Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: G4Integrator.icc,v 1.4 1999/11/23 14:59:59 gcosmo Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-01-00 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // Implementation of G4Integrator methods. 10 // * << 12 // 11 // * Neither the authors of this software syst << 13 // 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // << 26 // G4Integrator inline methods implementation << 27 // << 28 // Author: V.Grichine, 04.09.1999 - First impl << 29 // G4SimpleIntegration class with H.P. << 30 // E.TCherniaev advises << 31 // ------------------------------------------- << 32 14 33 ////////////////////////////////////////////// 15 ///////////////////////////////////////////////////////////////////// 34 // 16 // 35 // Sympson integration method 17 // Sympson integration method 36 // 18 // 37 ////////////////////////////////////////////// 19 ///////////////////////////////////////////////////////////////////// 38 // 20 // 39 // Integration of class member functions T::f << 21 // Integration of class member functions T::f by Simpson method. 40 22 41 template <class T, class F> << 23 template <class T, class F> 42 G4double G4Integrator<T, F>::Simpson(T& typeT, << 24 G4double G4Integrator::Simpson( T& typeT, 43 G4double << 25 F f, 44 { << 26 G4double xInitial, 45 G4int i; << 27 G4double xFinal, 46 G4double step = (xFinal - xInitial) / itera << 28 G4int iterationNumber ) 47 G4double x = xInitial; << 29 { 48 G4double xPlus = xInitial + 0.5 * step; << 30 G4int i ; 49 G4double mean = ((typeT.*f)(xInitial) + (ty << 31 G4double step = (xFinal - xInitial)/iterationNumber ; 50 G4double sum = (typeT.*f)(xPlus); << 32 G4double x = xInitial ; 51 << 33 G4double xPlus = xInitial + 0.5*step ; 52 for(i = 1; i < iterationNumber; ++i) << 34 G4double mean = ( (typeT.*f)(xInitial) + (typeT.*f)(xFinal) )*0.5 ; 53 { << 35 G4double sum = (typeT.*f)(xPlus) ; 54 x += step; << 36 55 xPlus += step; << 37 for(i=1;i<iterationNumber;i++) 56 mean += (typeT.*f)(x); << 38 { 57 sum += (typeT.*f)(xPlus); << 39 x += step ; 58 } << 40 xPlus += step ; 59 mean += 2.0 * sum; << 41 mean += (typeT.*f)(x) ; >> 42 sum += (typeT.*f)(xPlus) ; >> 43 } >> 44 mean += 2.0*sum ; 60 45 61 return mean * step / 3.0; << 46 return mean*step/3.0 ; 62 } 47 } 63 48 64 ////////////////////////////////////////////// 49 ///////////////////////////////////////////////////////////////////// 65 // 50 // 66 // Integration of class member functions T::f 51 // Integration of class member functions T::f by Simpson method. 67 // Convenient to use with 'this' pointer 52 // Convenient to use with 'this' pointer 68 53 69 template <class T, class F> << 54 template <class T, class F> 70 G4double G4Integrator<T, F>::Simpson(T* ptrT, << 55 G4double G4Integrator::Simpson( T* ptrT, 71 G4double << 56 F f, 72 { << 57 G4double xInitial, 73 G4int i; << 58 G4double xFinal, 74 G4double step = (xFinal - xInitial) / itera << 59 G4int iterationNumber ) 75 G4double x = xInitial; << 60 { 76 G4double xPlus = xInitial + 0.5 * step; << 61 G4int i ; 77 G4double mean = ((ptrT->*f)(xInitial) + (pt << 62 G4double step = (xFinal - xInitial)/iterationNumber ; 78 G4double sum = (ptrT->*f)(xPlus); << 63 G4double x = xInitial ; >> 64 G4double xPlus = xInitial + 0.5*step ; >> 65 G4double mean = ( (ptrT->*f)(xInitial) + (ptrT->*f)(xFinal) )*0.5 ; >> 66 G4double sum = (ptrT->*f)(xPlus) ; >> 67 >> 68 for(i=1;i<iterationNumber;i++) >> 69 { >> 70 x += step ; >> 71 xPlus += step ; >> 72 mean += (ptrT->*f)(x) ; >> 73 sum += (ptrT->*f)(xPlus) ; >> 74 } >> 75 mean += 2.0*sum ; 79 76 80 for(i = 1; i < iterationNumber; ++i) << 77 return mean*step/3.0 ; 81 { << 82 x += step; << 83 xPlus += step; << 84 mean += (ptrT->*f)(x); << 85 sum += (ptrT->*f)(xPlus); << 86 } << 87 mean += 2.0 * sum; << 88 << 89 return mean * step / 3.0; << 90 } 78 } 91 79 92 ////////////////////////////////////////////// 80 ///////////////////////////////////////////////////////////////////// 93 // 81 // 94 // Integration of class member functions T::f 82 // Integration of class member functions T::f by Simpson method. 