908 912 ////////////////////////////////////////////// 909 //////////////////////////////////////////////////////////////////////// 913 // 910 // 914 // For use with global scope functions f << 911 // For use with global scope functions f 915 912 916 template <class T, class F> << 913 template <class T, class F> G4double 917 G4double G4Integrator<T, F>::Laguerre(G4double << 914 G4Integrator<T,F>::Laguerre( G4double (*f)(G4double), 918 G4int nL << 915 G4double alpha, G4int nLaguerre) 919 { << 916 { 920 const G4double tolerance = 1.0e-10; << 917 const G4double tolerance = 1.0e-10 ; 921 const G4int maxNumber = 12; << 918 const G4int maxNumber = 12 ; 922 G4int i, j, k; << 919 G4int i, j, k ; 923 G4double nwt = 0., nwt1, temp1, temp2, << 920 G4double newton=0., newton1, temp1, temp2, temp3, temp, cofi ; 924 G4double integral = 0.0; << 921 G4double integral = 0.0 ; 925 << 922 926 G4int fNumber = nLaguerre; << 923 G4int fNumber = nLaguerre ; 927 G4double* fAbscissa = new G4double[fNumber]; << 924 G4double* fAbscissa = new G4double[fNumber] ; 928 G4double* fWeight = new G4double[fNumber]; << 925 G4double* fWeight = new G4double[fNumber] ; 929 << 926 930 for(i = 1; i <= fNumber; ++i) // Loop over << 927 for(i=1;i<=fNumber;i++) // Loop over the desired roots 931 { << 928 { 932 if(i == 1) << 929 if(i == 1) 933 { << 930 { 934 nwt = (1.0 + alpha) * (3.0 + 0.92 * alph << 931 newton = (1.0 + alpha)*(3.0 + 0.92*alpha)/(1.0 + 2.4*fNumber + 1.8*alpha) ; 935 (1.0 + 2.4 * fNumber + 1.8 * alpha << 932 } 936 } << 933 else if(i == 2) 937 else if(i == 2) << 934 { 938 { << 935 newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; 939 nwt += (15.0 + 6.25 * alpha) / (1.0 + 0. << 936 } 940 } << 937 else 941 else << 938 { 942 { << 939 cofi = i - 2 ; 943 cofi = i - 2; << 940 newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi))* 944 nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof << 941 (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; 945 1.26 * cofi * alpha / (1.0 + 3.5 << 942 } 946 (nwt - fAbscissa[i - 3]) / (1.0 + << 943 for(k=1;k<=maxNumber;k++) 947 } << 944 { 948 for(k = 1; k <= maxNumber; ++k) << 945 temp1 = 1.0 ; 949 { << 946 temp2 = 0.0 ; 950 temp1 = 1.0; << 951 temp2 = 0.0; << 952 << 953 for(j = 1; j <= fNumber; ++j) << 954 { << 955 temp3 = temp2; << 956 temp2 = temp1; << 957 temp1 = << 958 ((2 * j - 1 + alpha - nwt) * temp2 - << 959 } << 960 temp = (fNumber * temp1 - (fNumber + alp << 961 nwt1 = nwt; << 962 nwt = nwt1 - temp1 / temp; << 963 << 964 if(std::fabs(nwt - nwt1) <= tolerance) << 965 { << 966 break; << 967 } << 968 } << 969 if(k > maxNumber) << 970 { << 971 G4Exception("G4Integrator<T,F>::Laguerre << 972 "Too many (>12) iterations." << 973 } << 974 << 975 fAbscissa[i - 1] = nwt; << 976 fWeight[i - 1] = -std::exp(GammaLogarith << 977 GammaLogarithm( << 978 (temp * fNumber * temp2); << 979 } << 980 << 981 // << 982 // Integral evaluation << 983 // << 984 947 985 for(i = 0; i < fNumber; i++) << 948 for(j=1;j<=fNumber;j++) 986 { << 949 { 987 integral += fWeight[i] * (*f)(fAbscissa[i] << 950 temp3 = temp2 ; 988 } << 951 temp2 = temp1 ; 989 delete[] fAbscissa; << 952 temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; 990 delete[] fWeight; << 953 } 991 return integral; << 954 temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; >> 955 newton1 = newton ; >> 956 newton = newton1 - temp1/temp ; >> 957 >> 958 if(fabs(newton - newton1) <= tolerance) >> 959 { >> 960 break ; >> 961 } >> 962 } >> 963 if(k > maxNumber) >> 964 { >> 965 G4Exception("Too many (>12) iterations in G4Integration::Laguerre") ; >> 966 } >> 967 >> 968 fAbscissa[i-1] = newton ; >> 969 fWeight[i-1] = -exp(GammaLogarithm(alpha + fNumber) - >> 970 GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; >> 971 } >> 972 // >> 973 // Integral evaluation >> 974 // >> 975 for(i=0;i<fNumber;i++) >> 976 { >> 977 integral += fWeight[i]*(*f)(fAbscissa[i]) ; >> 