Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4Integrator.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4Integrator.icc (Version 11.3.0) and /global/HEPNumerics/include/G4Integrator.icc (Version 11.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4Integrator inline methods implementation      26 // G4Integrator inline methods implementation
 27 //                                                 27 //
 28 // Author: V.Grichine, 04.09.1999 - First impl     28 // Author: V.Grichine, 04.09.1999 - First implementation based on
 29 //         G4SimpleIntegration class with H.P.     29 //         G4SimpleIntegration class with H.P.Wellisch, G.Cosmo, and
 30 //         E.TCherniaev advises                    30 //         E.TCherniaev advises
 31 // -------------------------------------------     31 // --------------------------------------------------------------------
 32                                                    32 
 33 //////////////////////////////////////////////     33 /////////////////////////////////////////////////////////////////////
 34 //                                                 34 //
 35 // Sympson integration method                      35 // Sympson integration method
 36 //                                                 36 //
 37 //////////////////////////////////////////////     37 /////////////////////////////////////////////////////////////////////
 38 //                                                 38 //
 39 // Integration of class member functions T::f      39 // Integration of class member functions T::f by Simpson method.
 40                                                    40 
 41 template <class T, class F>                        41 template <class T, class F>
 42 G4double G4Integrator<T, F>::Simpson(T& typeT,     42 G4double G4Integrator<T, F>::Simpson(T& typeT, F f, G4double xInitial,
 43                                      G4double      43                                      G4double xFinal, G4int iterationNumber)
 44 {                                                  44 {
 45   G4int i;                                         45   G4int i;
 46   G4double step  = (xFinal - xInitial) / itera     46   G4double step  = (xFinal - xInitial) / iterationNumber;
 47   G4double x     = xInitial;                       47   G4double x     = xInitial;
 48   G4double xPlus = xInitial + 0.5 * step;          48   G4double xPlus = xInitial + 0.5 * step;
 49   G4double mean  = ((typeT.*f)(xInitial) + (ty     49   G4double mean  = ((typeT.*f)(xInitial) + (typeT.*f)(xFinal)) * 0.5;
 50   G4double sum   = (typeT.*f)(xPlus);              50   G4double sum   = (typeT.*f)(xPlus);
 51                                                    51 
 52   for(i = 1; i < iterationNumber; ++i)             52   for(i = 1; i < iterationNumber; ++i)
 53   {                                                53   {
 54     x += step;                                     54     x += step;
 55     xPlus += step;                                 55     xPlus += step;
 56     mean += (typeT.*f)(x);                         56     mean += (typeT.*f)(x);
 57     sum += (typeT.*f)(xPlus);                      57     sum += (typeT.*f)(xPlus);
 58   }                                                58   }
 59   mean += 2.0 * sum;                               59   mean += 2.0 * sum;
 60                                                    60 
 61   return mean * step / 3.0;                        61   return mean * step / 3.0;
 62 }                                                  62 }
 63                                                    63 
 64 //////////////////////////////////////////////     64 /////////////////////////////////////////////////////////////////////
 65 //                                                 65 //
 66 // Integration of class member functions T::f      66 // Integration of class member functions T::f by Simpson method.
 67 // Convenient to use with 'this' pointer           67 // Convenient to use with 'this' pointer
 68                                                    68 
 69 template <class T, class F>                        69 template <class T, class F>
 70 G4double G4Integrator<T, F>::Simpson(T* ptrT,      70 G4double G4Integrator<T, F>::Simpson(T* ptrT, F f, G4double xInitial,
 71                                      G4double      71                                      G4double xFinal, G4int iterationNumber)
 72 {                                                  72 {
 73   G4int i;                                         73   G4int i;
 74   G4double step  = (xFinal - xInitial) / itera     74   G4double step  = (xFinal - xInitial) / iterationNumber;
 75   G4double x     = xInitial;                       75   G4double x     = xInitial;
 76   G4double xPlus = xInitial + 0.5 * step;          76   G4double xPlus = xInitial + 0.5 * step;
 77   G4double mean  = ((ptrT->*f)(xInitial) + (pt     77   G4double mean  = ((ptrT->*f)(xInitial) + (ptrT->*f)(xFinal)) * 0.5;
 78   G4double sum   = (ptrT->*f)(xPlus);              78   G4double sum   = (ptrT->*f)(xPlus);
 79                                                    79 
 80   for(i = 1; i < iterationNumber; ++i)             80   for(i = 1; i < iterationNumber; ++i)
 81   {                                                81   {
 82     x += step;                                     82     x += step;
 83     xPlus += step;                                 83     xPlus += step;
 84     mean += (ptrT->*f)(x);                         84     mean += (ptrT->*f)(x);
 85     sum += (ptrT->*f)(xPlus);                      85     sum += (ptrT->*f)(xPlus);
 86   }                                                86   }
 87   mean += 2.0 * sum;                               87   mean += 2.0 * sum;
 88                                                    88 
 89   return mean * step / 3.0;                        89   return mean * step / 3.0;
 90 }                                                  90 }
 91                                                    91 
 92 //////////////////////////////////////////////     92 /////////////////////////////////////////////////////////////////////
 93 //                                                 93 //
 94 // Integration of class member functions T::f      94 // Integration of class member functions T::f by Simpson method.
 95 // Convenient to use, when function f is defin     95 // Convenient to use, when function f is defined in global scope, i.e. in main()
 96 // program                                         96 // program
 97                                                    97 
 98 template <class T, class F>                        98 template <class T, class F>
 99 G4double G4Integrator<T, F>::Simpson(G4double      99 G4double G4Integrator<T, F>::Simpson(G4double (*f)(G4double), G4double xInitial,
100                                      G4double     100                                      G4double xFinal, G4int iterationNumber)
101 {                                                 101 {
102   G4int i;                                        102   G4int i;
103   G4double step  = (xFinal - xInitial) / itera    103   G4double step  = (xFinal - xInitial) / iterationNumber;
104   G4double x     = xInitial;                      104   G4double x     = xInitial;
105   G4double xPlus = xInitial + 0.5 * step;         105   G4double xPlus = xInitial + 0.5 * step;
106   G4double mean  = ((*f)(xInitial) + (*f)(xFin    106   G4double mean  = ((*f)(xInitial) + (*f)(xFinal)) * 0.5;
107   G4double sum   = (*f)(xPlus);                   107   G4double sum   = (*f)(xPlus);
108                                                   108 
109   for(i = 1; i < iterationNumber; ++i)            109   for(i = 1; i < iterationNumber; ++i)
110   {                                               110   {
111     x += step;                                    111     x += step;
112     xPlus += step;                                112     xPlus += step;
113     mean += (*f)(x);                              113     mean += (*f)(x);
114     sum += (*f)(xPlus);                           114     sum += (*f)(xPlus);
115   }                                               115   }
116   mean += 2.0 * sum;                              116   mean += 2.0 * sum;
117                                                   117 
118   return mean * step / 3.0;                       118   return mean * step / 3.0;
119 }                                                 119 }
120                                                   120 
121 //////////////////////////////////////////////    121 //////////////////////////////////////////////////////////////////////////
122 //                                                122 //
123 // Adaptive Gauss method                          123 // Adaptive Gauss method
124 //                                                124 //
125 //////////////////////////////////////////////    125 //////////////////////////////////////////////////////////////////////////
126 //                                                126 //
127 //                                                127 //
128                                                   128 
129 template <class T, class F>                       129 template <class T, class F>
130 G4double G4Integrator<T, F>::Gauss(T& typeT, F    130 G4double G4Integrator<T, F>::Gauss(T& typeT, F f, G4double xInitial,
131                                    G4double xF    131                                    G4double xFinal)
132 {                                                 132 {
133   static const G4double root = 1.0 / std::sqrt    133   static const G4double root = 1.0 / std::sqrt(3.0);
134                                                   134 
135   G4double xMean = (xInitial + xFinal) / 2.0;     135   G4double xMean = (xInitial + xFinal) / 2.0;
136   G4double Step  = (xFinal - xInitial) / 2.0;     136   G4double Step  = (xFinal - xInitial) / 2.0;
137   G4double delta = Step * root;                   137   G4double delta = Step * root;
138   G4double sum   = ((typeT.*f)(xMean + delta)     138   G4double sum   = ((typeT.*f)(xMean + delta) + (typeT.*f)(xMean - delta));
139                                                   139 
140   return sum * Step;                              140   return sum * Step;
141 }                                                 141 }
142                                                   142 
143 //////////////////////////////////////////////    143 //////////////////////////////////////////////////////////////////////
144 //                                                144 //
145 //                                                145 //
146                                                   146 
147 template <class T, class F>                       147 template <class T, class F>
148 G4double G4Integrator<T, F>::Gauss(T* ptrT, F     148 G4double G4Integrator<T, F>::Gauss(T* ptrT, F f, G4double a, G4double b)
149 {                                                 149 {
150   return Gauss(*ptrT, f, a, b);                   150   return Gauss(*ptrT, f, a, b);
151 }                                                 151 }
152                                                   152 
153 //////////////////////////////////////////////    153 ///////////////////////////////////////////////////////////////////////
154 //                                                154 //
155 //                                                155 //
156                                                   156 
157 template <class T, class F>                       157 template <class T, class F>
158 G4double G4Integrator<T, F>::Gauss(G4double (*    158 G4double G4Integrator<T, F>::Gauss(G4double (*f)(G4double), G4double xInitial,
159                                    G4double xF    159                                    G4double xFinal)
160 {                                                 160 {
161   static const G4double root = 1.0 / std::sqrt    161   static const G4double root = 1.0 / std::sqrt(3.0);
162                                                   162 
163   G4double xMean = (xInitial + xFinal) / 2.0;     163   G4double xMean = (xInitial + xFinal) / 2.0;
164   G4double Step  = (xFinal - xInitial) / 2.0;     164   G4double Step  = (xFinal - xInitial) / 2.0;
165   G4double delta = Step * root;                   165   G4double delta = Step * root;
166   G4double sum   = ((*f)(xMean + delta) + (*f)    166   G4double sum   = ((*f)(xMean + delta) + (*f)(xMean - delta));
167                                                   167 
168   return sum * Step;                              168   return sum * Step;
169 }                                                 169 }
170                                                   170 
171 //////////////////////////////////////////////    171 ///////////////////////////////////////////////////////////////////////////
172 //                                                172 //
173 //                                                173 //
174                                                   174 
175 template <class T, class F>                       175 template <class T, class F>
176 void G4Integrator<T, F>::AdaptGauss(T& typeT,     176 void G4Integrator<T, F>::AdaptGauss(T& typeT, F f, G4double xInitial,
177                                     G4double x    177                                     G4double xFinal, G4double fTolerance,
178                                     G4double&     178                                     G4double& sum, G4int& depth)
179 {                                                 179 {
180   if(depth > 100)                                 180   if(depth > 100)
181   {                                               181   {
182     G4cout << "G4Integrator<T,F>::AdaptGauss:     182     G4cout << "G4Integrator<T,F>::AdaptGauss: WARNING !!!" << G4endl;
183     G4cout << "Function varies too rapidly to     183     G4cout << "Function varies too rapidly to get stated accuracy in 100 steps "
184            << G4endl;                             184            << G4endl;
185                                                   185 
186     return;                                       186     return;
187   }                                               187   }
188   G4double xMean     = (xInitial + xFinal) / 2    188   G4double xMean     = (xInitial + xFinal) / 2.0;
189   G4double leftHalf  = Gauss(typeT, f, xInitia    189   G4double leftHalf  = Gauss(typeT, f, xInitial, xMean);
190   G4double rightHalf = Gauss(typeT, f, xMean,     190   G4double rightHalf = Gauss(typeT, f, xMean, xFinal);
191   G4double full      = Gauss(typeT, f, xInitia    191   G4double full      = Gauss(typeT, f, xInitial, xFinal);
192   if(std::fabs(leftHalf + rightHalf - full) <     192   if(std::fabs(leftHalf + rightHalf - full) < fTolerance)
193   {                                               193   {
194     sum += full;                                  194     sum += full;
195   }                                               195   }
196   else                                            196   else
197   {                                               197   {
198     ++depth;                                      198     ++depth;
199     AdaptGauss(typeT, f, xInitial, xMean, fTol    199     AdaptGauss(typeT, f, xInitial, xMean, fTolerance, sum, depth);
200     AdaptGauss(typeT, f, xMean, xFinal, fToler    200     AdaptGauss(typeT, f, xMean, xFinal, fTolerance, sum, depth);
201   }                                               201   }
202 }                                                 202 }
203                                                   203 
204 template <class T, class F>                       204 template <class T, class F>
205 void G4Integrator<T, F>::AdaptGauss(T* ptrT, F    205 void G4Integrator<T, F>::AdaptGauss(T* ptrT, F f, G4double xInitial,
206                                     G4double x    206                                     G4double xFinal, G4double fTolerance,
207                                     G4double&     207                                     G4double& sum, G4int& depth)
208 {                                                 208 {
209   AdaptGauss(*ptrT, f, xInitial, xFinal, fTole    209   AdaptGauss(*ptrT, f, xInitial, xFinal, fTolerance, sum, depth);
210 }                                                 210 }
211                                                   211 
212 //////////////////////////////////////////////    212 /////////////////////////////////////////////////////////////////////////
213 //                                                213 //
214 //                                                214 //
215 template <class T, class F>                       215 template <class T, class F>
216 void G4Integrator<T, F>::AdaptGauss(G4double (    216 void G4Integrator<T, F>::AdaptGauss(G4double (*f)(G4double), G4double xInitial,
217                                     G4double x    217                                     G4double xFinal, G4double fTolerance,
218                                     G4double&     218                                     G4double& sum, G4int& depth)
219 {                                                 219 {
220   if(depth > 100)                                 220   if(depth > 100)