95 // Convenient to use, when function f is defin 83 // Convenient to use, when function f is defined in global scope, i.e. in main() 96 // program 84 // program 97 85 98 template <class T, class F> << 86 G4double G4Integrator::Simpson( G4double (*f)(G4double), 99 G4double G4Integrator<T, F>::Simpson(G4double << 87 G4double xInitial, 100 G4double << 88 G4double xFinal, 101 { << 89 G4int iterationNumber ) 102 G4int i; << 90 { 103 G4double step = (xFinal - xInitial) / itera << 91 G4int i ; 104 G4double x = xInitial; << 92 G4double step = (xFinal - xInitial)/iterationNumber ; 105 G4double xPlus = xInitial + 0.5 * step; << 93 G4double x = xInitial ; 106 G4double mean = ((*f)(xInitial) + (*f)(xFin << 94 G4double xPlus = xInitial + 0.5*step ; 107 G4double sum = (*f)(xPlus); << 95 G4double mean = ( (*f)(xInitial) + (*f)(xFinal) )*0.5 ; 108 << 96 G4double sum = (*f)(xPlus) ; 109 for(i = 1; i < iterationNumber; ++i) << 97 110 { << 98 for(i=1;i<iterationNumber;i++) 111 x += step; << 99 { 112 xPlus += step; << 100 x += step ; 113 mean += (*f)(x); << 101 xPlus += step ; 114 sum += (*f)(xPlus); << 102 mean += (*f)(x) ; 115 } << 103 sum += (*f)(xPlus) ; 116 mean += 2.0 * sum; << 104 } >> 105 mean += 2.0*sum ; 117 106 118 return mean * step / 3.0; << 107 return mean*step/3.0 ; 119 } 108 } 120 109 121 ////////////////////////////////////////////// 110 ////////////////////////////////////////////////////////////////////////// 122 // 111 // 123 // Adaptive Gauss method 112 // Adaptive Gauss method 124 // 113 // 125 ////////////////////////////////////////////// 114 ////////////////////////////////////////////////////////////////////////// 126 // 115 // 127 // 116 // 128 117 129 template <class T, class F> << 118 template <class T, class F> 130 G4double G4Integrator<T, F>::Gauss(T& typeT, F << 119 G4double G4Integrator::Gauss( T& typeT, F f, 131 G4double xF << 120 G4double xInitial, G4double xFinal ) 132 { << 121 { 133 static const G4double root = 1.0 / std::sqrt << 122 static G4double root = 1.0/sqrt(3.0) ; 134 << 123 135 G4double xMean = (xInitial + xFinal) / 2.0; << 124 G4double xMean = (xInitial + xFinal)/2.0 ; 136 G4double Step = (xFinal - xInitial) / 2.0; << 125 G4double Step = (xFinal - xInitial)/2.0 ; 137 G4double delta = Step * root; << 126 G4double delta = Step*root ; 138 G4double sum = ((typeT.*f)(xMean + delta) << 127 G4double sum = ((typeT.*f)(xMean + delta) + 139 << 128 (typeT.*f)(xMean - delta)) ; 140 return sum * Step; << 129 >> 130 return sum*Step ; 141 } 131 } 142 132 143 ////////////////////////////////////////////// 133 ////////////////////////////////////////////////////////////////////// 144 // 134 // 145 // 135 // 146 136 147 template <class T, class F> << 137 template <class T, class F> G4double 148 G4double G4Integrator<T, F>::Gauss(T* ptrT, F << 138 G4Integrator::Gauss( T* ptrT, F f, G4double a, G4double b ) 149 { 139 { 150 return Gauss(*ptrT, f, a, b); << 140 return Gauss(*ptrT,f,a,b) ; 151 } 141 } 152 142 153 ////////////////////////////////////////////// 143 /////////////////////////////////////////////////////////////////////// 154 // 144 // 155 // 145 // 156 