978 } >> 979 delete[] fAbscissa; >> 980 delete[] fWeight; >> 981 return integral ; 992 } 982 } 993 983 994 ////////////////////////////////////////////// 984 /////////////////////////////////////////////////////////////////////// 995 // 985 // 996 // Auxiliary function which returns the value << 986 // Auxiliary function which returns the value of log(gamma-function(x)) 997 // Returns the value ln(Gamma(xx) for xx > 0. << 987 // Returns the value ln(Gamma(xx) for xx > 0. Full accuracy is obtained for 998 // xx > 1. For 0 < xx < 1. the reflection form 988 // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first. 999 // (Adapted from Numerical Recipes in C) 989 // (Adapted from Numerical Recipes in C) 1000 // 990 // 1001 991 1002 template <class T, class F> 992 template <class T, class F> 1003 G4double G4Integrator<T, F>::GammaLogarithm(G << 993 G4double G4Integrator<T,F>::GammaLogarithm(G4double xx) 1004 { 994 { 1005 static const G4double cof[6] = { 76.1800917 << 995 static G4double cof[6] = { 76.18009172947146, -86.50532032941677, 1006 24.0140982 << 996 24.01409824083091, -1.231739572450155, 1007 0.12086509 << 997 0.1208650973866179e-2, -0.5395239384953e-5 } ; 1008 G4int j; << 998 register HepInt j; 1009 G4double x = xx - 1.0; << 999 G4double x = xx - 1.0 ; 1010 G4double tmp = x + 5.5; << 1000 G4double tmp = x + 5.5 ; 1011 tmp -= (x + 0.5) * std::log(tmp); << 1001 tmp -= (x + 0.5) * log(tmp) ; 1012 G4double ser = 1.000000000190015; << 1002 G4double ser = 1.000000000190015 ; 1013 1003 1014 for(j = 0; j <= 5; ++j) << 1004 for ( j = 0; j <= 5; j++ ) 1015 { 1005 { 1016 x += 1.0; << 1006 x += 1.0 ; 1017 ser += cof[j] / x; << 1007 ser += cof[j]/x ; 1018 } 1008 } 1019 return -tmp + std::log(2.5066282746310005 * << 1009 return -tmp + log(2.5066282746310005*ser) ; 1020 } 1010 } 1021 1011 1022 ///////////////////////////////////////////// 1012 /////////////////////////////////////////////////////////////////////// 1023 // 1013 // 1024 // Method involving Hermite polynomials 1014 // Method involving Hermite polynomials 1025 // 1015 // 1026 ///////////////////////////////////////////// 1016 /////////////////////////////////////////////////////////////////////// 1027 // 1017 // 1028 // 1018 // 1029 // Gauss-Hermite method for integration of st << 1019 // Gauss-Hermite method for integration of exp(-x*x)*f(x) 1030 // from minus infinity to plus infinity . << 1020 // from minus infinity to plus infinity . 1031 // 1021 // 1032 1022 1033 template <class T, class F> << 1023 template <class T, class F> 1034 G4double G4Integrator<T, F>::Hermite(T& typeT << 1024 G4double G4Integrator<T,F>::Hermite( T& typeT, F f, G4int nHermite) 1035 { 1025 { 1036 const G4double tolerance = 1.0e-12; << 1026 const G4double tolerance = 1.0e-12 ; 1037 const G4int maxNumber = 12; << 1027 const G4int maxNumber = 12 ; >> 1028 >> 1029 G4int i, j, k ; >> 1030 G4double integral = 0.0 ; >> 1031 G4double newton=0., newton1, temp1, temp2, temp3, temp ; 1038 1032 1039 G4int i, j, k; << 1033 G4double piInMinusQ = pow(pi,-0.25) ; // 1.0/sqrt(sqrt(pi)) ?? 1040 G4double integral = 0.0; << 1041 G4double nwt = 0., nwt1, temp1, temp2, << 1042 1034 1043 G4double piInMinusQ = << 1035 G4int fNumber = (nHermite +1)/2 ; 1044 std::pow(CLHEP::pi, -0.25); // 1.0/std:: << 1036 G4double* fAbscissa = new G4double[fNumber] ; >> 1037 G4double* fWeight = new G4double[fNumber] ; 1045 1038 1046 G4int fNumber = (nHermite + 1) / 2; << 1039 for(i=1;i<=fNumber;i++) 1047 G4double* fAbscissa = new G4double[fNumber] << 1040 { 1048 G4double* fWeight = new G4double[fNumber] << 1041 if(i == 1) 1049 << 1042 { 1050 for(i = 1; i <= fNumber; ++i) << 1043 newton = sqrt((G4double)(2*nHermite + 1)) - 1051 { << 1044 1.85575001*pow((G4double)(2*nHermite + 1),-0.16666999) ; 1052 if(i == 1) << 1045 } 1053 { << 1046 else if(i == 2) 1054 nwt = std::sqrt((G4double)(2 * nHermite << 1047 { 1055 