221   {                                               221   {
222     G4cout << "G4SimpleIntegration::AdaptGauss    222     G4cout << "G4SimpleIntegration::AdaptGauss: WARNING !!!" << G4endl;
223     G4cout << "Function varies too rapidly to     223     G4cout << "Function varies too rapidly to get stated accuracy in 100 steps "
224            << G4endl;                             224            << G4endl;
225                                                   225 
226     return;                                       226     return;
227   }                                               227   }
228   G4double xMean     = (xInitial + xFinal) / 2    228   G4double xMean     = (xInitial + xFinal) / 2.0;
229   G4double leftHalf  = Gauss(f, xInitial, xMea    229   G4double leftHalf  = Gauss(f, xInitial, xMean);
230   G4double rightHalf = Gauss(f, xMean, xFinal)    230   G4double rightHalf = Gauss(f, xMean, xFinal);
231   G4double full      = Gauss(f, xInitial, xFin    231   G4double full      = Gauss(f, xInitial, xFinal);
232   if(std::fabs(leftHalf + rightHalf - full) <     232   if(std::fabs(leftHalf + rightHalf - full) < fTolerance)
233   {                                               233   {
234     sum += full;                                  234     sum += full;
235   }                                               235   }
236   else                                            236   else
237   {                                               237   {
238     ++depth;                                      238     ++depth;
239     AdaptGauss(f, xInitial, xMean, fTolerance,    239     AdaptGauss(f, xInitial, xMean, fTolerance, sum, depth);
240     AdaptGauss(f, xMean, xFinal, fTolerance, s    240     AdaptGauss(f, xMean, xFinal, fTolerance, sum, depth);
241   }                                               241   }
242 }                                                 242 }
243                                                   243 
244 //////////////////////////////////////////////    244 ////////////////////////////////////////////////////////////////////////
245 //                                                245 //
246 // Adaptive Gauss integration with accuracy 'e    246 // Adaptive Gauss integration with accuracy 'e'
247 // Convenient for using with class object type    247 // Convenient for using with class object typeT
248                                                   248 
249 template <class T, class F>                       249 template <class T, class F>
250 G4double G4Integrator<T, F>::AdaptiveGauss(T&     250 G4double G4Integrator<T, F>::AdaptiveGauss(T& typeT, F f, G4double xInitial,
251                                            G4d    251                                            G4double xFinal, G4double e)
252 {                                                 252 {
253   G4int depth  = 0;                               253   G4int depth  = 0;
254   G4double sum = 0.0;                             254   G4double sum = 0.0;
255   AdaptGauss(typeT, f, xInitial, xFinal, e, su    255   AdaptGauss(typeT, f, xInitial, xFinal, e, sum, depth);
256   return sum;                                     256   return sum;
257 }                                                 257 }
258                                                   258 
259 //////////////////////////////////////////////    259 ////////////////////////////////////////////////////////////////////////
260 //                                                260 //
261 // Adaptive Gauss integration with accuracy 'e    261 // Adaptive Gauss integration with accuracy 'e'
262 // Convenient for using with 'this' pointer       262 // Convenient for using with 'this' pointer
263                                                   263 
264 template <class T, class F>                       264 template <class T, class F>
265 G4double G4Integrator<T, F>::AdaptiveGauss(T*     265 G4double G4Integrator<T, F>::AdaptiveGauss(T* ptrT, F f, G4double xInitial,
266                                            G4d    266                                            G4double xFinal, G4double e)
267 {                                                 267 {
268   return AdaptiveGauss(*ptrT, f, xInitial, xFi    268   return AdaptiveGauss(*ptrT, f, xInitial, xFinal, e);
269 }                                                 269 }
270                                                   270 
271 //////////////////////////////////////////////    271 ////////////////////////////////////////////////////////////////////////
272 //                                                272 //
273 // Adaptive Gauss integration with accuracy 'e    273 // Adaptive Gauss integration with accuracy 'e'
274 // Convenient for using with global scope func    274 // Convenient for using with global scope function f
275                                                   275 
276 template <class T, class F>                       276 template <class T, class F>
277 G4double G4Integrator<T, F>::AdaptiveGauss(G4d    277 G4double G4Integrator<T, F>::AdaptiveGauss(G4double (*f)(G4double),
278                                            G4d    278                                            G4double xInitial, G4double xFinal,
279                                            G4d    279                                            G4double e)
280 {                                                 280 {
281   G4int depth  = 0;                               281   G4int depth  = 0;
282   G4double sum = 0.0;                             282   G4double sum = 0.0;
283   AdaptGauss(f, xInitial, xFinal, e, sum, dept    283   AdaptGauss(f, xInitial, xFinal, e, sum, depth);
284   return sum;                                     284   return sum;
285 }                                                 285 }
286                                                   286 
287 //////////////////////////////////////////////    287 ////////////////////////////////////////////////////////////////////////////
288 // Gauss integration methods involving ortogon    288 // Gauss integration methods involving ortogonal polynomials
289 //////////////////////////////////////////////    289 ////////////////////////////////////////////////////////////////////////////
290 //                                                290 //
291 // Methods involving Legendre polynomials         291 // Methods involving Legendre polynomials
292 //                                                292 //
293 //////////////////////////////////////////////    293 /////////////////////////////////////////////////////////////////////////
294 //                                                294 //
295 // The value nLegendre set the accuracy requir    295 // The value nLegendre set the accuracy required, i.e the number of points
296 // where the function pFunction will be evalua    296 // where the function pFunction will be evaluated during integration.
297 // The function creates the arrays for absciss    297 // The function creates the arrays for abscissas and weights that used
298 // in Gauss-Legendre quadrature method.           298 // in Gauss-Legendre quadrature method.
299 // The values a and b are the limits of integr    299 // The values a and b are the limits of integration of the function  f .
300 // nLegendre MUST BE EVEN !!!                     300 // nLegendre MUST BE EVEN !!!
301 // Returns the integral of the function f betw    301 // Returns the integral of the function f between a and b, by 2*fNumber point
302 // Gauss-Legendre integration: the function is    302 // Gauss-Legendre integration: the function is evaluated exactly
303 // 2*fNumber times at interior points in the r    303 // 2*fNumber times at interior points in the range of integration.
304 // Since the weights and abscissas are, in thi    304 // Since the weights and abscissas are, in this case, symmetric around
305 // the midpoint of the range of integration, t    305 // the midpoint of the range of integration, there are actually only
306 // fNumber distinct values of each.               306 // fNumber distinct values of each.
307 // Convenient for using with some class object    307 // Convenient for using with some class object dataT
308                                                   308 
309 template <class T, class F>                       309 template <class T, class F>
310 G4double G4Integrator<T, F>::Legendre(T& typeT    310 G4double G4Integrator<T, F>::Legendre(T& typeT, F f, G4double a, G4double b,
311                                       G4int nL    311                                       G4int nLegendre)
312 {                                                 312 {
313   G4double nwt, nwt1, temp1, temp2, temp3, tem    313   G4double nwt, nwt1, temp1, temp2, temp3, temp;
314   G4double xDiff, xMean, dx, integral;            314   G4double xDiff, xMean, dx, integral;
315                                                   315 
316   const G4double tolerance = 1.6e-10;             316   const G4double tolerance = 1.6e-10;
317   G4int i, j, k = nLegendre;                      317   G4int i, j, k = nLegendre;
318   G4int fNumber = (nLegendre + 1) / 2;            318   G4int fNumber = (nLegendre + 1) / 2;
319                                                   319 
320   if(2 * fNumber != k)                            320   if(2 * fNumber != k)
321   {                                               321   {
322     G4Exception("G4Integrator<T,F>::Legendre(T    322     G4Exception("G4Integrator<T,F>::Legendre(T&,F, ...)", "InvalidCall",
323                 FatalException, "Invalid (odd)    323                 FatalException, "Invalid (odd) nLegendre in constructor.");
324   }                                               324   }
325                                                   325 
326   G4double* fAbscissa = new G4double[fNumber];    326   G4double* fAbscissa = new G4double[fNumber];
327   G4double* fWeight   = new G4double[fNumber];    327   G4double* fWeight   = new G4double[fNumber];
328                                                   328 
329   for(i = 1; i <= fNumber; ++i)  // Loop over     329   for(i = 1; i <= fNumber; ++i)  // Loop over the desired roots
330   {                                               330   {
331     nwt = std::cos(CLHEP::pi * (i - 0.25) /       331     nwt = std::cos(CLHEP::pi * (i - 0.25) /
332                    (k + 0.5));  // Initial roo    332                    (k + 0.5));  // Initial root approximation
333                                                   333 
334     do  // loop of Newton's method                334     do  // loop of Newton's method
335     {                                             335     {
336       temp1 = 1.0;                                336       temp1 = 1.0;
337       temp2 = 0.0;                                337       temp2 = 0.0;
338       for(j = 1; j <= k; ++j)                     338       for(j = 1; j <= k; ++j)
339       {                                           339       {
340         temp3 = temp2;                            340         temp3 = temp2;
341         temp2 = temp1;                            341         temp2 = temp1;
342         temp1 = ((2.0 * j - 1.0) * nwt * temp2    342         temp1 = ((2.0 * j - 1.0) * nwt * temp2 - (j - 1.0) * temp3) / j;
343       }                                           343       }
344       temp = k * (nwt * temp1 - temp2) / (nwt     344       temp = k * (nwt * temp1 - temp2) / (nwt * nwt - 1.0);
345       nwt1 = nwt;                                 345       nwt1 = nwt;
346       nwt  = nwt1 - temp1 / temp;  // Newton's    346       nwt  = nwt1 - temp1 / temp;  // Newton's method
347     } while(std::fabs(nwt - nwt1) > tolerance)    347     } while(std::fabs(nwt - nwt1) > tolerance);
348                                                   348 
349     fAbscissa[fNumber - i] = nwt;                 349     fAbscissa[fNumber - i] = nwt;
350     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt    350     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt * nwt) * temp * temp);
351   }                                               351   }
352                                                   352 
353   //                                              353   //
354   // Now we ready to get integral                 354   // Now we ready to get integral
355   //                                              355   //
356                                                   356 
357   xMean    = 0.5 * (a + b);                       357   xMean    = 0.5 * (a + b);
358   xDiff    = 0.5 * (b - a);                       358   xDiff    = 0.5 * (b - a);
359   integral = 0.0;                                 359   integral = 0.0;
360   for(i = 0; i < fNumber; ++i)                    360   for(i = 0; i < fNumber; ++i)
361   {                                               361   {
362     dx = xDiff * fAbscissa[i];                    362     dx = xDiff * fAbscissa[i];
363     integral += fWeight[i] * ((typeT.*f)(xMean    363     integral += fWeight[i] * ((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx));
364   }                                               364   }
365   delete[] fAbscissa;                             365   delete[] fAbscissa;
366   delete[] fWeight;                               366   delete[] fWeight;
367   return integral *= xDiff;                       367   return integral *= xDiff;
368 }                                                 368 }
369                                                   369 
370 //////////////////////////////////////////////    370 ///////////////////////////////////////////////////////////////////////
371 //                                                371 //
372 // Convenient for using with the pointer 'this    372 // Convenient for using with the pointer 'this'
373                                                   373 
374 template <class T, class F>                       374 template <class T, class F>
375 G4double G4Integrator<T, F>::Legendre(T* ptrT,    375 G4double G4Integrator<T, F>::Legendre(T* ptrT, F f, G4double a, G4double b,
376                                       G4int nL    376                                       G4int nLegendre)
377 {                                                 377 {
378   return Legendre(*ptrT, f, a, b, nLegendre);     378   return Legendre(*ptrT, f, a, b, nLegendre);
379 }                                                 379 }
380                                                   380 
381 //////////////////////////////////////////////    381 ///////////////////////////////////////////////////////////////////////
382 //                                                382 //
383 // Convenient for using with global scope func    383 // Convenient for using with global scope function f
384                                                   384 
385 template <class T, class F>                       385 template <class T, class F>
386 G4double G4Integrator<T, F>::Legendre(G4double    386 G4double G4Integrator<T, F>::Legendre(G4double (*f)(G4double), G4double a,
387                                       G4double    387                                       G4double b, G4int nLegendre)
388 {                                                 388 {
389   G4double nwt, nwt1, temp1, temp2, temp3, tem    389   G4double nwt, nwt1, temp1, temp2, temp3, temp;
390   G4double xDiff, xMean, dx, integral;            390   G4double xDiff, xMean, dx, integral;
391                                                   391 
392   const G4double tolerance = 1.6e-10;             392   const G4double tolerance = 1.6e-10;
393   G4int i, j, k = nLegendre;                      393   G4int i, j, k = nLegendre;
394   G4int fNumber = (nLegendre + 1) / 2;            394   G4int fNumber = (nLegendre + 1) / 2;
395                                                   395 
396   if(2 * fNumber != k)                            396   if(2 * fNumber != k)
397   {                                               397   {
398     G4Exception("G4Integrator<T,F>::Legendre(.    398     G4Exception("G4Integrator<T,F>::Legendre(...)", "InvalidCall",
399                 FatalException, "Invalid (odd)    399                 FatalException, "Invalid (odd) nLegendre in constructor.");
400   }                                               400   }
401                                                   401 
402   G4double* fAbscissa = new G4double[fNumber];    402   G4double* fAbscissa = new G4double[fNumber];
403   G4double* fWeight   = new G4double[fNumber];    403   G4double* fWeight   = new G4double[fNumber];
404                                                   404 
405   for(i = 1; i <= fNumber; i++)  // Loop over     405   for(i = 1; i <= fNumber; i++)  // Loop over the desired roots
406   {                                               406   {
407     nwt = std::cos(CLHEP::pi * (i - 0.25) /       407     nwt = std::cos(CLHEP::pi * (i - 0.25) /
408                    (k + 0.5));  // Initial roo    408                    (k + 0.5));  // Initial root approximation
409                                                   409 
410     do  // loop of Newton's method                410     do  // loop of Newton's method
411     {                                             411     {
412       temp1 = 1.0;                                412       temp1 = 1.0;