146 157 template <class T, class F> << 147 G4double G4Integrator::Gauss( G4double (*f)(G4double), 158 G4double G4Integrator<T, F>::Gauss(G4double (* << 148 G4double xInitial, G4double xFinal) 159 G4double xF << 149 { 160 { << 150 static G4double root = 1.0/sqrt(3.0) ; 161 static const G4double root = 1.0 / std::sqrt << 151 162 << 152 G4double xMean = (xInitial + xFinal)/2.0 ; 163 G4double xMean = (xInitial + xFinal) / 2.0; << 153 G4double Step = (xFinal - xInitial)/2.0 ; 164 G4double Step = (xFinal - xInitial) / 2.0; << 154 G4double delta = Step*root ; 165 G4double delta = Step * root; << 155 G4double sum = ( (*f)(xMean + delta) + (*f)(xMean - delta) ) ; 166 G4double sum = ((*f)(xMean + delta) + (*f) << 156 167 << 157 return sum*Step ; 168 return sum * Step; << 169 } 158 } 170 159 171 ////////////////////////////////////////////// 160 /////////////////////////////////////////////////////////////////////////// 172 // 161 // 173 // 162 // 174 163 175 template <class T, class F> << 164 template <class T, class F> 176 void G4Integrator<T, F>::AdaptGauss(T& typeT, << 165 void G4Integrator::AdaptGauss( T& typeT, F f, G4double xInitial, 177 G4double x << 166 G4double xFinal, G4double fTolerance, 178 G4double& << 167 G4double& sum, >> 168 G4int& depth ) >> 169 { >> 170 if(depth > 100) >> 171 { >> 172 G4cout<<"G4Integrator::AdaptGauss: WARNING !!!"<<G4endl ; >> 173 G4cout >> 174 <<"Function varies too rapidly to get stated accuracy in 100 steps "<<G4endl ; >> 175 >> 176 return ; >> 177 } >> 178 G4double xMean = (xInitial + xFinal)/2.0 ; >> 179 G4double leftHalf = Gauss(typeT,f,xInitial,xMean) ; >> 180 G4double rightHalf = Gauss(typeT,f,xMean,xFinal) ; >> 181 G4double full = Gauss(typeT,f,xInitial,xFinal) ; >> 182 if(fabs(leftHalf+rightHalf-full) < fTolerance) >> 183 { >> 184 sum += full ; >> 185 } >> 186 else >> 187 { >> 188 depth++ ; >> 189 AdaptGauss(typeT,f,xInitial,xMean,fTolerance,sum,depth) ; >> 190 AdaptGauss(typeT,f,xMean,xFinal,fTolerance,sum,depth) ; >> 191 } >> 192 } >> 193 >> 194 template <class T, class F> >> 195 void G4Integrator::AdaptGauss( T* ptrT, F f, G4double xInitial, >> 196 G4double xFinal, G4double fTolerance, >> 197 G4double& sum, >> 198 G4int& depth ) 179 { 199 { 180 if(depth > 100) << 200 return AdaptGauss(*ptrT,f,xInitial,xFinal,fTolerance,sum,depth) ; 181 { << 182 G4cout << "G4Integrator<T,F>::AdaptGauss: << 183 G4cout << "Function varies too rapidly to << 184 << G4endl; << 185 << 186 return; << 187 } << 188 G4double xMean = (xInitial + xFinal) / 2 << 189 G4double leftHalf = Gauss(typeT, f, xInitia << 190 G4double rightHalf = Gauss(typeT, f, xMean, << 191 G4double full = Gauss(typeT, f, xInitia << 192 if(std::fabs(leftHalf + rightHalf - full) < << 193 { << 194 sum += full; << 195 } << 196 else << 197 { << 198 ++depth; << 199 AdaptGauss(typeT, f, xInitial, xMean, fTol << 200 AdaptGauss(typeT, f, xMean, xFinal, fToler << 201 } << 202 } << 203 << 204 template <class T, class F> << 205 void G4Integrator<T, F>::AdaptGauss(T* ptrT, F << 206 G4double x << 207 G4double& << 208 { << 209 AdaptGauss(*ptrT, f, xInitial, xFinal, fTole << 210 } 201 } 211 202 212 ////////////////////////////////////////////// 203 ///////////////////////////////////////////////////////////////////////// 213 // 204 // 214 // 205 // 215 template <class T, class F> << 216 void G4Integrator<T, F>::AdaptGauss(G4double ( << 217 G4double x << 218 G4double& << 219 { << 220 if(depth > 100) << 221 { << 222 G4cout << "G4SimpleIntegration::AdaptGauss << 223 G4cout << "Function varies too rapidly to << 224 << G4endl; << 225 206 226 return; << 207 void G4Integrator::AdaptGauss( G4double (*f)(G4double), 227 } << 208 G4double xInitial, G4double xFinal, 228 G4double xMean = (xInitial + xFinal) / 2 << 209 G4double fTolerance, G4double& sum, 229 G4double leftHalf = Gauss(f, xInitial, xMea << 210 G4int& depth ) 230 G4double rightHalf = Gauss(f, xMean, xFinal) << 211 { 231 G4double full = Gauss(f, xInitial, xFin << 212 if(depth > 100) 232 if(std::fabs(leftHalf + rightHalf - full) < << 213 { 233 { << 214 G4cout<<"G4SimpleIntegration::AdaptGauss: WARNING !!!"