1.85575001 * std::pow((G4double)( << 1048 newton -= 1.14001*pow((G4double)nHermite,0.425999)/newton ; 1056 } << 1049 } 1057 else if(i == 2) << 1050 else if(i == 3) 1058 { << 1051 { 1059 nwt -= 1.14001 * std::pow((G4double) nH << 1052 newton = 1.86002*newton - 0.86002*fAbscissa[0] ; 1060 } << 1053 } 1061 else if(i == 3) << 1054 else if(i == 4) 1062 { << 1055 { 1063 nwt = 1.86002 * nwt - 0.86002 * fAbscis << 1056 newton = 1.91001*newton - 0.91001*fAbscissa[1] ; 1064 } << 1057 } 1065 else if(i == 4) << 1058 else 1066 { << 1059 { 1067 nwt = 1.91001 * nwt - 0.91001 * fAbscis << 1060 newton = 2.0*newton - fAbscissa[i - 3] ; 1068 } << 1061 } 1069 else << 1062 for(k=1;k<=maxNumber;k++) 1070 { << 1063 { 1071 nwt = 2.0 * nwt - fAbscissa[i - 3]; << 1064 temp1 = piInMinusQ ; 1072 } << 1065 temp2 = 0.0 ; 1073 for(k = 1; k <= maxNumber; ++k) << 1074 { << 1075 temp1 = piInMinusQ; << 1076 temp2 = 0.0; << 1077 << 1078 for(j = 1; j <= nHermite; ++j) << 1079 { << 1080 temp3 = temp2; << 1081 temp2 = temp1; << 1082 temp1 = nwt * std::sqrt(2.0 / j) * te << 1083 std::sqrt(((G4double)(j - 1)) << 1084 } << 1085 temp = std::sqrt((G4double) 2 * nHermit << 1086 nwt1 = nwt; << 1087 nwt = nwt1 - temp1 / temp; << 1088 << 1089 if(std::fabs(nwt - nwt1) <= tolerance) << 1090 { << 1091 break; << 1092 } << 1093 } << 1094 if(k > maxNumber) << 1095 { << 1096 G4Exception("G4Integrator<T,F>::Hermite << 1097 FatalException, "Too many ( << 1098 } << 1099 fAbscissa[i - 1] = nwt; << 1100 fWeight[i - 1] = 2.0 / (temp * temp); << 1101 } << 1102 << 1103 // << 1104 // Integral calculation << 1105 // << 1106 1066 1107 for(i = 0; i < fNumber; ++i) << 1067 for(j=1;j<=nHermite;j++) 1108 { << 1068 { 1109 integral += << 1069 temp3 = temp2 ; 1110 fWeight[i] * ((typeT.*f)(fAbscissa[i]) << 1070 temp2 = temp1 ; 1111 } << 1071 temp1 = newton*sqrt(2.0/j)*temp2 - 1112 delete[] fAbscissa; << 1072 sqrt(((G4double)(j - 1))/j)*temp3 ; 1113 delete[] fWeight; << 1073 } 1114 return integral; << 1074 temp = sqrt((G4double)2*nHermite)*temp2 ; >> 1075 newton1 = newton ; >> 1076 newton = newton1 - temp1/temp ; >> 1077 >> 1078 if(fabs(newton - newton1) <= tolerance) >> 1079 { >> 1080 break ; >> 1081 } >> 1082 } >> 1083 if(k > maxNumber) >> 1084 { >> 1085 G4Exception("Too many (>12) iterations in G4Integrator<T,F>::Hermite") ; >> 1086 } >> 1087 fAbscissa[i-1] = newton ; >> 1088 fWeight[i-1] = 2.0/(temp*temp) ; >> 1089 } >> 1090 // >> 1091 // Integral calculation >> 1092 // >> 1093 for(i=0;i<fNumber;i++) >> 1094 { >> 1095 integral += fWeight[i]*( (typeT.*f)(fAbscissa[i]) + >> 1096 (typeT.*f)(-fAbscissa[i]) ) ; >> 1097 } >> 1098 delete[] fAbscissa; >> 1099 delete[] fWeight; >> 1100 return integral ; 1115 } 1101 } 1116 1102 >> 1103 1117 ///////////////////////////////////////////// 1104 //////////////////////////////////////////////////////////////////////// 1118 // 1105 // 1119 // For use with 'this' pointer 1106 // For use with 'this' pointer 1120 1107 1121 template <class T, class F> << 1108 template <class T, class F> 1122 G4double G4Integrator<T, F>::Hermite(T* ptrT, << 1109 G4double G4Integrator<T,F>::Hermite( T* ptrT, F f, G4int n) 1123 { 1110 { 1124 return Hermite(*ptrT, f, n); << 1111 return Hermite(*ptrT,f,n) ; 1125 } << 1112 } 1126 1113 1127 ///////////////////////////////////////////// 1114 //////////////////////////////////////////////////////////////////////// 1128 // 1115 // 1129 // For use with global scope f 1116 // For use with global scope f 1130 1117 1131 template <class T, class F> 1118 template <class T, class F> 1132 G4double G4Integrator<T, F>::Hermite(G4double << 1119 G4double G4Integrator<T,F>::Hermite( G4double (*f)(G4double), G4int nHermite) 1133 { 1120 { 1134 const G4double tolerance = 1.0e-12; << 1121 const G4double tolerance = 1.0e-12 ; 1135 const G4int maxNumber = 12; << 1122 const G4int maxNumber = 12 ; 1136 << 1123 1137 G4int i, j, k; << 1124 G4int i, j, k ; 1138 G4double integral = 0.0; << 1125 G4double integral = 0.0 ; 1139 G4double nwt = 0., nwt1, temp1, temp2, << 1126 G4double newton=0., newton1, temp1, temp2, temp3, temp ; 1140 << 1127 1141 G4double piInMinusQ = << 1128 G4double piInMinusQ = pow(pi,-0.25) ; // 1.0/sqrt(sqrt(pi)) ?? 