413       temp2 = 0.0;                                413       temp2 = 0.0;
414       for(j = 1; j <= k; ++j)                     414       for(j = 1; j <= k; ++j)
415       {                                           415       {
416         temp3 = temp2;                            416         temp3 = temp2;
417         temp2 = temp1;                            417         temp2 = temp1;
418         temp1 = ((2.0 * j - 1.0) * nwt * temp2    418         temp1 = ((2.0 * j - 1.0) * nwt * temp2 - (j - 1.0) * temp3) / j;
419       }                                           419       }
420       temp = k * (nwt * temp1 - temp2) / (nwt     420       temp = k * (nwt * temp1 - temp2) / (nwt * nwt - 1.0);
421       nwt1 = nwt;                                 421       nwt1 = nwt;
422       nwt  = nwt1 - temp1 / temp;  // Newton's    422       nwt  = nwt1 - temp1 / temp;  // Newton's method
423     } while(std::fabs(nwt - nwt1) > tolerance)    423     } while(std::fabs(nwt - nwt1) > tolerance);
424                                                   424 
425     fAbscissa[fNumber - i] = nwt;                 425     fAbscissa[fNumber - i] = nwt;
426     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt    426     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt * nwt) * temp * temp);
427   }                                               427   }
428                                                   428 
429   //                                              429   //
430   // Now we ready to get integral                 430   // Now we ready to get integral
431   //                                              431   //
432                                                   432 
433   xMean    = 0.5 * (a + b);                       433   xMean    = 0.5 * (a + b);
434   xDiff    = 0.5 * (b - a);                       434   xDiff    = 0.5 * (b - a);
435   integral = 0.0;                                 435   integral = 0.0;
436   for(i = 0; i < fNumber; ++i)                    436   for(i = 0; i < fNumber; ++i)
437   {                                               437   {
438     dx = xDiff * fAbscissa[i];                    438     dx = xDiff * fAbscissa[i];
439     integral += fWeight[i] * ((*f)(xMean + dx)    439     integral += fWeight[i] * ((*f)(xMean + dx) + (*f)(xMean - dx));
440   }                                               440   }
441   delete[] fAbscissa;                             441   delete[] fAbscissa;
442   delete[] fWeight;                               442   delete[] fWeight;
443                                                   443 
444   return integral *= xDiff;                       444   return integral *= xDiff;
445 }                                                 445 }
446                                                   446 
447 //////////////////////////////////////////////    447 ////////////////////////////////////////////////////////////////////////////
448 //                                                448 //
449 // Returns the integral of the function to be     449 // Returns the integral of the function to be pointed by T::f between a and b,
450 // by ten point Gauss-Legendre integration: th    450 // by ten point Gauss-Legendre integration: the function is evaluated exactly
451 // ten times at interior points in the range o    451 // ten times at interior points in the range of integration. Since the weights
452 // and abscissas are, in this case, symmetric     452 // and abscissas are, in this case, symmetric around the midpoint of the
453 // range of integration, there are actually on    453 // range of integration, there are actually only five distinct values of each
454 // Convenient for using with class object type    454 // Convenient for using with class object typeT
455                                                   455 
456 template <class T, class F>                       456 template <class T, class F>
457 G4double G4Integrator<T, F>::Legendre10(T& typ    457 G4double G4Integrator<T, F>::Legendre10(T& typeT, F f, G4double a, G4double b)
458 {                                                 458 {
459   G4int i;                                        459   G4int i;
460   G4double xDiff, xMean, dx, integral;            460   G4double xDiff, xMean, dx, integral;
461                                                   461 
462   // From Abramowitz M., Stegan I.A. 1964 , Ha    462   // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
463                                                   463 
464   static const G4double abscissa[] = { 0.14887    464   static const G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
465                                        0.67940    465                                        0.679409568299024, 0.865063366688985,
466                                        0.97390    466                                        0.973906528517172 };
467                                                   467 
468   static const G4double weight[] = { 0.2955242    468   static const G4double weight[] = { 0.295524224714753, 0.269266719309996,
469                                      0.2190863    469                                      0.219086362515982, 0.149451349150581,
470                                      0.0666713    470                                      0.066671344308688 };
471   xMean                          = 0.5 * (a +     471   xMean                          = 0.5 * (a + b);
472   xDiff                          = 0.5 * (b -     472   xDiff                          = 0.5 * (b - a);
473   integral                       = 0.0;           473   integral                       = 0.0;
474   for(i = 0; i < 5; ++i)                          474   for(i = 0; i < 5; ++i)
475   {                                               475   {
476     dx = xDiff * abscissa[i];                     476     dx = xDiff * abscissa[i];
477     integral += weight[i] * ((typeT.*f)(xMean     477     integral += weight[i] * ((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx));
478   }                                               478   }
479   return integral *= xDiff;                       479   return integral *= xDiff;
480 }                                                 480 }
481                                                   481 
482 //////////////////////////////////////////////    482 ///////////////////////////////////////////////////////////////////////////
483 //                                                483 //
484 // Convenient for using with the pointer 'this    484 // Convenient for using with the pointer 'this'
485                                                   485 
486 template <class T, class F>                       486 template <class T, class F>
487 G4double G4Integrator<T, F>::Legendre10(T* ptr    487 G4double G4Integrator<T, F>::Legendre10(T* ptrT, F f, G4double a, G4double b)
488 {                                                 488 {
489   return Legendre10(*ptrT, f, a, b);              489   return Legendre10(*ptrT, f, a, b);
490 }                                                 490 }
491                                                   491 
492 //////////////////////////////////////////////    492 //////////////////////////////////////////////////////////////////////////
493 //                                                493 //
494 // Convenient for using with global scope func    494 // Convenient for using with global scope functions
495                                                   495 
496 template <class T, class F>                       496 template <class T, class F>
497 G4double G4Integrator<T, F>::Legendre10(G4doub    497 G4double G4Integrator<T, F>::Legendre10(G4double (*f)(G4double), G4double a,
498                                         G4doub    498                                         G4double b)
499 {                                                 499 {
500   G4int i;                                        500   G4int i;
501   G4double xDiff, xMean, dx, integral;            501   G4double xDiff, xMean, dx, integral;
502                                                   502 
503   // From Abramowitz M., Stegan I.A. 1964 , Ha    503   // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
504                                                   504 
505   static const G4double abscissa[] = { 0.14887    505   static const G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
506                                        0.67940    506                                        0.679409568299024, 0.865063366688985,
507                                        0.97390    507                                        0.973906528517172 };
508                                                   508 
509   static const G4double weight[] = { 0.2955242    509   static const G4double weight[] = { 0.295524224714753, 0.269266719309996,
510                                      0.2190863    510                                      0.219086362515982, 0.149451349150581,
511                                      0.0666713    511                                      0.066671344308688 };
512   xMean                          = 0.5 * (a +     512   xMean                          = 0.5 * (a + b);
513   xDiff                          = 0.5 * (b -     513   xDiff                          = 0.5 * (b - a);
514   integral                       = 0.0;           514   integral                       = 0.0;
515   for(i = 0; i < 5; ++i)                          515   for(i = 0; i < 5; ++i)
516   {                                               516   {
517     dx = xDiff * abscissa[i];                     517     dx = xDiff * abscissa[i];
518     integral += weight[i] * ((*f)(xMean + dx)     518     integral += weight[i] * ((*f)(xMean + dx) + (*f)(xMean - dx));
519   }                                               519   }
520   return integral *= xDiff;                       520   return integral *= xDiff;
521 }                                                 521 }
522                                                   522 
523 //////////////////////////////////////////////    523 ///////////////////////////////////////////////////////////////////////
524 //                                                524 //
525 // Returns the integral of the function to be     525 // Returns the integral of the function to be pointed by T::f between a and b,
526 // by 96 point Gauss-Legendre integration: the    526 // by 96 point Gauss-Legendre integration: the function is evaluated exactly
527 // ten Times at interior points in the range o    527 // ten Times at interior points in the range of integration. Since the weights
528 // and abscissas are, in this case, symmetric     528 // and abscissas are, in this case, symmetric around the midpoint of the
529 // range of integration, there are actually on    529 // range of integration, there are actually only five distinct values of each
530 // Convenient for using with some class object    530 // Convenient for using with some class object typeT
531                                                   531 
532 template <class T, class F>                       532 template <class T, class F>
533 G4double G4Integrator<T, F>::Legendre96(T& typ    533 G4double G4Integrator<T, F>::Legendre96(T& typeT, F f, G4double a, G4double b)
534 {                                                 534 {
535   G4int i;                                        535   G4int i;
536   G4double xDiff, xMean, dx, integral;            536   G4double xDiff, xMean, dx, integral;
537                                                   537 
538   // From Abramowitz M., Stegan I.A. 1964 , Ha    538   // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
539                                                   539 
540   static const G4double abscissa[] = {            540   static const G4double abscissa[] = {
541     0.016276744849602969579, 0.048812985136049    541     0.016276744849602969579, 0.048812985136049731112,
542     0.081297495464425558994, 0.113695850110665    542     0.081297495464425558994, 0.113695850110665920911,
543     0.145973714654896941989, 0.178096882367618    543     0.145973714654896941989, 0.178096882367618602759,  // 6
544                                                   544 
545     0.210031310460567203603, 0.241743156163840    545     0.210031310460567203603, 0.241743156163840012328,
546     0.273198812591049141487, 0.304364944354496    546     0.273198812591049141487, 0.304364944354496353024,
547     0.335208522892625422616, 0.365696861472313    547     0.335208522892625422616, 0.365696861472313635031,  // 12
548                                                   548 
549     0.395797649828908603285, 0.425478988407300    549     0.395797649828908603285, 0.425478988407300545365,
550     0.454709422167743008636, 0.483457973920596    550     0.454709422167743008636, 0.483457973920596359768,
551     0.511694177154667673586, 0.539388108324357    551     0.511694177154667673586, 0.539388108324357436227,  // 18
552                                                   552 
553     0.566510418561397168404, 0.593032364777572    553     0.566510418561397168404, 0.593032364777572080684,
554     0.618925840125468570386, 0.644163403784967    554     0.618925840125468570386, 0.644163403784967106798,
555     0.668718310043916153953, 0.692564536642171    555     0.668718310043916153953, 0.692564536642171561344,  // 24
556                                                   556 
557     0.715676812348967626225, 0.738030643744400    557     0.715676812348967626225, 0.738030643744400132851,
558     0.759602341176647498703, 0.780369043867433    558     0.759602341176647498703, 0.780369043867433217604,
559     0.800308744139140817229, 0.819400310737931    559     0.800308744139140817229, 0.819400310737931675539,  // 30
560                                                   560 
561     0.837623511228187121494, 0.854959033434601    561     0.837623511228187121494, 0.854959033434601455463,
562     0.871388505909296502874, 0.886894517402420    562     0.871388505909296502874, 0.886894517402420416057,
563     0.901460635315852341319, 0.915071423120898    563     0.901460635315852341319, 0.915071423120898074206,  // 36
564                                                   564 
565     0.927712456722308690965, 0.939370339752755    565     0.927712456722308690965, 0.939370339752755216932,
566     0.950032717784437635756, 0.959688291448742    566     0.950032717784437635756, 0.959688291448742539300,
567     0.968326828463264212174, 0.975939174585136    567     0.968326828463264212174, 0.975939174585136466453,  // 42
568                                                   568 
569     0.982517263563014677447, 0.988054126329623    569     0.982517263563014677447, 0.988054126329623799481,
570     0.992543900323762624572, 0.995981842987209    570     0.992543900323762624572, 0.995981842987209290650,
571     0.998364375863181677724, 0.999689503883230    571     0.998364375863181677724, 0.999689503883230766828  // 48
572   };                                              572   };
573                                                   573 
574   static const G4double weight[] = {              574   static const G4double weight[] = {
575     0.032550614492363166242, 0.032516118713868    575     0.032550614492363166242, 0.032516118713868835987,
576     0.032447163714064269364, 0.032343822568575    576     0.032447163714064269364, 0.032343822568575928429,
577     0.032206204794030250669, 0.032034456231992    577     0.032206204794030250669, 0.032034456231992663218,  // 6
578                                                   578 
579     0.031828758894411006535, 0.031589330770727    579     0.031828758894411006535, 0.031589330770727168558,
580     0.031316425596862355813, 0.031010332586313    580     0.031316425596862355813, 0.031010332586313837423,
581     0.030671376123669149014, 0.030299915420827    581     0.030671376123669149014, 0.030299915420827593794,  // 12
582                                                   582 
583     0.029896344136328385984, 0.029461089958167    583     0.029896344136328385984, 0.029461089958167905970,
584     0.028994614150555236543, 0.028497411065085    584     0.028994614150555236543, 0.028497411065085385646,
585     0.027970007616848334440, 0.027412962726029    585     0.027970007616848334440, 0.027412962726029242823,  // 18
586                                                   586 
587     0.026826866725591762198, 0.026212340735672    587     0.026826866725591762198, 0.026212340735672413913,
588     0.025570036005349361499, 0.024900633222483    588     0.025570036005349361499, 0.024900633222483610288,
589     0.024204841792364691282, 0.023483399085926    589     0.024204841792364691282, 0.023483399085926219842,  // 24
590                                                   590 
591     0.022737069658329374001, 0.021966644438744    591     0.022737069658329374001, 0.021966644438744349195,
592     0.021172939892191298988, 0.020356797154333    592     0.021172939892191298988, 0.020356797154333324595,
593     0.019519081140145022410, 0.018660679627411    593     0.019519081140145022410, 0.018660679627411467385,  // 30
594                                                   594 
595     0.017782502316045260838, 0.016885479864245    595     0.017782502316045260838, 0.016885479864245172450,