<<G4endl ; 234 sum += full; << 215 G4cout<<"Function varies too rapidly to get stated accuracy in 100 steps " 235 } << 216 <<G4endl ; 236 else << 217 237 { << 218 return ; 238 ++depth; << 219 } 239 AdaptGauss(f, xInitial, xMean, fTolerance, << 220 G4double xMean = (xInitial + xFinal)/2.0 ; 240 AdaptGauss(f, xMean, xFinal, fTolerance, s << 221 G4double leftHalf = Gauss(f,xInitial,xMean) ; 241 } << 222 G4double rightHalf = Gauss(f,xMean,xFinal) ; >> 223 G4double full = Gauss(f,xInitial,xFinal) ; >> 224 if(fabs(leftHalf+rightHalf-full) < fTolerance) >> 225 { >> 226 sum += full ; >> 227 } >> 228 else >> 229 { >> 230 depth++ ; >> 231 AdaptGauss(f,xInitial,xMean,fTolerance,sum,depth) ; >> 232 AdaptGauss(f,xMean,xFinal,fTolerance,sum,depth) ; >> 233 } 242 } 234 } 243 235 >> 236 >> 237 >> 238 244 ////////////////////////////////////////////// 239 //////////////////////////////////////////////////////////////////////// 245 // 240 // 246 // Adaptive Gauss integration with accuracy 'e 241 // Adaptive Gauss integration with accuracy 'e' 247 // Convenient for using with class object type 242 // Convenient for using with class object typeT 248 << 243 249 template <class T, class F> << 244 template<class T, class F> G4double 250 G4double G4Integrator<T, F>::AdaptiveGauss(T& << 245 G4Integrator::AdaptiveGauss( T& typeT, F f, G4double xInitial, 251 G4d << 246 G4double xFinal, G4double e ) 252 { << 247 { 253 G4int depth = 0; << 248 G4int depth = 0 ; 254 G4double sum = 0.0; << 249 G4double sum = 0.0 ; 255 AdaptGauss(typeT, f, xInitial, xFinal, e, su << 250 AdaptGauss(typeT,f,xInitial,xFinal,e,sum,depth) ; 256 return sum; << 251 return sum ; 257 } 252 } 258 253 259 ////////////////////////////////////////////// 254 //////////////////////////////////////////////////////////////////////// 260 // 255 // 261 // Adaptive Gauss integration with accuracy 'e 256 // Adaptive Gauss integration with accuracy 'e' 262 // Convenient for using with 'this' pointer 257 // Convenient for using with 'this' pointer 263 << 258 264 template <class T, class F> << 259 template<class T, class F> G4double 265 G4double G4Integrator<T, F>::AdaptiveGauss(T* << 260 G4Integrator::AdaptiveGauss( T* ptrT, F f, G4double xInitial, 266 G4d << 261 G4double xFinal, G4double e ) 267 { 262 { 268 return AdaptiveGauss(*ptrT, f, xInitial, xFi << 263 return AdaptiveGauss(*ptrT,f,xInitial,xFinal,e) ; 269 } 264 } 270 265 271 ////////////////////////////////////////////// 266 //////////////////////////////////////////////////////////////////////// 272 // 267 // 273 // Adaptive Gauss integration with accuracy 'e 268 // Adaptive Gauss integration with accuracy 'e' 274 // Convenient for using with global scope func 269 // Convenient for using with global scope function f 275 << 270 276 template <class T, class F> << 271 G4double 277 G4double G4Integrator<T, F>::AdaptiveGauss(G4d << 272 G4Integrator::AdaptiveGauss( G4double (*f)(G4double), 278 G4d << 273 G4double xInitial, G4double xFinal, G4double e ) 279 G4d << 274 { 280 { << 275 G4int depth = 0 ; 281 G4int depth = 0; << 276 G4double sum = 0.0 ; 282 G4double sum = 0.0; << 277 