1142 std::pow(CLHEP::pi, -0.25); // 1.0/std:: << 1129 1143 << 1130 G4int fNumber = (nHermite +1)/2 ; 1144 G4int fNumber = (nHermite + 1) / 2; << 1131 G4double* fAbscissa = new G4double[fNumber] ; 1145 G4double* fAbscissa = new G4double[fNumber] << 1132 G4double* fWeight = new G4double[fNumber] ; 1146 G4double* fWeight = new G4double[fNumber] << 1133 1147 << 1134 for(i=1;i<=fNumber;i++) 1148 for(i = 1; i <= fNumber; ++i) << 1135 { 1149 { << 1136 if(i == 1) 1150 if(i == 1) << 1137 { 1151 { << 1138 newton = sqrt((G4double)(2*nHermite + 1)) - 1152 nwt = std::sqrt((G4double)(2 * nHermite << 1139 1.85575001*pow((G4double)(2*nHermite + 1),-0.16666999) ; 1153 1.85575001 * std::pow((G4double)( << 1140 } 1154 } << 1141 else if(i == 2) 1155 else if(i == 2) << 1142 { 1156 { << 1143 newton -= 1.14001*pow((G4double)nHermite,0.425999)/newton ; 1157 nwt -= 1.14001 * std::pow((G4double) nH << 1144 } 1158 } << 1145 else if(i == 3) 1159 else if(i == 3) << 1146 { 1160 { << 1147 newton = 1.86002*newton - 0.86002*fAbscissa[0] ; 1161 nwt = 1.86002 * nwt - 0.86002 * fAbscis << 1148 } 1162 } << 1149 else if(i == 4) 1163 else if(i == 4) << 1150 { 1164 { << 1151 newton = 1.91001*newton - 0.91001*fAbscissa[1] ; 1165 nwt = 1.91001 * nwt - 0.91001 * fAbscis << 1152 } 1166 } << 1153 else 1167 else << 1154 { 1168 { << 1155 newton = 2.0*newton - fAbscissa[i - 3] ; 1169 nwt = 2.0 * nwt - fAbscissa[i - 3]; << 1156 } 1170 } << 1157 for(k=1;k<=maxNumber;k++) 1171 for(k = 1; k <= maxNumber; ++k) << 1158 { 1172 { << 1159 temp1 = piInMinusQ ; 1173 temp1 = piInMinusQ; << 1160 temp2 = 0.0 ; 1174 temp2 = 0.0; << 1175 << 1176 for(j = 1; j <= nHermite; ++j) << 1177 { << 1178 temp3 = temp2; << 1179 temp2 = temp1; << 1180 temp1 = nwt * std::sqrt(2.0 / j) * te << 1181 std::sqrt(((G4double)(j - 1)) << 1182 } << 1183 temp = std::sqrt((G4double) 2 * nHermit << 1184 nwt1 = nwt; << 1185 nwt = nwt1 - temp1 / temp; << 1186 << 1187 if(std::fabs(nwt - nwt1) <= tolerance) << 1188 { << 1189 break; << 1190 } << 1191 } << 1192 if(k > maxNumber) << 1193 { << 1194 G4Exception("G4Integrator<T,F>::Hermite << 1195 "Too many (>12) iterations. << 1196 } << 1197 fAbscissa[i - 1] = nwt; << 1198 fWeight[i - 1] = 2.0 / (temp * temp); << 1199 } << 1200 << 1201 // << 1202 // Integral calculation << 1203 // << 1204 1161 1205 for(i = 0; i < fNumber; ++i) << 1162 for(j=1;j<=nHermite;j++) 1206 { << 1163 { 1207 integral += fWeight[i] * ((*f)(fAbscissa[ << 1164 temp3 = temp2 ; 1208 } << 1165 temp2 = temp1 ; 1209 delete[] fAbscissa; << 1166 temp1 = newton*sqrt(2.0/j)*temp2 - 1210 delete[] fWeight; << 1167 sqrt(((G4double)(j - 1))/j)*temp3 ; 1211 return integral; << 1168 } >> 1169 temp = sqrt((G4double)2*nHermite)*temp2 ; >> 1170 newton1 = newton ; >> 1171 newton = newton1 - temp1/temp ; >> 1172 >> 1173 if(fabs(newton - newton1) <= tolerance) >> 1174 { >> 1175 break ; >> 1176 } >> 1177 } >> 1178 if(k > maxNumber) >> 1179 { >> 1180 G4Exception("Too many (>12) iterations in G4Integrator<T,F>::Hermite") ; >> 1181 } >> 1182 fAbscissa[i-1] = newton ; >> 1183 fWeight[i-1] = 2.0/(temp*temp) ; >> 1184 } >> 1185 // >> 1186 // Integral calculation >> 1187 // >> 1188 for(i=0;i<fNumber;i++) >> 1189 { >> 1190 integral += fWeight[i]*( (*f)(fAbscissa[i]) + (*f)(-fAbscissa[i]) ) ; >> 1191 } >> 1192 delete[] fAbscissa; >> 1193 delete[] fWeight; >> 1194 return integral ; 1212 } 1195 } 1213 1196 1214 ///////////////////////////////////////////// 1197 //////////////////////////////////////////////////////////////////////////// 1215 // 1198 // 1216 // Method involving Jacobi polynomials 1199 // Method involving Jacobi polynomials 1217 // 1200 // 1218 ///////////////////////////////////////////// 1201 //////////////////////////////////////////////////////////////////////////// 1219 // 1202 // 1220 // Gauss-Jacobi method for integration of ((1 1203 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x) 1221 // from minus unit to plus unit . 