596     0.015970562902562291381, 0.015038721026994    596     0.015970562902562291381, 0.015038721026994938006,
597     0.014090941772314860916, 0.013128229566961    597     0.014090941772314860916, 0.013128229566961572637,  // 36
598                                                   598 
599     0.012151604671088319635, 0.011162102099838    599     0.012151604671088319635, 0.011162102099838498591,
600     0.010160770535008415758, 0.009148671230783    600     0.010160770535008415758, 0.009148671230783386633,
601     0.008126876925698759217, 0.007096470791153    601     0.008126876925698759217, 0.007096470791153865269,  // 42
602                                                   602 
603     0.006058545504235961683, 0.005014202742927    603     0.006058545504235961683, 0.005014202742927517693,
604     0.003964554338444686674, 0.002910731817934    604     0.003964554338444686674, 0.002910731817934946408,
605     0.001853960788946921732, 0.000796792065552    605     0.001853960788946921732, 0.000796792065552012429  // 48
606   };                                              606   };
607   xMean    = 0.5 * (a + b);                       607   xMean    = 0.5 * (a + b);
608   xDiff    = 0.5 * (b - a);                       608   xDiff    = 0.5 * (b - a);
609   integral = 0.0;                                 609   integral = 0.0;
610   for(i = 0; i < 48; ++i)                         610   for(i = 0; i < 48; ++i)
611   {                                               611   {
612     dx = xDiff * abscissa[i];                     612     dx = xDiff * abscissa[i];
613     integral += weight[i] * ((typeT.*f)(xMean     613     integral += weight[i] * ((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx));
614   }                                               614   }
615   return integral *= xDiff;                       615   return integral *= xDiff;
616 }                                                 616 }
617                                                   617 
618 //////////////////////////////////////////////    618 ///////////////////////////////////////////////////////////////////////
619 //                                                619 //
620 // Convenient for using with the pointer 'this    620 // Convenient for using with the pointer 'this'
621                                                   621 
622 template <class T, class F>                       622 template <class T, class F>
623 G4double G4Integrator<T, F>::Legendre96(T* ptr    623 G4double G4Integrator<T, F>::Legendre96(T* ptrT, F f, G4double a, G4double b)
624 {                                                 624 {
625   return Legendre96(*ptrT, f, a, b);              625   return Legendre96(*ptrT, f, a, b);
626 }                                                 626 }
627                                                   627 
628 //////////////////////////////////////////////    628 ///////////////////////////////////////////////////////////////////////
629 //                                                629 //
630 // Convenient for using with global scope func    630 // Convenient for using with global scope function f
631                                                   631 
632 template <class T, class F>                       632 template <class T, class F>
633 G4double G4Integrator<T, F>::Legendre96(G4doub    633 G4double G4Integrator<T, F>::Legendre96(G4double (*f)(G4double), G4double a,
634                                         G4doub    634                                         G4double b)
635 {                                                 635 {
636   G4int i;                                        636   G4int i;
637   G4double xDiff, xMean, dx, integral;            637   G4double xDiff, xMean, dx, integral;
638                                                   638 
639   // From Abramowitz M., Stegan I.A. 1964 , Ha    639   // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
640                                                   640 
641   static const G4double abscissa[] = {            641   static const G4double abscissa[] = {
642     0.016276744849602969579, 0.048812985136049    642     0.016276744849602969579, 0.048812985136049731112,
643     0.081297495464425558994, 0.113695850110665    643     0.081297495464425558994, 0.113695850110665920911,
644     0.145973714654896941989, 0.178096882367618    644     0.145973714654896941989, 0.178096882367618602759,  // 6
645                                                   645 
646     0.210031310460567203603, 0.241743156163840    646     0.210031310460567203603, 0.241743156163840012328,
647     0.273198812591049141487, 0.304364944354496    647     0.273198812591049141487, 0.304364944354496353024,
648     0.335208522892625422616, 0.365696861472313    648     0.335208522892625422616, 0.365696861472313635031,  // 12
649                                                   649 
650     0.395797649828908603285, 0.425478988407300    650     0.395797649828908603285, 0.425478988407300545365,
651     0.454709422167743008636, 0.483457973920596    651     0.454709422167743008636, 0.483457973920596359768,
652     0.511694177154667673586, 0.539388108324357    652     0.511694177154667673586, 0.539388108324357436227,  // 18
653                                                   653 
654     0.566510418561397168404, 0.593032364777572    654     0.566510418561397168404, 0.593032364777572080684,
655     0.618925840125468570386, 0.644163403784967    655     0.618925840125468570386, 0.644163403784967106798,
656     0.668718310043916153953, 0.692564536642171    656     0.668718310043916153953, 0.692564536642171561344,  // 24
657                                                   657 
658     0.715676812348967626225, 0.738030643744400    658     0.715676812348967626225, 0.738030643744400132851,
659     0.759602341176647498703, 0.780369043867433    659     0.759602341176647498703, 0.780369043867433217604,
660     0.800308744139140817229, 0.819400310737931    660     0.800308744139140817229, 0.819400310737931675539,  // 30
661                                                   661 
662     0.837623511228187121494, 0.854959033434601    662     0.837623511228187121494, 0.854959033434601455463,
663     0.871388505909296502874, 0.886894517402420    663     0.871388505909296502874, 0.886894517402420416057,
664     0.901460635315852341319, 0.915071423120898    664     0.901460635315852341319, 0.915071423120898074206,  // 36
665                                                   665 
666     0.927712456722308690965, 0.939370339752755    666     0.927712456722308690965, 0.939370339752755216932,
667     0.950032717784437635756, 0.959688291448742    667     0.950032717784437635756, 0.959688291448742539300,
668     0.968326828463264212174, 0.975939174585136    668     0.968326828463264212174, 0.975939174585136466453,  // 42
669                                                   669 
670     0.982517263563014677447, 0.988054126329623    670     0.982517263563014677447, 0.988054126329623799481,
671     0.992543900323762624572, 0.995981842987209    671     0.992543900323762624572, 0.995981842987209290650,
672     0.998364375863181677724, 0.999689503883230    672     0.998364375863181677724, 0.999689503883230766828  // 48
673   };                                              673   };
674                                                   674 
675   static const G4double weight[] = {              675   static const G4double weight[] = {
676     0.032550614492363166242, 0.032516118713868    676     0.032550614492363166242, 0.032516118713868835987,
677     0.032447163714064269364, 0.032343822568575    677     0.032447163714064269364, 0.032343822568575928429,
678     0.032206204794030250669, 0.032034456231992    678     0.032206204794030250669, 0.032034456231992663218,  // 6
679                                                   679 
680     0.031828758894411006535, 0.031589330770727    680     0.031828758894411006535, 0.031589330770727168558,
681     0.031316425596862355813, 0.031010332586313    681     0.031316425596862355813, 0.031010332586313837423,
682     0.030671376123669149014, 0.030299915420827    682     0.030671376123669149014, 0.030299915420827593794,  // 12
683                                                   683 
684     0.029896344136328385984, 0.029461089958167    684     0.029896344136328385984, 0.029461089958167905970,
685     0.028994614150555236543, 0.028497411065085    685     0.028994614150555236543, 0.028497411065085385646,
686     0.027970007616848334440, 0.027412962726029    686     0.027970007616848334440, 0.027412962726029242823,  // 18
687                                                   687 
688     0.026826866725591762198, 0.026212340735672    688     0.026826866725591762198, 0.026212340735672413913,
689     0.025570036005349361499, 0.024900633222483    689     0.025570036005349361499, 0.024900633222483610288,
690     0.024204841792364691282, 0.023483399085926    690     0.024204841792364691282, 0.023483399085926219842,  // 24
691                                                   691 
692     0.022737069658329374001, 0.021966644438744    692     0.022737069658329374001, 0.021966644438744349195,
693     0.021172939892191298988, 0.020356797154333    693     0.021172939892191298988, 0.020356797154333324595,
694     0.019519081140145022410, 0.018660679627411    694     0.019519081140145022410, 0.018660679627411467385,  // 30
695                                                   695 
696     0.017782502316045260838, 0.016885479864245    696     0.017782502316045260838, 0.016885479864245172450,
697     0.015970562902562291381, 0.015038721026994    697     0.015970562902562291381, 0.015038721026994938006,
698     0.014090941772314860916, 0.013128229566961    698     0.014090941772314860916, 0.013128229566961572637,  // 36
699                                                   699 
700     0.012151604671088319635, 0.011162102099838    700     0.012151604671088319635, 0.011162102099838498591,
701     0.010160770535008415758, 0.009148671230783    701     0.010160770535008415758, 0.009148671230783386633,
702     0.008126876925698759217, 0.007096470791153    702     0.008126876925698759217, 0.007096470791153865269,  // 42
703                                                   703 
704     0.006058545504235961683, 0.005014202742927    704     0.006058545504235961683, 0.005014202742927517693,
705     0.003964554338444686674, 0.002910731817934    705     0.003964554338444686674, 0.002910731817934946408,
706     0.001853960788946921732, 0.000796792065552    706     0.001853960788946921732, 0.000796792065552012429  // 48
707   };                                              707   };
708   xMean    = 0.5 * (a + b);                       708   xMean    = 0.5 * (a + b);
709   xDiff    = 0.5 * (b - a);                       709   xDiff    = 0.5 * (b - a);
710   integral = 0.0;                                 710   integral = 0.0;
711   for(i = 0; i < 48; ++i)                         711   for(i = 0; i < 48; ++i)
712   {                                               712   {
713     dx = xDiff * abscissa[i];                     713     dx = xDiff * abscissa[i];
714     integral += weight[i] * ((*f)(xMean + dx)     714     integral += weight[i] * ((*f)(xMean + dx) + (*f)(xMean - dx));
715   }                                               715   }
716   return integral *= xDiff;                       716   return integral *= xDiff;
717 }                                                 717 }
718                                                   718 
719 //////////////////////////////////////////////    719 //////////////////////////////////////////////////////////////////////////////
720 //                                                720 //
721 // Methods involving Chebyshev polynomials        721 // Methods involving Chebyshev polynomials
722 //                                                722 //
723 //////////////////////////////////////////////    723 ///////////////////////////////////////////////////////////////////////////
724 //                                                724 //
725 // Integrates function pointed by T::f from a     725 // Integrates function pointed by T::f from a to b by Gauss-Chebyshev
726 // quadrature method.                             726 // quadrature method.
727 // Convenient for using with class object type    727 // Convenient for using with class object typeT
728                                                   728 
729 template <class T, class F>                       729 template <class T, class F>
730 G4double G4Integrator<T, F>::Chebyshev(T& type    730 G4double G4Integrator<T, F>::Chebyshev(T& typeT, F f, G4double a, G4double b,
731                                        G4int n    731                                        G4int nChebyshev)
732 {                                                 732 {
733   G4int i;                                        733   G4int i;
734   G4double xDiff, xMean, dx, integral = 0.0;      734   G4double xDiff, xMean, dx, integral = 0.0;
735                                                   735 
736   G4int fNumber       = nChebyshev;  // Try to    736   G4int fNumber       = nChebyshev;  // Try to reduce fNumber twice ??
737   G4double cof        = CLHEP::pi / fNumber;      737   G4double cof        = CLHEP::pi / fNumber;
738   G4double* fAbscissa = new G4double[fNumber];    738   G4double* fAbscissa = new G4double[fNumber];
739   G4double* fWeight   = new G4double[fNumber];    739   G4double* fWeight   = new G4double[fNumber];
740   for(i = 0; i < fNumber; ++i)                    740   for(i = 0; i < fNumber; ++i)
741   {                                               741   {
742     fAbscissa[i] = std::cos(cof * (i + 0.5));     742     fAbscissa[i] = std::cos(cof * (i + 0.5));
743     fWeight[i]   = cof * std::sqrt(1 - fAbscis    743     fWeight[i]   = cof * std::sqrt(1 - fAbscissa[i] * fAbscissa[i]);
744   }                                               744   }
745                                                   745 
746   //                                              746   //
747   // Now we ready to estimate the integral        747   // Now we ready to estimate the integral
748   //                                              748   //
749                                                   749 
750   xMean = 0.5 * (a + b);                          750   xMean = 0.5 * (a + b);
751   xDiff = 0.5 * (b - a);                          751   xDiff = 0.5 * (b - a);
752   for(i = 0; i < fNumber; ++i)                    752   for(i = 0; i < fNumber; ++i)
753   {                                               753   {
754     dx = xDiff * fAbscissa[i];                    754     dx = xDiff * fAbscissa[i];
755     integral += fWeight[i] * (typeT.*f)(xMean     755     integral += fWeight[i] * (typeT.*f)(xMean + dx);
756   }                                               756   }
757   delete[] fAbscissa;                             757   delete[] fAbscissa;
758   delete[] fWeight;                               758   delete[] fWeight;
759   return integral *= xDiff;                       759   return integral *= xDiff;
760 }                                                 760 }
761                                                   761 
762 //////////////////////////////////////////////    762 ///////////////////////////////////////////////////////////////////////
763 //                                                763 //
764 // Convenient for using with 'this' pointer       764 // Convenient for using with 'this' pointer
765                                                   765 
766 template <class T, class F>                       766 template <class T, class F>
767 G4double G4Integrator<T, F>::Chebyshev(T* ptrT    767 G4double G4Integrator<T, F>::Chebyshev(T* ptrT, F f, G4double a, G4double b,
768                                        G4int n    768                                        G4int n)
769 {                                                 769 {
770   return Chebyshev(*ptrT, f, a, b, n);            770   return Chebyshev(*ptrT, f, a, b, n);
771 }                                                 771 }
772                                                   772 
773 //////////////////////////////////////////////    773 ////////////////////////////////////////////////////////////////////////
774 //                                                774 //
775 // For use with global scope functions f          775 // For use with global scope functions f
776                                                   776 
777 template <class T, class F>                       777 template <class T, class F>
778 G4double G4Integrator<T, F>::Chebyshev(G4doubl    778 G4double G4Integrator<T, F>::Chebyshev(G4double (*f)(G4double), G4double a,
779                                        G4doubl    779                                        G4double b, G4int nChebyshev)
780 {                                                 780 {
781   G4int i;                                        781   G4int i;
782   G4double xDiff, xMean, dx, integral = 0.0;      782   G4double xDiff, xMean, dx, integral = 0.0;
783                                                   783 
784   G4int fNumber       = nChebyshev;  // Try to    784   G4int fNumber       = nChebyshev;  // Try to reduce fNumber twice ??