AdaptGauss(f,xInitial,xFinal,e,sum,depth) ; 283 AdaptGauss(f, xInitial, xFinal, e, sum, dept << 278 return sum ; 284 return sum; << 285 } 279 } 286 280 287 ////////////////////////////////////////////// 281 //////////////////////////////////////////////////////////////////////////// 288 // Gauss integration methods involving ortogon 282 // Gauss integration methods involving ortogonal polynomials 289 ////////////////////////////////////////////// 283 //////////////////////////////////////////////////////////////////////////// 290 // 284 // 291 // Methods involving Legendre polynomials << 285 // Methods involving Legendre polynomials 292 // 286 // 293 ////////////////////////////////////////////// 287 ///////////////////////////////////////////////////////////////////////// 294 // 288 // 295 // The value nLegendre set the accuracy requir 289 // The value nLegendre set the accuracy required, i.e the number of points 296 // where the function pFunction will be evalua 290 // where the function pFunction will be evaluated during integration. 297 // The function creates the arrays for absciss << 291 // The function creates the arrays for abscissas and weights that used 298 // in Gauss-Legendre quadrature method. << 292 // in Gauss-Legendre quadrature method. 299 // The values a and b are the limits of integr 293 // The values a and b are the limits of integration of the function f . 300 // nLegendre MUST BE EVEN !!! 294 // nLegendre MUST BE EVEN !!! 301 // Returns the integral of the function f betw << 295 // Returns the integral of the function f between a and b, by 2*fNumber point 302 // Gauss-Legendre integration: the function is 296 // Gauss-Legendre integration: the function is evaluated exactly 303 // 2*fNumber times at interior points in the r << 297 // 2*fNumber times at interior points in the range of integration. 304 // Since the weights and abscissas are, in thi << 298 // Since the weights and abscissas are, in this case, symmetric around 305 // the midpoint of the range of integration, t << 299 // the midpoint of the range of integration, there are actually only 306 // fNumber distinct values of each. 300 // fNumber distinct values of each. 307 // Convenient for using with some class object 301 // Convenient for using with some class object dataT 308 302 309 template <class T, class F> << 303 template <class T, class F> G4double 310 G4double G4Integrator<T, F>::Legendre(T& typeT << 304 G4Integrator::Legendre( T& typeT, F f, G4double a, G4double b, G4int nLegendre) 311 G4int nL << 305 { 312 { << 306 G4double newton, newton1, temp1, temp2, temp3, temp ; 313 G4double nwt, nwt1, temp1, temp2, temp3, tem << 307 G4double xDiff, xMean, dx, integral ; 314 G4double xDiff, xMean, dx, integral; << 315 << 316 const G4double tolerance = 1.6e-10; << 317 G4int i, j, k = nLegendre; << 318 G4int fNumber = (nLegendre + 1) / 2; << 319 << 320 if(2 * fNumber != k) << 321 { << 322 G4Exception("G4Integrator<T,F>::Legendre(T << 323 FatalException, "Invalid (odd) << 324 } << 325 << 326 G4double* fAbscissa = new G4double[fNumber]; << 327 G4double* fWeight = new G4double[fNumber]; << 328 << 329 for(i = 1; i <= fNumber; ++i) // Loop over << 330 { << 331 nwt = std::cos(CLHEP::pi * (i - 0.25) / << 332 (k + 0.5)); // Initial roo << 333 << 334 do // loop of Newton's method << 335 { << 336 temp1 = 1.0; << 337 temp2 = 0.0; << 338 for(j = 1; j <= k; ++j) << 339 { << 340 temp3 = temp2; << 341 temp2 = temp1; << 342 temp1 = ((2.0 * j - 1.0) * nwt * temp2 << 343 } << 344 temp = k * (nwt * temp1 - temp2) / (nwt << 345 nwt1 = nwt; << 346 nwt = nwt1 - temp1 / temp; // Newton's << 347 } while(std::fabs(nwt - nwt1) > tolerance) << 348 << 349 fAbscissa[fNumber - i] = nwt; << 350 fWeight[fNumber - i] = 2.0 / ((1.0 - nwt << 351 } << 352 308 353 // << 309 const G4double tolerance = 1.6e-10 ; 354 // Now we ready to get integral << 310 G4int i, j, k = nLegendre ; 355 // << 311 G4int fNumber = (nLegendre + 1)/2 ; 356 << 312 357 xMean = 0.5 * (a + b); << 313 if(2*fNumber != k) 358 xDiff = 0.5 * (b - a); << 314 { 359 integral = 0.0; << 315 G4Exception("Invalid (odd) n Legendre in G4Integrator::Legendre") ; 360 for(i = 0; i < fNumber; ++i) << 316 } 361 { << 317 362 dx = xDiff * fAbscissa[i]; << 318 G4double* fAbscissa = new G4double[fNumber] ; 363 integral += fWeight[i] * ((typeT.*f)(xMean << 319 G4double* fWeight = new G4double[fNumber] ; 364 } << 320 365 delete[] fAbscissa; << 321 for(i=1;i<=fNumber;i++) // Loop over the desired roots 366 delete[] fWeight; << 322 { 367 return integral *= xDiff; << 323 newton = cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation 368 } << 324 >> 325 do // loop of Newton's method >> 326 { >> 327 temp1 = 1.0 ; >> 328 temp2 = 0.0 ; >> 329 for(j=1;j<=k;j++) >> 330 { >> 331 temp3 = temp2 ; >> 332 temp2 = temp1 ; >> 333 temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; >> 334 } >> 335 temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; >> 336 newton1 = newton ; >> 337 newton = newton1 - temp1/temp ; // Newton's method >> 338 } >> 339 while(fabs(newton - newton1) > tolerance) ; >> 340 >> 341 fAbscissa[fNumber-i] = newton ; >> 342 fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; >> 343 } >> 344 // >> 345 // Now we ready to get integral >> 346 // >> 347 >> 348 xMean = 0.5*(a + b) ; >> 349 xDiff = 0.5*(b - a) ; >> 350 integral = 0.0 ; >> 351 for(i=0;i<fNumber;i++) >> 352 { >> 353 dx = xDiff*fAbscissa[i] ; >> 354 integral += fWeight[i]*( (typeT.*f)(xMean + dx) + >> 355 (typeT.*f)(xMean - dx) ) ; >> 356 } >> 357 return integral *= xDiff ; >> 358 } 369 359 370 ////////////////////////////////////////////// 360 /////////////////////////////////////////////////////////////////////// 371 // 361 // 372 // Convenient for using with the pointer 'this 362 // Convenient for using with the pointer 'this' 373 363 374 template <class T, class F> << 364 template <class T, class F> G4double 375 G4double G4Integrator<T, F>::Legendre(T* ptrT, << 365 G4Integrator::Legendre( T* ptrT, F f, G4double a, G4double b, G4int nLegendre) 376 G4int nL << 377 { 366 { 378 return Legendre(*ptrT, f, a, b, nLegendre); << 367 return Legendre(*ptrT,f,a,b,nLegendre) ; 379 } 368 } 380 369 381 ////////////////////////////////////////////// 370 /////////////////////////////////////////////////////////////////////// 382 // 371 // 383 // Convenient for using with global scope func 372 // Convenient for using with global scope function f 384 373 385 template <class T, class F> << 386 G4double G4Integrator<T, F>::Legendre(G4double << 387 G4double << 388 { << 389 G4double nwt, nwt1, temp1, temp2, temp3, tem << 390 G4double xDiff, xMean, dx, integral; << 391 << 392 const G4double tolerance = 1.6e-10; << 393 G4int i, j, k = nLegendre; << 394 G4int fNumber = (nLegendre + 1) / 2; << 395 << 396 if(2 * fNumber != k) << 397 { << 398 G4Exception("G4Integrator<T,F>::Legendre(. << 399 FatalException, "Invalid (odd) << 400 } << 401 << 402 G4double* fAbscissa = new G4double[fNumber]; << 403 G4double* fWeight = new G4double[fNumber]; << 404 << 405 for(i = 1; i <= fNumber; i++) // Loop over << 406 { << 407 nwt = std::cos(CLHEP::pi * (i - 0.25) / << 408 (k + 0.5)); // Initial roo << 409 << 410 do // loop of Newton's method << 411 { << 412 temp1 = 1.0; << 413 temp2 = 0.0; << 414 for(j = 1; j <= k; ++j) << 415 { << 416 temp3 = temp2; << 417 temp2 = temp1; << 418 temp1 = ((2.0 * j - 1.0) * nwt * temp2 << 419 } << 420 temp = k * (nwt * temp1 - temp2) / (nwt << 421 nwt1 = nwt; << 422 nwt = nwt1 - temp1 / temp; // Newton's << 423 } while(std::fabs(nwt - nwt1) > tolerance) << 424 << 425 fAbscissa[fNumber - i] = nwt; << 426 fWeight[fNumber - i] = 2.0 / ((1.0 - nwt << 427 } << 428 374 429 // << 375 G4double G4Integrator:: 430 // Now we ready to get integral << 376 Legendre( G4double (*f)(G4double), G4double a, G4double b, G4int nLegendre) 431 // << 377 { 432 << 378 G4double newton, newton1, temp1, temp2, temp3, temp ; 433 xMean = 0.5 * (a + b); << 379 G4double xDiff, xMean, dx, integral ; 434 xDiff = 0.5 * (b - a); << 435 integral = 0.0; << 436 for(i = 0; i < fNumber; ++i) << 437 { << 438 dx = xDiff * fAbscissa[i]; << 439 integral += fWeight[i] * ((*f)(xMean + dx) << 440 } << 441 delete[] fAbscissa; << 442 delete[] fWeight; << 443 380 444 return integral *= xDiff; << 381 const G4double tolerance = 1.6e-10 ; 445 } << 382 G4int i, j, k = nLegendre ; >> 383 G4int fNumber = (nLegendre + 1)/2 ; >> 384 >> 385 if(2*fNumber != k) >> 386 { >> 387 G4Exception("Invalid (odd) n Legendre in G4Integrator::Legendre") ; >> 388 } >> 389 >> 390 G4double* fAbscissa = new G4double[fNumber] ; >> 391 G4double* fWeight = new G4double[fNumber] ; >> 392 >> 393 for(i=1;i<=fNumber;i++) // Loop over the desired roots >> 394 { >> 395 newton = cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root approximation >> 396 >> 397 do // loop of Newton's method >> 398 { >> 399 temp1 = 1.0 ; >> 400 temp2 = 0.0 ; >> 401 for(j=1;j<=k;j++) >> 402 { >> 403 temp3 = temp2 ; >> 404 temp2 = temp1 ; >> 405 temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ; >> 406 } >> 407 temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ; >> 408 newton1 = newton ; >> 409 newton = newton1 - temp1/temp ; // Newton's method >> 410 } >> 411 while(fabs(newton - newton1) > tolerance) ; >> 412 >> 413 fAbscissa[fNumber-i] = newton ; >> 414 fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ; >> 415 } >> 416 // >> 417 // Now we ready to get integral >> 418 // >> 419 >> 420 xMean = 0.5*(a + b) ; >> 421 xDiff = 0.5*(b - a) ; >> 422 integral = 0.0 ; >> 423 for(i=0;i<fNumber;i++) >> 424 { >> 425 dx = xDiff*fAbscissa[i] ; >> 426 integral += fWeight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx) ) ; >> 427 } >> 428 return integral *= xDiff ; >> 429 } 446 430 447 ////////////////////////////////////////////// 431 //////////////////////////////////////////////////////////////////////////// 448 // 432 // 449 // Returns the integral of the function to be 433 // Returns the integral of the function to be pointed by T::f between a and b, 450 // by ten point Gauss-Legendre integration: th 434 // by ten point Gauss-Legendre integration: the function is evaluated exactly 451 // ten times at interior points in the range o 435 // ten times at interior points in the range of integration. Since the weights 452 // and abscissas are, in this case, symmetric << 436 // and abscissas are, in this case, symmetric around the midpoint of the 453 // range of integration, there are actually on 437 // range of integration, there are actually only five distinct values of each 454 // Convenient for using with class object type 438 // Convenient for using with class object typeT 455 439 456 template <class T, class F> << 440 template <class T, class F> 457 G4double G4Integrator<T, F>::Legendre10(T& typ << 441 G4double G4Integrator::Legendre10( T& typeT, F f,G4double a, G4double b) 458 { 442 { 