1204 // from minus unit to plus unit . 1222 // 1205 // 1223 1206 1224 template <class T, class F> << 1207 template <class T, class F> 1225 G4double G4Integrator<T, F>::Jacobi(T& typeT, << 1208 G4double G4Integrator<T,F>::Jacobi( T& typeT, F f, G4double alpha, 1226 G4double << 1209 G4double beta, G4int nJacobi) 1227 { << 1210 { 1228 const G4double tolerance = 1.0e-12; << 1211 const G4double tolerance = 1.0e-12 ; 1229 const G4double maxNumber = 12; << 1212 const G4double maxNumber = 12 ; 1230 G4int i, k, j; << 1213 G4int i, k, j ; 1231 G4double alphaBeta, alphaReduced, betaReduc << 1214 G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ; 1232 << 1215 G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ; 1233 G4double a, b, c, nwt1, nwt2, nwt3, nwt, te << 1216 1234 << 1217 G4int fNumber = nJacobi ; 1235 G4int fNumber = nJacobi; << 1218 G4double* fAbscissa = new G4double[fNumber] ; 1236 G4double* fAbscissa = new G4double[fNumber] << 1219 G4double* fWeight = new G4double[fNumber] ; 1237 G4double* fWeight = new G4double[fNumber] << 1220 1238 << 1221 for (i=1;i<=nJacobi;i++) 1239 for(i = 1; i <= nJacobi; ++i) << 1222 { 1240 { << 1223 if (i == 1) 1241 if(i == 1) << 1224 { 1242 { << 1225 alphaReduced = alpha/nJacobi ; 1243 alphaReduced = alpha / nJacobi; << 1226 betaReduced = beta/nJacobi ; 1244 betaReduced = beta / nJacobi; << 1227 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 1245 root1 = (1.0 + alpha) * (2.78002 << 1228 0.767999*alphaReduced/nJacobi) ; 1246 0.767999 * alp << 1229 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 1247 root2 = 1.0 + 1.48 * alphaReduce << 1230 0.451998*alphaReduced*alphaReduced + 1248 0.451998 * alphaReduced * alpha << 1231 0.83001*alphaReduced*betaReduced ; 1249 0.83001 * alphaReduced * betaRe << 1232 root = 1.0-root1/root2 ; 1250 root = 1.0 - root1 / root2; << 1233 } 1251 } << 1234 else if (i == 2) 1252 else if(i == 2) << 1235 { 1253 { << 1236 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; 1254 root1 = (4.1002 + alpha) / ((1.0 + alph << 1237 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; 1255 root2 = 1.0 + 0.06 * (nJacobi - 8.0) * << 1238 root3=1.0+0.012002*beta*(1.0+0.24997*fabs(alpha))/nJacobi ; 1256 root3 = << 1239 root -= (1.0-root)*root1*root2*root3 ; 1257 1.0 + 0.012002 * beta * (1.0 + 0.2499 << 1240 } 1258 root -= (1.0 - root) * root1 * root2 * << 1241 else if (i == 3) 1259 } << 1242 { 1260 else if(i == 3) << 1243 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; 1261 { << 1244 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; 1262 root1 = (1.67001 + 0.27998 * alpha) / ( << 1245 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; 1263 root2 = 1.0 + 0.22 * (nJacobi - 8.0) / << 1246 root -= (fAbscissa[0]-root)*root1*root2*root3 ; 1264 root3 = 1.0 + 8.0 * beta / ((6.28001 + << 1247 } 1265 root -= (fAbscissa[0] - root) * root1 * << 1248 else if (i == nJacobi-1) 1266 } << 1249 { 1267 else if(i == nJacobi - 1) << 1250 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; 1268 { << 1251 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; 1269 root1 = (1.0 + 0.235002 * beta) / (0.76 << 1252 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; 1270 root2 = 1.0 / (1.0 + 0.639002 * (nJacob << 1253 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; 1271 (1.0 + 0.71001 * << 1254 } 1272 root3 = 1.0 / (1.0 + 20.0 * alpha / ((7 << 1255 else if (i == nJacobi) 1273 root += (root - fAbscissa[nJacobi - 4]) << 1256 { 1274 } << 1257 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; 1275 else if(i == nJacobi) << 1258 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; 