785   G4double cof        = CLHEP::pi / fNumber;      785   G4double cof        = CLHEP::pi / fNumber;
786   G4double* fAbscissa = new G4double[fNumber];    786   G4double* fAbscissa = new G4double[fNumber];
787   G4double* fWeight   = new G4double[fNumber];    787   G4double* fWeight   = new G4double[fNumber];
788   for(i = 0; i < fNumber; ++i)                    788   for(i = 0; i < fNumber; ++i)
789   {                                               789   {
790     fAbscissa[i] = std::cos(cof * (i + 0.5));     790     fAbscissa[i] = std::cos(cof * (i + 0.5));
791     fWeight[i]   = cof * std::sqrt(1 - fAbscis    791     fWeight[i]   = cof * std::sqrt(1 - fAbscissa[i] * fAbscissa[i]);
792   }                                               792   }
793                                                   793 
794   //                                              794   //
795   // Now we ready to estimate the integral        795   // Now we ready to estimate the integral
796   //                                              796   //
797                                                   797 
798   xMean = 0.5 * (a + b);                          798   xMean = 0.5 * (a + b);
799   xDiff = 0.5 * (b - a);                          799   xDiff = 0.5 * (b - a);
800   for(i = 0; i < fNumber; ++i)                    800   for(i = 0; i < fNumber; ++i)
801   {                                               801   {
802     dx = xDiff * fAbscissa[i];                    802     dx = xDiff * fAbscissa[i];
803     integral += fWeight[i] * (*f)(xMean + dx);    803     integral += fWeight[i] * (*f)(xMean + dx);
804   }                                               804   }
805   delete[] fAbscissa;                             805   delete[] fAbscissa;
806   delete[] fWeight;                               806   delete[] fWeight;
807   return integral *= xDiff;                       807   return integral *= xDiff;
808 }                                                 808 }
809                                                   809 
810 //////////////////////////////////////////////    810 //////////////////////////////////////////////////////////////////////
811 //                                                811 //
812 // Method involving Laguerre polynomials          812 // Method involving Laguerre polynomials
813 //                                                813 //
814 //////////////////////////////////////////////    814 //////////////////////////////////////////////////////////////////////
815 //                                                815 //
816 // Integral from zero to infinity of std::pow(    816 // Integral from zero to infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
817 // The value of nLaguerre sets the accuracy.      817 // The value of nLaguerre sets the accuracy.
818 // The function creates arrays fAbscissa[0,..,    818 // The function creates arrays fAbscissa[0,..,nLaguerre-1] and
819 // fWeight[0,..,nLaguerre-1] .                    819 // fWeight[0,..,nLaguerre-1] .
820 // Convenient for using with class object 'typ    820 // Convenient for using with class object 'typeT' and (typeT.*f) function
821 // (T::f)                                         821 // (T::f)
822                                                   822 
823 template <class T, class F>                       823 template <class T, class F>
824 G4double G4Integrator<T, F>::Laguerre(T& typeT    824 G4double G4Integrator<T, F>::Laguerre(T& typeT, F f, G4double alpha,
825                                       G4int nL    825                                       G4int nLaguerre)
826 {                                                 826 {
827   const G4double tolerance = 1.0e-10;             827   const G4double tolerance = 1.0e-10;
828   const G4int maxNumber    = 12;                  828   const G4int maxNumber    = 12;
829   G4int i, j, k;                                  829   G4int i, j, k;
830   G4double nwt      = 0., nwt1, temp1, temp2,     830   G4double nwt      = 0., nwt1, temp1, temp2, temp3, temp, cofi;
831   G4double integral = 0.0;                        831   G4double integral = 0.0;
832                                                   832 
833   G4int fNumber       = nLaguerre;                833   G4int fNumber       = nLaguerre;
834   G4double* fAbscissa = new G4double[fNumber];    834   G4double* fAbscissa = new G4double[fNumber];
835   G4double* fWeight   = new G4double[fNumber];    835   G4double* fWeight   = new G4double[fNumber];
836                                                   836 
837   for(i = 1; i <= fNumber; ++i)  // Loop over     837   for(i = 1; i <= fNumber; ++i)  // Loop over the desired roots
838   {                                               838   {
839     if(i == 1)                                    839     if(i == 1)
840     {                                             840     {
841       nwt = (1.0 + alpha) * (3.0 + 0.92 * alph    841       nwt = (1.0 + alpha) * (3.0 + 0.92 * alpha) /
842             (1.0 + 2.4 * fNumber + 1.8 * alpha    842             (1.0 + 2.4 * fNumber + 1.8 * alpha);
843     }                                             843     }
844     else if(i == 2)                               844     else if(i == 2)
845     {                                             845     {
846       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.    846       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.9 * alpha + 2.5 * fNumber);
847     }                                             847     }
848     else                                          848     else
849     {                                             849     {
850       cofi = i - 2;                               850       cofi = i - 2;
851       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof    851       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cofi) +
852               1.26 * cofi * alpha / (1.0 + 3.5    852               1.26 * cofi * alpha / (1.0 + 3.5 * cofi)) *
853              (nwt - fAbscissa[i - 3]) / (1.0 +    853              (nwt - fAbscissa[i - 3]) / (1.0 + 0.3 * alpha);
854     }                                             854     }
855     for(k = 1; k <= maxNumber; ++k)               855     for(k = 1; k <= maxNumber; ++k)
856     {                                             856     {
857       temp1 = 1.0;                                857       temp1 = 1.0;
858       temp2 = 0.0;                                858       temp2 = 0.0;
859                                                   859 
860       for(j = 1; j <= fNumber; ++j)               860       for(j = 1; j <= fNumber; ++j)
861       {                                           861       {
862         temp3 = temp2;                            862         temp3 = temp2;
863         temp2 = temp1;                            863         temp2 = temp1;
864         temp1 =                                   864         temp1 =
865           ((2 * j - 1 + alpha - nwt) * temp2 -    865           ((2 * j - 1 + alpha - nwt) * temp2 - (j - 1 + alpha) * temp3) / j;
866       }                                           866       }
867       temp = (fNumber * temp1 - (fNumber + alp    867       temp = (fNumber * temp1 - (fNumber + alpha) * temp2) / nwt;
868       nwt1 = nwt;                                 868       nwt1 = nwt;
869       nwt  = nwt1 - temp1 / temp;                 869       nwt  = nwt1 - temp1 / temp;
870                                                   870 
871       if(std::fabs(nwt - nwt1) <= tolerance)      871       if(std::fabs(nwt - nwt1) <= tolerance)
872       {                                           872       {
873         break;                                    873         break;
874       }                                           874       }
875     }                                             875     }
876     if(k > maxNumber)                             876     if(k > maxNumber)
877     {                                             877     {
878       G4Exception("G4Integrator<T,F>::Laguerre    878       G4Exception("G4Integrator<T,F>::Laguerre(T,F, ...)", "Error",
879                   FatalException, "Too many (>    879                   FatalException, "Too many (>12) iterations.");
880     }                                             880     }
881                                                   881 
882     fAbscissa[i - 1] = nwt;                       882     fAbscissa[i - 1] = nwt;
883     fWeight[i - 1]   = -std::exp(GammaLogarith    883     fWeight[i - 1]   = -std::exp(GammaLogarithm(alpha + fNumber) -
884                                GammaLogarithm(    884                                GammaLogarithm((G4double) fNumber)) /
885                      (temp * fNumber * temp2);    885                      (temp * fNumber * temp2);
886   }                                               886   }
887                                                   887 
888   //                                              888   //
889   // Integral evaluation                          889   // Integral evaluation
890   //                                              890   //
891                                                   891 
892   for(i = 0; i < fNumber; ++i)                    892   for(i = 0; i < fNumber; ++i)
893   {                                               893   {
894     integral += fWeight[i] * (typeT.*f)(fAbsci    894     integral += fWeight[i] * (typeT.*f)(fAbscissa[i]);
895   }                                               895   }
896   delete[] fAbscissa;                             896   delete[] fAbscissa;
897   delete[] fWeight;                               897   delete[] fWeight;
898   return integral;                                898   return integral;
899 }                                                 899 }
900                                                   900 
901 //////////////////////////////////////////////    901 //////////////////////////////////////////////////////////////////////
902 //                                                902 //
903 //                                                903 //
904                                                   904 
905 template <class T, class F>                       905 template <class T, class F>
906 G4double G4Integrator<T, F>::Laguerre(T* ptrT,    906 G4double G4Integrator<T, F>::Laguerre(T* ptrT, F f, G4double alpha,
907                                       G4int nL    907                                       G4int nLaguerre)
908 {                                                 908 {
909   return Laguerre(*ptrT, f, alpha, nLaguerre);    909   return Laguerre(*ptrT, f, alpha, nLaguerre);
910 }                                                 910 }
911                                                   911 
912 //////////////////////////////////////////////    912 ////////////////////////////////////////////////////////////////////////
913 //                                                913 //
914 // For use with global scope functions f          914 // For use with global scope functions f
915                                                   915 
916 template <class T, class F>                       916 template <class T, class F>
917 G4double G4Integrator<T, F>::Laguerre(G4double    917 G4double G4Integrator<T, F>::Laguerre(G4double (*f)(G4double), G4double alpha,
918                                       G4int nL    918                                       G4int nLaguerre)
919 {                                                 919 {
920   const G4double tolerance = 1.0e-10;             920   const G4double tolerance = 1.0e-10;
921   const G4int maxNumber    = 12;                  921   const G4int maxNumber    = 12;
922   G4int i, j, k;                                  922   G4int i, j, k;
923   G4double nwt      = 0., nwt1, temp1, temp2,     923   G4double nwt      = 0., nwt1, temp1, temp2, temp3, temp, cofi;
924   G4double integral = 0.0;                        924   G4double integral = 0.0;
925                                                   925 
926   G4int fNumber       = nLaguerre;                926   G4int fNumber       = nLaguerre;
927   G4double* fAbscissa = new G4double[fNumber];    927   G4double* fAbscissa = new G4double[fNumber];
928   G4double* fWeight   = new G4double[fNumber];    928   G4double* fWeight   = new G4double[fNumber];
929                                                   929 
930   for(i = 1; i <= fNumber; ++i)  // Loop over     930   for(i = 1; i <= fNumber; ++i)  // Loop over the desired roots
931   {                                               931   {
932     if(i == 1)                                    932     if(i == 1)
933     {                                             933     {
934       nwt = (1.0 + alpha) * (3.0 + 0.92 * alph    934       nwt = (1.0 + alpha) * (3.0 + 0.92 * alpha) /
935             (1.0 + 2.4 * fNumber + 1.8 * alpha    935             (1.0 + 2.4 * fNumber + 1.8 * alpha);
936     }                                             936     }
937     else if(i == 2)                               937     else if(i == 2)
938     {                                             938     {
939       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.    939       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.9 * alpha + 2.5 * fNumber);
940     }                                             940     }
941     else                                          941     else
942     {                                             942     {
943       cofi = i - 2;                               943       cofi = i - 2;
944       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof    944       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cofi) +
945               1.26 * cofi * alpha / (1.0 + 3.5    945               1.26 * cofi * alpha / (1.0 + 3.5 * cofi)) *
946              (nwt - fAbscissa[i - 3]) / (1.0 +    946              (nwt - fAbscissa[i - 3]) / (1.0 + 0.3 * alpha);
947     }                                             947     }
948     for(k = 1; k <= maxNumber; ++k)               948     for(k = 1; k <= maxNumber; ++k)
949     {                                             949     {
950       temp1 = 1.0;                                950       temp1 = 1.0;
951       temp2 = 0.0;                                951       temp2 = 0.0;
952                                                   952 
953       for(j = 1; j <= fNumber; ++j)               953       for(j = 1; j <= fNumber; ++j)
954       {                                           954       {
955         temp3 = temp2;                            955         temp3 = temp2;
956         temp2 = temp1;                            956         temp2 = temp1;
957         temp1 =                                   957         temp1 =
958           ((2 * j - 1 + alpha - nwt) * temp2 -    958           ((2 * j - 1 + alpha - nwt) * temp2 - (j - 1 + alpha) * temp3) / j;
959       }                                           959       }
960       temp = (fNumber * temp1 - (fNumber + alp    960       temp = (fNumber * temp1 - (fNumber + alpha) * temp2) / nwt;
961       nwt1 = nwt;                                 961       nwt1 = nwt;
962       nwt  = nwt1 - temp1 / temp;                 962       nwt  = nwt1 - temp1 / temp;
963                                                   963 
964       if(std::fabs(nwt - nwt1) <= tolerance)      964       if(std::fabs(nwt - nwt1) <= tolerance)
965       {                                           965       {
966         break;                                    966         break;
967       }                                           967       }
968     }                                             968     }
969     if(k > maxNumber)                             969     if(k > maxNumber)
970     {                                             970     {
971       G4Exception("G4Integrator<T,F>::Laguerre    971       G4Exception("G4Integrator<T,F>::Laguerre( ...)", "Error", FatalException,
972                   "Too many (>12) iterations."    972                   "Too many (>12) iterations.");
973     }                                             973     }
974                                                   974 
975     fAbscissa[i - 1] = nwt;                       975     fAbscissa[i - 1] = nwt;
976     fWeight[i - 1]   = -std::exp(GammaLogarith    976     fWeight[i - 1]   = -std::exp(GammaLogarithm(alpha + fNumber) -
977                                GammaLogarithm(    977                                GammaLogarithm((G4double) fNumber)) /
978                      (temp * fNumber * temp2);    978                      (temp * fNumber * temp2);
979   }                                               979   }
980                                                   980 
981   //                                              981   //
982   // Integral evaluation                          982   // Integral evaluation
983   //                                              983   //
984                                                   984 
985   for(i = 0; i < fNumber; i++)                    985   for(i = 0; i < fNumber; i++)
986   {                                               986   {
987     integral += fWeight[i] * (*f)(fAbscissa[i]    987     integral += fWeight[i] * (*f)(fAbscissa[i]);
988   }                                               988   }
989   delete[] fAbscissa;                             989   delete[] fAbscissa;
990   delete[] fWeight;                               990   delete[] fWeight;
991   return integral;                                991   return integral;
992 }                                                 992 }
993                                                   993 
994 //////////////////////////////////////////////    994 ///////////////////////////////////////////////////////////////////////
995 //                                                995 //
996 // Auxiliary function which returns the value     996 // Auxiliary function which returns the value of std::log(gamma-function(x))
997 // Returns the value ln(Gamma(xx) for xx > 0.     997 // Returns the value ln(Gamma(xx) for xx > 0.  Full accuracy is obtained for
998 // xx > 1. For 0 < xx < 1. the reflection form    998 // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first.
999 // (Adapted from Numerical Recipes in C)          999 // (Adapted from Numerical Recipes in C)
1000 //                                               1000 //
1001                                                  1001 
1002 template <class T, class F>                      1002 template <class T, class F>
1003 G4double G4Integrator<T, F>::GammaLogarithm(G    1003 G4double G4Integrator<T, F>::GammaLogarithm(G4double xx)
1004 {                                                1004 {
1005   static const G4double cof[6] = { 76.1800917    1005   static const G4double cof[6] = { 76.18009172947146,     -86.50532032941677,
1006                                    24.0140982    1006                                    24.01409824083091,     -1.231739572450155,
1007                                    0.12086509    1007                                    0.1208650973866179e-2, -0.5395239384953e-5 };
1008   G4int j;                                       1008   G4int j;
1009   G4double x   = xx - 1.0;                       1009   G4double x   = xx - 1.0;
1010   G4double tmp = x + 5.5;                        1010   G4double tmp = x + 5.5;
1011   tmp -= (x + 0.5) * std::log(tmp);              1011   tmp -= (x + 0.5) * std::log(tmp);
1012   G4double ser = 1.000000000190015;              1012   G4double ser = 1.000000000190015;
1013                                                  1013 
1014   for(j = 0; j <= 5; ++j)                        1014   for(j = 0; j <= 5; ++j)
1015   {                                              1015   {
1016     x += 1.0;                                    1016     x += 1.0;
1017     ser += cof[j] / x;                           1017     ser += cof[j] / x;
1018   }                                              1018   }
1019   return -tmp + std::log(2.5066282746310005 *    1019   return -tmp + std::log(2.5066282746310005 * ser);
1020 }                                                1020 }
1021                                                  1021 
1022 /////////////////////////////////////////////    1022 ///////////////////////////////////////////////////////////////////////
1023 //                                               1023 //
1024 // Method involving Hermite polynomials          1024 // Method involving Hermite polynomials
1025 //                                               1025 //
1026 /////////////////////////////////////////////    1026 ///////////////////////////////////////////////////////////////////////
1027 //                                               1027 //
1028 //                                               1028 //
1029 // Gauss-Hermite method for integration of st    1029 // Gauss-Hermite method for integration of std::exp(-x*x)*f(x)
1030 // from minus infinity to plus infinity .        1030 // from minus infinity to plus infinity .
1031 //                                               1031 //
1032                                                  1032 
1033 template <class T, class F>                      1033 template <class T, class F>
1034 G4double G4Integrator<T, F>::Hermite(T& typeT    1034 G4double G4Integrator<T, F>::Hermite(T& typeT, F f, G4int nHermite)
1035 {                                                1035 {
1036   const G4double tolerance = 1.0e-12;            1036   const G4double tolerance = 1.0e-12;
1037   const G4int maxNumber    = 12;                 1037   const G4int maxNumber    = 12;
1038                                                  1038 
1039   G4int i, j, k;                                 1039   G4int i, j, k;
1040   G4double integral = 0.0;                       1040   G4double integral = 0.0;
1041   G4double nwt      = 0., nwt1, temp1, temp2,    1041   G4double nwt      = 0., nwt1, temp1, temp2, temp3, temp;
1042                                                  1042 
1043   G4double piInMinusQ =                          1043   G4double piInMinusQ =
1044     std::pow(CLHEP::pi, -0.25);  // 1.0/std::    1044     std::pow(CLHEP::pi, -0.25);  // 1.0/std::sqrt(std::sqrt(pi)) ??
1045                                                  1045 
1046   G4int fNumber       = (nHermite + 1) / 2;      1046   G4int fNumber       = (nHermite + 1) / 2;
1047   G4double* fAbscissa = new G4double[fNumber]    1047   G4double* fAbscissa = new G4double[fNumber];
1048   G4double* fWeight   = new G4double[fNumber]    1048   G4double* fWeight   = new G4double[fNumber];
1049                                                  1049 
1050   for(i = 1; i <= fNumber; ++i)                  1050   for(i = 1; i <= fNumber; ++i)
1051   {                                              1051   {
1052     if(i == 1)                                   1052     if(i == 1)
1053     {                                            1053     {
1054       nwt = std::sqrt((G4double)(2 * nHermite    1054       nwt = std::sqrt((G4double)(2 * nHermite + 1)) -
1055             1.85575001 * std::pow((G4double)(    1055             1.85575001 * std::pow((G4double)(2 * nHermite + 1), -0.16666999);
1056     }                                            1056     }
1057     else if(i == 2)                              1057     else if(i == 2)
1058     {                                            1058     {
1059       nwt -= 1.14001 * std::pow((G4double) nH    1059       nwt -= 1.14001 * std::pow((G4double) nHermite, 0.425999) / nwt;
1060     }                                            1060     }
1061     else if(i == 3)                              1061     else if(i == 3)
1062     {                                            1062     {
1063       nwt = 1.86002 * nwt - 0.86002 * fAbscis    1063       nwt = 1.86002 * nwt - 0.86002 * fAbscissa[0];
1064     }                                            1064     }
1065     else if(i == 4)                              1065     else if(i == 4)
1066     {                                            1066     {
1067       nwt = 1.91001 * nwt - 0.91001 * fAbscis    1067       nwt = 1.91001 * nwt - 0.91001 * fAbscissa[1];
1068     }                                            1068     }
1069     else                                         1069     else
1070     {                                            1070     {
1071       nwt = 2.0 * nwt - fAbscissa[i - 3];        1071       nwt = 2.0 * nwt - fAbscissa[i - 3];
1072     }                                            1072     }
1073     for(k = 1; k <= maxNumber; ++k)              1073     for(k = 1; k <= maxNumber; ++k)
1074     {                                            1074     {
1075       temp1 = piInMinusQ;                        1075       temp1 = piInMinusQ;
1076       temp2 = 0.0;                               1076       temp2 = 0.0;
1077                                                  1077 
1078       for(j = 1; j <= nHermite; ++j)             1078       for(j = 1; j <= nHermite; ++j)
1079       {                                          1079       {
1080         temp3 = temp2;                           1080         temp3 = temp2;
1081         temp2 = temp1;                           1081         temp2 = temp1;
1082         temp1 = nwt * std::sqrt(2.0 / j) * te    1082         temp1 = nwt * std::sqrt(2.0 / j) * temp2 -
1083                 std::sqrt(((G4double)(j - 1))    1083                 std::sqrt(((G4double)(j - 1)) / j) * temp3;
1084       }                                          1084       }
1085       temp = std::sqrt((G4double) 2 * nHermit    1085       temp = std::sqrt((G4double) 2 * nHermite) * temp2;
1086       nwt1 = nwt;                                1086       nwt1 = nwt;
1087       nwt  = nwt1 - temp1 / temp;                1087       nwt  = nwt1 - temp1 / temp;
1088                                                  1088 
1089       if(std::fabs(nwt - nwt1) <= tolerance)     1089       if(std::fabs(nwt - nwt1) <= tolerance)
1090       {                                          1090       {
1091         break;                                   1091         break;
1092       }                                          1092       }
1093     }                                            1093     }
1094     if(k > maxNumber)                            1094     if(k > maxNumber)
1095     {                                            1095     {
1096       G4Exception("G4Integrator<T,F>::Hermite    1096       G4Exception("G4Integrator<T,F>::Hermite(T,F, ...)", "Error",
1097                   FatalException, "Too many (    1097                   FatalException, "Too many (>12) iterations.");
1098     }                                            1098     }
1099     fAbscissa[i - 1] = nwt;                      1099     fAbscissa[i - 1] = nwt;
1100     fWeight[i - 1]   = 2.0 / (temp * temp);      1100     fWeight[i - 1]   = 2.0 / (temp * temp);
1101   }                                              1101   }
1102                                                  1102 
1103   //                                             1103   //
1104   // Integral calculation                        1104   // Integral calculation
1105   //                                             1105   //
1106                                                  1106 
1107   for(i = 0; i < fNumber; ++i)                   1107   for(i = 0; i < fNumber; ++i)
1108   {                                              1108   {
1109     integral +=                                  1109     integral +=
1110       fWeight[i] * ((typeT.*f)(fAbscissa[i])     1110       fWeight[i] * ((typeT.*f)(fAbscissa[i]) + (typeT.*f)(-fAbscissa[i]));
1111   }                                              1111   }
1112   delete[] fAbscissa;                            1112   delete[] fAbscissa;
1113   delete[] fWeight;                              1113   delete[] fWeight;
1114   return integral;                               1114   return integral;
1115 }                                                1115 }
1116                                                  1116 
1117 /////////////////////////////////////////////    1117 ////////////////////////////////////////////////////////////////////////
1118 //                                               1118 //
1119 // For use with 'this' pointer                   1119 // For use with 'this' pointer
1120                                                  1120 
1121 template <class T, class F>                      1121 template <class T, class F>
1122 G4double G4Integrator<T, F>::Hermite(T* ptrT,    1122 G4double G4Integrator<T, F>::Hermite(T* ptrT, F f, G4int n)
1123 {                                                1123 {
1124   return Hermite(*ptrT, f, n);                   1124   return Hermite(*ptrT, f, n);
1125 }                                                1125 }
1126                                                  1126 
1127 /////////////////////////////////////////////    1127 ////////////////////////////////////////////////////////////////////////
1128 //                                               1128 //
1129 // For use with global scope f                   1129 // For use with global scope f
1130                                                  1130 
1131 template <class T, class F>                      1131 template <class T, class F>
1132 G4double G4Integrator<T, F>::Hermite(G4double    1132 G4double G4Integrator<T, F>::Hermite(G4double (*f)(G4double), G4int nHermite)
1133 {                                                1133 {
1134   const G4double tolerance = 1.0e-12;            1134   const G4double tolerance = 1.0e-12;
1135   const G4int maxNumber    = 12;                 1135   const G4int maxNumber    = 12;
1136                                                  1136 
1137   G4int i, j, k;                                 1137   G4int i, j, k;
1138   G4double integral = 0.0;                       1138   G4double integral = 0.0;
1139   G4double nwt      = 0., nwt1, temp1, temp2,    1139   G4double nwt      = 0., nwt1, temp1, temp2, temp3, temp;
1140                                                  1140 
1141   G4double piInMinusQ =                          1141   G4double piInMinusQ =
1142     std::pow(CLHEP::pi, -0.25);  // 1.0/std::    1142     std::pow(CLHEP::pi, -0.25);  // 1.0/std::sqrt(std::sqrt(pi)) ??