1276 { << 1259 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; 1277 root1 = (1.0 + 0.37002 * beta) / (1.670 << 1260 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; 1278 root2 = 1.0 / (1.0 + 0.22 * (nJacobi - << 1261 } 1279 root3 = << 1262 else 1280 1.0 / (1.0 + 8.0 * alpha / ((6.28002 << 1263 { 1281 root += (root - fAbscissa[nJacobi - 3]) << 1264 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; 1282 } << 1265 } 1283 else << 1266 alphaBeta = alpha + beta ; 1284 { << 1267 for (k=1;k<=maxNumber;k++) 1285 root = 3.0 * fAbscissa[i - 2] - 3.0 * f << 1268 { 1286 } << 1269 temp = 2.0 + alphaBeta ; 1287 alphaBeta = alpha + beta; << 1270 newton1 = (alpha-beta+temp*root)/2.0 ; 1288 for(k = 1; k <= maxNumber; ++k) << 1271 newton2 = 1.0 ; 1289 { << 1272 for (j=2;j<=nJacobi;j++) 1290 temp = 2.0 + alphaBeta; << 1273 { 1291 nwt1 = (alpha - beta + temp * root) / 2 << 1274 newton3 = newton2 ; 1292 nwt2 = 1.0; << 1275 newton2 = newton1 ; 1293 for(j = 2; j <= nJacobi; ++j) << 1276 temp = 2*j+alphaBeta ; 1294 { << 1277 a = 2*j*(j+alphaBeta)*(temp-2.0) ; 1295 nwt3 = nwt2; << 1278 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; 1296 nwt2 = nwt1; << 1279 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; 1297 temp = 2 * j + alphaBeta; << 1280 newton1 = (b*newton2-c*newton3)/a ; 1298 a = 2 * j * (j + alphaBeta) * (tem << 1281 } 1299 b = (temp - 1.0) * << 1282 newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 1300 (alpha * alpha - beta * beta + te << 1283 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ 1301 c = 2.0 * (j - 1 + alpha) * (j - 1 << 1284 (temp*(1.0 - root*root)) ; 1302 nwt1 = (b * nwt2 - c * nwt3) / a; << 1285 rootTemp = root ; 1303 } << 1286 root = rootTemp - newton1/newton ; 1304 nwt = (nJacobi * (alpha - beta - temp * << 1287 if (fabs(root-rootTemp) <= tolerance) 1305 2.0 * (nJacobi + alpha) * (nJaco << 1288 { 1306 (temp * (1.0 - root * root)); << 1289 break ; 1307 rootTemp = root; << 1290 } 1308 root = rootTemp - nwt1 / nwt; << 1291 } 1309 if(std::fabs(root - rootTemp) <= tolera << 1292 if (k > maxNumber) 1310 { << 1293 { 1311 break; << 1294 G4Exception("Too many iterations (>12) in G4Integrator<T,F>::Jacobi") ; 1312 } << 1295 } 1313 } << 1296 fAbscissa[i-1] = root ; 1314 if(k > maxNumber) << 1297 fWeight[i-1] = exp(GammaLogarithm((G4double)(alpha+nJacobi)) + 1315 { << 1298 GammaLogarithm((G4double)(beta+nJacobi)) - 1316 G4Exception("G4Integrator<T,F>::Jacobi( << 1299 GammaLogarithm((G4double)(nJacobi+1.0)) - 1317 FatalException, "Too many ( << 1300 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) 1318 } << 1301 *temp*pow(2.0,alphaBeta)/(newton*newton2) ; 1319 fAbscissa[i - 1] = root; << 1302 } 1320 fWeight[i - 1] = << 1303 // 1321 std::exp(GammaLogarithm((G4double)(alph << 1304 // Calculation of the integral 1322 GammaLogarithm((G4double)(beta << 1305 // 1323 GammaLogarithm((G4double)(nJac << 1306 G4double integral = 0.0 ; 1324 GammaLogarithm((G4double)(nJac << 1307 for(i=0;i<fNumber;i++) 1325 temp * std::pow(2.0, alphaBeta) / (nwt << 1308 { 1326 } << 1309 integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ; 1327 << 1310 } 1328 // << 1311 delete[] fAbscissa; 1329 // Calculation of the integral << 1312 delete[] fWeight; 1330 // << 1313 return integral ; 1331 << 1332 G4double integral = 0.0; << 1333 for(i = 0; i < fNumber; ++i) << 1334 { << 1335 integral += fWeight[i] * (typeT.*f)(fAbsc << 1336 } << 1337 delete[] fAbscissa; << 1338 delete[] fWeight; << 1339 return integral; << 1340 } 1314 } 1341 1315 >> 1316 1342 ///////////////////////////////////////////// 1317 ///////////////////////////////////////////////////////////////////////// 1343 // 1318 // 1344 // For use with 'this' pointer 1319 // For use with 'this' pointer 1345 1320 1346 template <class T, class F> << 1321 template <class T, class F> 1347 G4double G4Integrator<T, F>::Jacobi(T* ptrT, << 1322 G4double G4Integrator<T,F>::Jacobi( T* ptrT, F f, G4double alpha, 1348 G4int n) << 1323 G4double beta, G4int n) 1349 { 1324 { 1350 return Jacobi(*ptrT, f, alpha, beta, n); << 1325 return Jacobi(*ptrT,f,alpha,beta,n) ; 1351 } << 1326 } 1352 1327 1353 ///////////////////////////////////////////// 1328 ///////////////////////////////////////////////////////////////////////// 1354 // 1329 // 1355 // For use with global scope f << 1330 // For use with global scope f 1356 1331 1357 template <class T, class F> 1332 template <class T, class F> 1358 G4double G4Integrator<T, F>::Jacobi(G4double << 1333 G4double G4Integrator<T,F>::Jacobi( G4double (*f)(G4double), G4double alpha, 1359 G4double << 1334 G4double beta, G4int nJacobi) 1360 { 1335 { 1361 const G4double tolerance = 1.0e-12; << 1336 const G4double tolerance = 1.0e-12 ; 1362 const G4double maxNumber = 12; << 1337 const G4double maxNumber = 12 ; 1363 G4int i, k, j; << 1338 G4int i, k, j ; 1364 G4double alphaBeta, alphaReduced, betaReduc << 1339 G4double alphaBeta, alphaReduced, betaReduced, root1=0., root2=0., root3=0. ; 1365 << 1340 G4double a, b, c, newton1, newton2, newton3, newton, temp, root=0., rootTemp ; 1366 G4double a, b, c, nwt1, nwt2, nwt3, nwt, te << 1341 1367 << 1342 G4int fNumber = nJacobi ; 1368 G4int fNumber = nJacobi; << 1343 G4double* fAbscissa = new G4double[fNumber] ; 1369 G4double* fAbscissa = new G4double[fNumber] << 1344 G4double* fWeight = new G4double[fNumber] ; 1370 G4double* fWeight = new G4double[fNumber] << 1345 1371 << 1346 for (i=1;i<=nJacobi;i++) 1372 for(i = 1; i <= nJacobi; ++i) << 1347 { 1373 { << 1348 if (i == 1) 1374 if(i == 1) << 1349 { 1375 { << 1350 alphaReduced = alpha/nJacobi ; 1376 alphaReduced = alpha / nJacobi; << 1351 betaReduced = beta/nJacobi ; 1377 betaReduced = beta / nJacobi; << 1352 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 1378 root1 = (1.0 + alpha) * (2.78002 << 1353 0.767999*alphaReduced/nJacobi) ; 1379 0.767999 * alp << 1354 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 1380 root2 = 1.0 + 1.48 * alphaReduce << 1355 0.451998*alphaReduced*alphaReduced + 1381 0.451998 * alphaReduced * alpha << 1356 0.83001*alphaReduced*betaReduced ; 1382 0.83001 * alphaReduced * betaRe << 1357 root = 1.0-root1/root2 ; 1383 root = 1.0 - root1 / root2; << 1358 } 1384 } << 1359 else if (i == 2) 1385 else if(i == 2) << 1360 { 1386 { << 1361 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; 1387 root1 = (4.1002 + alpha) / ((1.0 + alph << 1362 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; 1388 root2 = 1.0 + 0.06 * (nJacobi - 8.0) * << 1363 root3=1.0+0.012002*beta*(1.0+0.24997*fabs(alpha))/nJacobi ; 1389 root3 = << 1364 root -= (1.0-root)*root1*root2*root3 ; 1390 1.0 + 0.012002 * beta * (1.0 + 0.2499 << 1365 } 1391 root -= (1.0 - root) * root1 * root2 * << 1366 else if (i == 3) 1392 } << 1367 { 1393 else if(i == 3) << 1368 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; 1394 { << 1369 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; 1395 root1 = (1.67001 + 0.27998 * alpha) / ( << 1370 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; 1396 root2 = 1.0 + 0.22 * (nJacobi - 8.0) / << 1371 root -= (fAbscissa[0]-root)*root1*root2*root3 ; 1397 root3 = 1.0 + 8.0 * beta / ((6.28001 + << 1372 } 1398 root -= (fAbscissa[0] - root) * root1 * << 1373 else if (i == nJacobi-1) 1399 } << 1374 { 1400 else if(i == nJacobi - 1) << 1375 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; 1401 { << 1376 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; 1402 root1 = (1.0 + 0.235002 * beta) / (0.76 << 1377 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; 1403 root2 = 1.0 / (1.0 + 0.639002 * (nJacob << 1378 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; 1404 (1.0 + 0.71001 * << 1379 } 1405 root3 = 1.0 / (1.0 + 20.0 * alpha / ((7 << 1380 else if (i == nJacobi) 1406 root += (root - fAbscissa[nJacobi - 4]) << 1381 { 1407 } << 1382 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; 1408 else if(i == nJacobi) << 1383 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; 1409 { << 1384 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; 1410 root1 = (1.0 + 0.37002 * beta) / (1.670 << 1385 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; 1411 root2 = 1.0 / (1.0 + 0.22 * (nJacobi - << 1386 } 1412 root3 = << 1387 else 1413 1.0 / (1.0 + 8.0 * alpha / ((6.28002 << 1388 { 1414 root += (root - fAbscissa[nJacobi - 3]) << 1389 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; 1415 } << 1390 } 1416 else << 1391 alphaBeta = alpha + beta ; 1417 { << 1392 for (k=1;k<=maxNumber;k++) 1418 root = 3.0 * fAbscissa[i - 2] - 3.0 * f << 1393 { 1419 } << 1394 temp = 2.0 + alphaBeta ; 1420 alphaBeta = alpha + beta; << 1395 newton1 = (alpha-beta+temp*root)/2.0 ; 1421 for(k = 1; k <= maxNumber; ++k) << 1396 newton2 = 1.0 ; 1422 { << 1397 for (j=2;j<=nJacobi;j++) 1423 temp = 2.0 + alphaBeta; << 1398 { 1424 nwt1 = (alpha - beta + temp * root) / 2 << 1399 newton3 = newton2 ; 1425 nwt2 = 1.0; << 1400 newton2 = newton1 ; 1426 for(j = 2; j <= nJacobi; ++j) << 1401 temp = 2*j+alphaBeta ; 1427 { << 1402 a = 2*j*(j+alphaBeta)*(temp-2.0) ; 1428 nwt3 = nwt2; << 1403 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; 1429 nwt2 = nwt1; << 1404 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; 1430 temp = 2 * j + alphaBeta; << 1405 newton1 = (b*newton2-c*newton3)/a ; 1431 a = 2 * j * (j + alphaBeta) * (tem << 1406 } 1432 b = (temp - 1.0) * << 1407 newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 1433 (alpha * alpha - beta * beta + te << 1408 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ 1434 c = 2.0 * (j - 1 + alpha) * (j - 1 << 1409 (temp*(1.0 - root*root)) ; 1435 nwt1 = (b * nwt2 - c * nwt3) / a; << 1410 rootTemp = root ; 1436 } << 1411 root = rootTemp - newton1/newton ; 1437 nwt = (nJacobi * (alpha - beta - temp * << 1412 if (fabs(root-rootTemp) <= tolerance) 1438 2.0 * (nJacobi + alpha) * (nJaco << 1413 { 1439 (temp * (1.0 - root * root)); << 1414 break ; 1440 rootTemp = root; << 1415 } 1441 root = rootTemp - nwt1 / nwt; << 1416 } 1442 if(std::fabs(root - rootTemp) <= tolera << 1417 if (k > maxNumber) 1443 { << 1418 { 1444 break; << 1419 G4Exception("Too many iterations (>12) in G4Integrator<T,F>::Jacobi") ; 1445 } << 1420 } 1446 } << 1421 fAbscissa[i-1] = root ; 1447 if(k > maxNumber) << 1422 fWeight[i-1] = exp(GammaLogarithm((G4double)(alpha+nJacobi)) + 1448 { << 1423 GammaLogarithm((G4double)(beta+nJacobi)) - 1449 G4Exception("G4Integrator<T,F>::Jacobi( << 1424 GammaLogarithm((G4double)(nJacobi+1.0)) - 1450 "Too many (>12) iterations. << 1425 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) 1451 } << 1426 *temp*pow(2.0,alphaBeta)/(newton*newton2) ; 1452 fAbscissa[i - 1] = root; << 1427 } 1453 fWeight[i - 1] = << 1428 // 1454 std::exp(GammaLogarithm((G4double)(alph << 1429 // Calculation of the integral 1455 GammaLogarithm((G4double)(beta << 1430 // 1456 GammaLogarithm((G4double)(nJac << 1431 G4double integral = 0.0 ; 1457 GammaLogarithm((G4double)(nJac << 1432 for(i=0;i<fNumber;i++) 1458 temp * std::pow(2.0, alphaBeta) / (nwt << 1433 { 1459 } << 1434 integral += fWeight[i]*(*f)(fAbscissa[i]) ; >> 1435 } >> 1436 delete[] fAbscissa; >> 1437 delete[] fWeight; >> 1438 return integral ; >> 1439 } 1460 1440 1461 // << 1462 // Calculation of the integral << 1463 // << 1464 1441 1465 G4double integral = 0.0; << 1466 for(i = 0; i < fNumber; ++i) << 1467 { << 1468 integral += fWeight[i] * (*f)(fAbscissa[i << 1469 } << 1470 delete[] fAbscissa; << 1471 delete[] fWeight; << 1472 return integral; << 1473 } << 1474 1442 1475 // 1443 // 1476 // 1444 // 1477 ///////////////////////////////////////////// 1445 /////////////////////////////////////////////////////////////////// >> 1446 >> 1447 >> 1448 >> 1449 1478 1450