1143                                                  1143 
1144   G4int fNumber       = (nHermite + 1) / 2;      1144   G4int fNumber       = (nHermite + 1) / 2;
1145   G4double* fAbscissa = new G4double[fNumber]    1145   G4double* fAbscissa = new G4double[fNumber];
1146   G4double* fWeight   = new G4double[fNumber]    1146   G4double* fWeight   = new G4double[fNumber];
1147                                                  1147 
1148   for(i = 1; i <= fNumber; ++i)                  1148   for(i = 1; i <= fNumber; ++i)
1149   {                                              1149   {
1150     if(i == 1)                                   1150     if(i == 1)
1151     {                                            1151     {
1152       nwt = std::sqrt((G4double)(2 * nHermite    1152       nwt = std::sqrt((G4double)(2 * nHermite + 1)) -
1153             1.85575001 * std::pow((G4double)(    1153             1.85575001 * std::pow((G4double)(2 * nHermite + 1), -0.16666999);
1154     }                                            1154     }
1155     else if(i == 2)                              1155     else if(i == 2)
1156     {                                            1156     {
1157       nwt -= 1.14001 * std::pow((G4double) nH    1157       nwt -= 1.14001 * std::pow((G4double) nHermite, 0.425999) / nwt;
1158     }                                            1158     }
1159     else if(i == 3)                              1159     else if(i == 3)
1160     {                                            1160     {
1161       nwt = 1.86002 * nwt - 0.86002 * fAbscis    1161       nwt = 1.86002 * nwt - 0.86002 * fAbscissa[0];
1162     }                                            1162     }
1163     else if(i == 4)                              1163     else if(i == 4)
1164     {                                            1164     {
1165       nwt = 1.91001 * nwt - 0.91001 * fAbscis    1165       nwt = 1.91001 * nwt - 0.91001 * fAbscissa[1];
1166     }                                            1166     }
1167     else                                         1167     else
1168     {                                            1168     {
1169       nwt = 2.0 * nwt - fAbscissa[i - 3];        1169       nwt = 2.0 * nwt - fAbscissa[i - 3];
1170     }                                            1170     }
1171     for(k = 1; k <= maxNumber; ++k)              1171     for(k = 1; k <= maxNumber; ++k)
1172     {                                            1172     {
1173       temp1 = piInMinusQ;                        1173       temp1 = piInMinusQ;
1174       temp2 = 0.0;                               1174       temp2 = 0.0;
1175                                                  1175 
1176       for(j = 1; j <= nHermite; ++j)             1176       for(j = 1; j <= nHermite; ++j)
1177       {                                          1177       {
1178         temp3 = temp2;                           1178         temp3 = temp2;
1179         temp2 = temp1;                           1179         temp2 = temp1;
1180         temp1 = nwt * std::sqrt(2.0 / j) * te    1180         temp1 = nwt * std::sqrt(2.0 / j) * temp2 -
1181                 std::sqrt(((G4double)(j - 1))    1181                 std::sqrt(((G4double)(j - 1)) / j) * temp3;
1182       }                                          1182       }
1183       temp = std::sqrt((G4double) 2 * nHermit    1183       temp = std::sqrt((G4double) 2 * nHermite) * temp2;
1184       nwt1 = nwt;                                1184       nwt1 = nwt;
1185       nwt  = nwt1 - temp1 / temp;                1185       nwt  = nwt1 - temp1 / temp;
1186                                                  1186 
1187       if(std::fabs(nwt - nwt1) <= tolerance)     1187       if(std::fabs(nwt - nwt1) <= tolerance)
1188       {                                          1188       {
1189         break;                                   1189         break;
1190       }                                          1190       }
1191     }                                            1191     }
1192     if(k > maxNumber)                            1192     if(k > maxNumber)
1193     {                                            1193     {
1194       G4Exception("G4Integrator<T,F>::Hermite    1194       G4Exception("G4Integrator<T,F>::Hermite(...)", "Error", FatalException,
1195                   "Too many (>12) iterations.    1195                   "Too many (>12) iterations.");
1196     }                                            1196     }
1197     fAbscissa[i - 1] = nwt;                      1197     fAbscissa[i - 1] = nwt;
1198     fWeight[i - 1]   = 2.0 / (temp * temp);      1198     fWeight[i - 1]   = 2.0 / (temp * temp);
1199   }                                              1199   }
1200                                                  1200 
1201   //                                             1201   //
1202   // Integral calculation                        1202   // Integral calculation
1203   //                                             1203   //
1204                                                  1204 
1205   for(i = 0; i < fNumber; ++i)                   1205   for(i = 0; i < fNumber; ++i)
1206   {                                              1206   {
1207     integral += fWeight[i] * ((*f)(fAbscissa[    1207     integral += fWeight[i] * ((*f)(fAbscissa[i]) + (*f)(-fAbscissa[i]));
1208   }                                              1208   }
1209   delete[] fAbscissa;                            1209   delete[] fAbscissa;
1210   delete[] fWeight;                              1210   delete[] fWeight;
1211   return integral;                               1211   return integral;
1212 }                                                1212 }
1213                                                  1213 
1214 /////////////////////////////////////////////    1214 ////////////////////////////////////////////////////////////////////////////
1215 //                                               1215 //
1216 // Method involving Jacobi polynomials           1216 // Method involving Jacobi polynomials
1217 //                                               1217 //
1218 /////////////////////////////////////////////    1218 ////////////////////////////////////////////////////////////////////////////
1219 //                                               1219 //
1220 // Gauss-Jacobi method for integration of ((1    1220 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x)
1221 // from minus unit to plus unit .                1221 // from minus unit to plus unit .
1222 //                                               1222 //
1223                                                  1223 
1224 template <class T, class F>                      1224 template <class T, class F>
1225 G4double G4Integrator<T, F>::Jacobi(T& typeT,    1225 G4double G4Integrator<T, F>::Jacobi(T& typeT, F f, G4double alpha,
1226                                     G4double     1226                                     G4double beta, G4int nJacobi)
1227 {                                                1227 {
1228   const G4double tolerance = 1.0e-12;            1228   const G4double tolerance = 1.0e-12;
1229   const G4double maxNumber = 12;                 1229   const G4double maxNumber = 12;
1230   G4int i, k, j;                                 1230   G4int i, k, j;
1231   G4double alphaBeta, alphaReduced, betaReduc    1231   G4double alphaBeta, alphaReduced, betaReduced, root1 = 0., root2 = 0.,
1232                                                  1232                                                  root3 = 0.;
1233   G4double a, b, c, nwt1, nwt2, nwt3, nwt, te    1233   G4double a, b, c, nwt1, nwt2, nwt3, nwt, temp, root = 0., rootTemp;
1234                                                  1234 
1235   G4int fNumber       = nJacobi;                 1235   G4int fNumber       = nJacobi;
1236   G4double* fAbscissa = new G4double[fNumber]    1236   G4double* fAbscissa = new G4double[fNumber];
1237   G4double* fWeight   = new G4double[fNumber]    1237   G4double* fWeight   = new G4double[fNumber];
1238                                                  1238 
1239   for(i = 1; i <= nJacobi; ++i)                  1239   for(i = 1; i <= nJacobi; ++i)
1240   {                                              1240   {
1241     if(i == 1)                                   1241     if(i == 1)
1242     {                                            1242     {
1243       alphaReduced = alpha / nJacobi;            1243       alphaReduced = alpha / nJacobi;
1244       betaReduced  = beta / nJacobi;             1244       betaReduced  = beta / nJacobi;
1245       root1        = (1.0 + alpha) * (2.78002    1245       root1        = (1.0 + alpha) * (2.78002 / (4.0 + nJacobi * nJacobi) +
1246                                0.767999 * alp    1246                                0.767999 * alphaReduced / nJacobi);
1247       root2        = 1.0 + 1.48 * alphaReduce    1247       root2        = 1.0 + 1.48 * alphaReduced + 0.96002 * betaReduced +
1248               0.451998 * alphaReduced * alpha    1248               0.451998 * alphaReduced * alphaReduced +
1249               0.83001 * alphaReduced * betaRe    1249               0.83001 * alphaReduced * betaReduced;
1250       root = 1.0 - root1 / root2;                1250       root = 1.0 - root1 / root2;
1251     }                                            1251     }
1252     else if(i == 2)                              1252     else if(i == 2)
1253     {                                            1253     {
1254       root1 = (4.1002 + alpha) / ((1.0 + alph    1254       root1 = (4.1002 + alpha) / ((1.0 + alpha) * (1.0 + 0.155998 * alpha));
1255       root2 = 1.0 + 0.06 * (nJacobi - 8.0) *     1255       root2 = 1.0 + 0.06 * (nJacobi - 8.0) * (1.0 + 0.12 * alpha) / nJacobi;
1256       root3 =                                    1256       root3 =
1257         1.0 + 0.012002 * beta * (1.0 + 0.2499    1257         1.0 + 0.012002 * beta * (1.0 + 0.24997 * std::fabs(alpha)) / nJacobi;
1258       root -= (1.0 - root) * root1 * root2 *     1258       root -= (1.0 - root) * root1 * root2 * root3;
1259     }                                            1259     }
1260     else if(i == 3)                              1260     else if(i == 3)
1261     {                                            1261     {
1262       root1 = (1.67001 + 0.27998 * alpha) / (    1262       root1 = (1.67001 + 0.27998 * alpha) / (1.0 + 0.37002 * alpha);
1263       root2 = 1.0 + 0.22 * (nJacobi - 8.0) /     1263       root2 = 1.0 + 0.22 * (nJacobi - 8.0) / nJacobi;
1264       root3 = 1.0 + 8.0 * beta / ((6.28001 +     1264       root3 = 1.0 + 8.0 * beta / ((6.28001 + beta) * nJacobi * nJacobi);
1265       root -= (fAbscissa[0] - root) * root1 *    1265       root -= (fAbscissa[0] - root) * root1 * root2 * root3;
1266     }                                            1266     }
1267     else if(i == nJacobi - 1)                    1267     else if(i == nJacobi - 1)
1268     {                                            1268     {
1269       root1 = (1.0 + 0.235002 * beta) / (0.76    1269       root1 = (1.0 + 0.235002 * beta) / (0.766001 + 0.118998 * beta);
1270       root2 = 1.0 / (1.0 + 0.639002 * (nJacob    1270       root2 = 1.0 / (1.0 + 0.639002 * (nJacobi - 4.0) /
1271                              (1.0 + 0.71001 *    1271                              (1.0 + 0.71001 * (nJacobi - 4.0)));
1272       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7    1272       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7.5 + alpha) * nJacobi * nJacobi));
1273       root += (root - fAbscissa[nJacobi - 4])    1273       root += (root - fAbscissa[nJacobi - 4]) * root1 * root2 * root3;
1274     }                                            1274     }
1275     else if(i == nJacobi)                        1275     else if(i == nJacobi)
1276     {                                            1276     {
1277       root1 = (1.0 + 0.37002 * beta) / (1.670    1277       root1 = (1.0 + 0.37002 * beta) / (1.67001 + 0.27998 * beta);
1278       root2 = 1.0 / (1.0 + 0.22 * (nJacobi -     1278       root2 = 1.0 / (1.0 + 0.22 * (nJacobi - 8.0) / nJacobi);
1279       root3 =                                    1279       root3 =
1280         1.0 / (1.0 + 8.0 * alpha / ((6.28002     1280         1.0 / (1.0 + 8.0 * alpha / ((6.28002 + alpha) * nJacobi * nJacobi));
1281       root += (root - fAbscissa[nJacobi - 3])    1281       root += (root - fAbscissa[nJacobi - 3]) * root1 * root2 * root3;
1282     }                                            1282     }
1283     else                                         1283     else
1284     {                                            1284     {
1285       root = 3.0 * fAbscissa[i - 2] - 3.0 * f    1285       root = 3.0 * fAbscissa[i - 2] - 3.0 * fAbscissa[i - 3] + fAbscissa[i - 4];
1286     }                                            1286     }
1287     alphaBeta = alpha + beta;                    1287     alphaBeta = alpha + beta;
1288     for(k = 1; k <= maxNumber; ++k)              1288     for(k = 1; k <= maxNumber; ++k)
1289     {                                            1289     {
1290       temp = 2.0 + alphaBeta;                    1290       temp = 2.0 + alphaBeta;
1291       nwt1 = (alpha - beta + temp * root) / 2    1291       nwt1 = (alpha - beta + temp * root) / 2.0;
1292       nwt2 = 1.0;                                1292       nwt2 = 1.0;
1293       for(j = 2; j <= nJacobi; ++j)              1293       for(j = 2; j <= nJacobi; ++j)
1294       {                                          1294       {
1295         nwt3 = nwt2;                             1295         nwt3 = nwt2;
1296         nwt2 = nwt1;                             1296         nwt2 = nwt1;
1297         temp = 2 * j + alphaBeta;                1297         temp = 2 * j + alphaBeta;
1298         a    = 2 * j * (j + alphaBeta) * (tem    1298         a    = 2 * j * (j + alphaBeta) * (temp - 2.0);
1299         b    = (temp - 1.0) *                    1299         b    = (temp - 1.0) *
1300             (alpha * alpha - beta * beta + te    1300             (alpha * alpha - beta * beta + temp * (temp - 2.0) * root);
1301         c    = 2.0 * (j - 1 + alpha) * (j - 1    1301         c    = 2.0 * (j - 1 + alpha) * (j - 1 + beta) * temp;
1302         nwt1 = (b * nwt2 - c * nwt3) / a;        1302         nwt1 = (b * nwt2 - c * nwt3) / a;
1303       }                                          1303       }
1304       nwt = (nJacobi * (alpha - beta - temp *    1304       nwt = (nJacobi * (alpha - beta - temp * root) * nwt1 +
1305              2.0 * (nJacobi + alpha) * (nJaco    1305              2.0 * (nJacobi + alpha) * (nJacobi + beta) * nwt2) /
1306             (temp * (1.0 - root * root));        1306             (temp * (1.0 - root * root));
1307       rootTemp = root;                           1307       rootTemp = root;
1308       root     = rootTemp - nwt1 / nwt;          1308       root     = rootTemp - nwt1 / nwt;
1309       if(std::fabs(root - rootTemp) <= tolera    1309       if(std::fabs(root - rootTemp) <= tolerance)
1310       {                                          1310       {
1311         break;                                   1311         break;
1312       }                                          1312       }
1313     }                                            1313     }
1314     if(k > maxNumber)                            1314     if(k > maxNumber)
1315     {                                            1315     {
1316       G4Exception("G4Integrator<T,F>::Jacobi(    1316       G4Exception("G4Integrator<T,F>::Jacobi(T,F, ...)", "Error",
1317                   FatalException, "Too many (    1317                   FatalException, "Too many (>12) iterations.");
1318     }                                            1318     }
1319     fAbscissa[i - 1] = root;                     1319     fAbscissa[i - 1] = root;
1320     fWeight[i - 1] =                             1320     fWeight[i - 1] =
1321       std::exp(GammaLogarithm((G4double)(alph    1321       std::exp(GammaLogarithm((G4double)(alpha + nJacobi)) +
1322                GammaLogarithm((G4double)(beta    1322                GammaLogarithm((G4double)(beta + nJacobi)) -
1323                GammaLogarithm((G4double)(nJac    1323                GammaLogarithm((G4double)(nJacobi + 1.0)) -
1324                GammaLogarithm((G4double)(nJac    1324                GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) *
1325       temp * std::pow(2.0, alphaBeta) / (nwt     1325       temp * std::pow(2.0, alphaBeta) / (nwt * nwt2);
1326   }                                              1326   }
1327                                                  1327 
1328   //                                             1328   //
1329   // Calculation of the integral                 1329   // Calculation of the integral
1330   //                                             1330   //
1331                                                  1331 
1332   G4double integral = 0.0;                       1332   G4double integral = 0.0;
1333   for(i = 0; i < fNumber; ++i)                   1333   for(i = 0; i < fNumber; ++i)
1334   {                                              1334   {
1335     integral += fWeight[i] * (typeT.*f)(fAbsc    1335     integral += fWeight[i] * (typeT.*f)(fAbscissa[i]);
1336   }                                              1336   }
1337   delete[] fAbscissa;                            1337   delete[] fAbscissa;
1338   delete[] fWeight;                              1338   delete[] fWeight;
1339   return integral;                               1339   return integral;
1340 }                                                1340 }
1341                                                  1341 
1342 /////////////////////////////////////////////    1342 /////////////////////////////////////////////////////////////////////////
1343 //                                               1343 //
1344 // For use with 'this' pointer                   1344 // For use with 'this' pointer
1345                                                  1345 
1346 template <class T, class F>                      1346 template <class T, class F>
1347 G4double G4Integrator<T, F>::Jacobi(T* ptrT,     1347 G4double G4Integrator<T, F>::Jacobi(T* ptrT, F f, G4double alpha, G4double beta,
1348                                     G4int n)     1348                                     G4int n)
1349 {                                                1349 {
1350   return Jacobi(*ptrT, f, alpha, beta, n);       1350   return Jacobi(*ptrT, f, alpha, beta, n);
1351 }                                                1351 }
1352                                                  1352 
1353 /////////////////////////////////////////////    1353 /////////////////////////////////////////////////////////////////////////
1354 //                                               1354 //
1355 // For use with global scope f                   1355 // For use with global scope f
1356                                                  1356 
1357 template <class T, class F>                      1357 template <class T, class F>
1358 G4double G4Integrator<T, F>::Jacobi(G4double     1358 G4double G4Integrator<T, F>::Jacobi(G4double (*f)(G4double), G4double alpha,
1359                                     G4double     1359                                     G4double beta, G4int nJacobi)
1360 {                                                1360 {
1361   const G4double tolerance = 1.0e-12;            1361   const G4double tolerance = 1.0e-12;
1362   const G4double maxNumber = 12;                 1362   const G4double maxNumber = 12;
1363   G4int i, k, j;                                 1363   G4int i, k, j;
1364   G4double alphaBeta, alphaReduced, betaReduc    1364   G4double alphaBeta, alphaReduced, betaReduced, root1 = 0., root2 = 0.,
1365                                                  1365                                                  root3 = 0.;
1366   G4double a, b, c, nwt1, nwt2, nwt3, nwt, te    1366   G4double a, b, c, nwt1, nwt2, nwt3, nwt, temp, root = 0., rootTemp;
1367                                                  1367 
1368   G4int fNumber       = nJacobi;                 1368   G4int fNumber       = nJacobi;
1369   G4double* fAbscissa = new G4double[fNumber]    1369   G4double* fAbscissa = new G4double[fNumber];
1370   G4double* fWeight   = new G4double[fNumber]    1370   G4double* fWeight   = new G4double[fNumber];
1371                                                  1371 
1372   for(i = 1; i <= nJacobi; ++i)                  1372   for(i = 1; i <= nJacobi; ++i)
1373   {                                              1373   {
1374     if(i == 1)                                   1374     if(i == 1)
1375     {                                            1375     {
1376       alphaReduced = alpha / nJacobi;            1376       alphaReduced = alpha / nJacobi;
1377       betaReduced  = beta / nJacobi;             1377       betaReduced  = beta / nJacobi;
1378       root1        = (1.0 + alpha) * (2.78002    1378       root1        = (1.0 + alpha) * (2.78002 / (4.0 + nJacobi * nJacobi) +
1379                                0.767999 * alp    1379                                0.767999 * alphaReduced / nJacobi);
1380       root2        = 1.0 + 1.48 * alphaReduce    1380       root2        = 1.0 + 1.48 * alphaReduced + 0.96002 * betaReduced +
1381               0.451998 * alphaReduced * alpha    1381               0.451998 * alphaReduced * alphaReduced +
1382               0.83001 * alphaReduced * betaRe    1382               0.83001 * alphaReduced * betaReduced;
1383       root = 1.0 - root1 / root2;                1383       root = 1.0 - root1 / root2;
1384     }                                            1384     }
1385     else if(i == 2)                              1385     else if(i == 2)
1386     {                                            1386     {
1387       root1 = (4.1002 + alpha) / ((1.0 + alph    1387       root1 = (4.1002 + alpha) / ((1.0 + alpha) * (1.0 + 0.155998 * alpha));
1388       root2 = 1.0 + 0.06 * (nJacobi - 8.0) *     1388       root2 = 1.0 + 0.06 * (nJacobi - 8.0) * (1.0 + 0.12 * alpha) / nJacobi;
1389       root3 =                                    1389       root3 =
1390         1.0 + 0.012002 * beta * (1.0 + 0.2499    1390         1.0 + 0.012002 * beta * (1.0 + 0.24997 * std::fabs(alpha)) / nJacobi;
1391       root -= (1.0 - root) * root1 * root2 *     1391       root -= (1.0 - root) * root1 * root2 * root3;
1392     }                                            1392     }
1393     else if(i == 3)                              1393     else if(i == 3)
1394     {                                            1394     {
1395       root1 = (1.67001 + 0.27998 * alpha) / (    1395       root1 = (1.67001 + 0.27998 * alpha) / (1.0 + 0.37002 * alpha);
1396       root2 = 1.0 + 0.22 * (nJacobi - 8.0) /     1396       root2 = 1.0 + 0.22 * (nJacobi - 8.0) / nJacobi;
1397       root3 = 1.0 + 8.0 * beta / ((6.28001 +     1397       root3 = 1.0 + 8.0 * beta / ((6.28001 + beta) * nJacobi * nJacobi);
1398       root -= (fAbscissa[0] - root) * root1 *    1398       root -= (fAbscissa[0] - root) * root1 * root2 * root3;
1399     }                                            1399     }
1400     else if(i == nJacobi - 1)                    1400     else if(i == nJacobi - 1)
1401     {                                            1401     {
1402       root1 = (1.0 + 0.235002 * beta) / (0.76    1402       root1 = (1.0 + 0.235002 * beta) / (0.766001 + 0.118998 * beta);
1403       root2 = 1.0 / (1.0 + 0.639002 * (nJacob    1403       root2 = 1.0 / (1.0 + 0.639002 * (nJacobi - 4.0) /
1404                              (1.0 + 0.71001 *    1404                              (1.0 + 0.71001 * (nJacobi - 4.0)));
1405       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7    1405       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7.5 + alpha) * nJacobi * nJacobi));
1406       root += (root - fAbscissa[nJacobi - 4])    1406       root += (root - fAbscissa[nJacobi - 4]) * root1 * root2 * root3;
1407     }                                            1407     }
1408     else if(i == nJacobi)                        1408     else if(i == nJacobi)
1409     {                                            1409     {
1410       root1 = (1.0 + 0.37002 * beta) / (1.670    1410       root1 = (1.0 + 0.37002 * beta) / (1.67001 + 0.27998 * beta);
1411       root2 = 1.0 / (1.0 + 0.22 * (nJacobi -     1411       root2 = 1.0 / (1.0 + 0.22 * (nJacobi - 8.0) / nJacobi);
1412       root3 =                                    1412       root3 =
1413         1.0 / (1.0 + 8.0 * alpha / ((6.28002     1413         1.0 / (1.0 + 8.0 * alpha / ((6.28002 + alpha) * nJacobi * nJacobi));
1414       root += (root - fAbscissa[nJacobi - 3])    1414       root += (root - fAbscissa[nJacobi - 3]) * root1 * root2 * root3;
1415     }                                            1415     }
1416     else                                         1416     else
1417     {                                            1417     {
1418       root = 3.0 * fAbscissa[i - 2] - 3.0 * f    1418       root = 3.0 * fAbscissa[i - 2] - 3.0 * fAbscissa[i - 3] + fAbscissa[i - 4];
1419     }                                            1419     }
1420     alphaBeta = alpha + beta;                    1420     alphaBeta = alpha + beta;
1421     for(k = 1; k <= maxNumber; ++k)              1421     for(k = 1; k <= maxNumber; ++k)
1422     {                                            1422     {
1423       temp = 2.0 + alphaBeta;                    1423       temp = 2.0 + alphaBeta;
1424       nwt1 = (alpha - beta + temp * root) / 2    1424       nwt1 = (alpha - beta + temp * root) / 2.0;
1425       nwt2 = 1.0;                                1425       nwt2 = 1.0;
1426       for(j = 2; j <= nJacobi; ++j)              1426       for(j = 2; j <= nJacobi; ++j)
1427       {                                          1427       {
1428         nwt3 = nwt2;                             1428         nwt3 = nwt2;
1429         nwt2 = nwt1;                             1429         nwt2 = nwt1;
1430         temp = 2 * j + alphaBeta;                1430         temp = 2 * j + alphaBeta;
1431         a    = 2 * j * (j + alphaBeta) * (tem    1431         a    = 2 * j * (j + alphaBeta) * (temp - 2.0);
1432         b    = (temp - 1.0) *                    1432         b    = (temp - 1.0) *
1433             (alpha * alpha - beta * beta + te    1433             (alpha * alpha - beta * beta + temp * (temp - 2.0) * root);
1434         c    = 2.0 * (j - 1 + alpha) * (j - 1    1434         c    = 2.0 * (j - 1 + alpha) * (j - 1 + beta) * temp;
1435         nwt1 = (b * nwt2 - c * nwt3) / a;        1435         nwt1 = (b * nwt2 - c * nwt3) / a;
1436       }                                          1436       }
1437       nwt = (nJacobi * (alpha - beta - temp *    1437       nwt = (nJacobi * (alpha - beta - temp * root) * nwt1 +
1438              2.0 * (nJacobi + alpha) * (nJaco    1438              2.0 * (nJacobi + alpha) * (nJacobi + beta) * nwt2) /
1439             (temp * (1.0 - root * root));        1439             (temp * (1.0 - root * root));
1440       rootTemp = root;                           1440       rootTemp = root;
1441       root     = rootTemp - nwt1 / nwt;          1441       root     = rootTemp - nwt1 / nwt;
1442       if(std::fabs(root - rootTemp) <= tolera    1442       if(std::fabs(root - rootTemp) <= tolerance)
1443       {                                          1443       {
1444         break;                                   1444         break;
1445       }                                          1445       }
1446     }                                            1446     }
1447     if(k > maxNumber)                            1447     if(k > maxNumber)
1448     {                                            1448     {
1449       G4Exception("G4Integrator<T,F>::Jacobi(    1449       G4Exception("G4Integrator<T,F>::Jacobi(...)", "Error", FatalException,
1450                   "Too many (>12) iterations.    1450                   "Too many (>12) iterations.");
1451     }                                            1451     }
1452     fAbscissa[i - 1] = root;                     1452     fAbscissa[i - 1] = root;
1453     fWeight[i - 1] =                             1453     fWeight[i - 1] =
1454       std::exp(GammaLogarithm((G4double)(alph    1454       std::exp(GammaLogarithm((G4double)(alpha + nJacobi)) +
1455                GammaLogarithm((G4double)(beta    1455                GammaLogarithm((G4double)(beta + nJacobi)) -
1456                GammaLogarithm((G4double)(nJac    1456                GammaLogarithm((G4double)(nJacobi + 1.0)) -
1457                GammaLogarithm((G4double)(nJac    1457                GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) *
1458       temp * std::pow(2.0, alphaBeta) / (nwt     1458       temp * std::pow(2.0, alphaBeta) / (nwt * nwt2);
1459   }                                              1459   }
1460                                                  1460 
1461   //                                             1461   //
1462   // Calculation of the integral                 1462   // Calculation of the integral
1463   //                                             1463   //
1464                                                  1464 
1465   G4double integral = 0.0;                       1465   G4double integral = 0.0;
1466   for(i = 0; i < fNumber; ++i)                   1466   for(i = 0; i < fNumber; ++i)
1467   {                                              1467   {
1468     integral += fWeight[i] * (*f)(fAbscissa[i    1468     integral += fWeight[i] * (*f)(fAbscissa[i]);
1469   }                                              1469   }
1470   delete[] fAbscissa;                            1470   delete[] fAbscissa;
1471   delete[] fWeight;                              1471   delete[] fWeight;
1472   return integral;                               1472   return integral;
1473 }                                                1473 }
1474                                                  1474 
1475 //                                               1475 //
1476 //                                               1476 //
1477 /////////////////////////////////////////////    1477 ///////////////////////////////////////////////////////////////////
1478                                                  1478