459 G4int i; << 443 G4int i ; 460 G4double xDiff, xMean, dx, integral; << 444 G4double xDiff, xMean, dx, integral ; 461 << 445 462 // From Abramowitz M., Stegan I.A. 1964 , Ha << 446 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 463 << 447 464 static const G4double abscissa[] = { 0.14887 << 448 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 465 0.67940 << 449 0.679409568299024, 0.865063366688985, 466 0.97390 << 450 0.973906528517172 } ; 467 << 451 468 static const G4double weight[] = { 0.2955242 << 452 static G4double weight[] = { 0.295524224714753, 0.269266719309996, 469 0.2190863 << 453 0.219086362515982, 0.149451349150581, 470 0.0666713 << 454 0.066671344308688 } ; 471 xMean = 0.5 * (a + << 455 xMean = 0.5*(a + b) ; 472 xDiff = 0.5 * (b - << 456 xDiff = 0.5*(b - a) ; 473 integral = 0.0; << 457 integral = 0.0 ; 474 for(i = 0; i < 5; ++i) << 458 for(i=0;i<5;i++) 475 { << 459 { 476 dx = xDiff * abscissa[i]; << 460 dx = xDiff*abscissa[i] ; 477 integral += weight[i] * ((typeT.*f)(xMean << 461 integral += weight[i]*( (typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; 478 } << 462 } 479 return integral *= xDiff; << 463 return integral *= xDiff ; 480 } 464 } 481 465 482 ////////////////////////////////////////////// 466 /////////////////////////////////////////////////////////////////////////// 483 // 467 // 484 // Convenient for using with the pointer 'this 468 // Convenient for using with the pointer 'this' 485 469 486 template <class T, class F> << 470 template <class T, class F> 487 G4double G4Integrator<T, F>::Legendre10(T* ptr << 471 G4double G4Integrator::Legendre10( T* ptrT, F f,G4double a, G4double b) 488 { 472 { 489 return Legendre10(*ptrT, f, a, b); << 473 return Legendre10(*ptrT,f,a,b) ; 490 } << 474 } 491 475 492 ////////////////////////////////////////////// 476 ////////////////////////////////////////////////////////////////////////// 493 // 477 // 494 // Convenient for using with global scope func 478 // Convenient for using with global scope functions 495 479 496 template <class T, class F> << 480 G4double 497 G4double G4Integrator<T, F>::Legendre10(G4doub << 481 G4Integrator::Legendre10( G4double (*f)(G4double), G4double a, G4double b) 498 G4doub << 482 { 499 { << 483 G4int i ; 500 G4int i; << 484 G4double xDiff, xMean, dx, integral ; 501 G4double xDiff, xMean, dx, integral; << 485 502 << 486 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 503 // From Abramowitz M., Stegan I.A. 1964 , Ha << 487 504 << 488 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 505 static const G4double abscissa[] = { 0.14887 << 489 0.679409568299024, 0.865063366688985, 506 0.67940 << 490 0.973906528517172 } ; 507 0.97390 << 491 508 << 492 static G4double weight[] = { 0.295524224714753, 0.269266719309996, 509 static const G4double weight[] = { 0.2955242 << 493 0.219086362515982, 0.149451349150581, 510 0.2190863 << 494 0.066671344308688 } ; 511 0.0666713 << 495 xMean = 0.5*(a + b) ; 512 xMean = 0.5 * (a + << 496 xDiff = 0.5*(b - a) ; 513 xDiff = 0.5 * (b - << 497 integral = 0.0 ; 514 integral = 0.0; << 498 for(i=0;i<5;i++) 515 for(i = 0; i < 5; ++i) << 499 { 516 { << 500 dx = xDiff*abscissa[i] ; 517 dx = xDiff * abscissa[i]; << 501 integral += weight[i]*( (*f)(xMean + dx) + (*f)(xMean - dx)) ; 518 integral += weight[i] * ((*f)(xMean + dx) << 502 } 519 } << 503 return integral *= xDiff ; 520 return integral *= xDiff; << 521 } 504 } 522 505 523 ////////////////////////////////////////////// 506 /////////////////////////////////////////////////////////////////////// 524 // 507 // 525 // Returns the integral of the function to be 508 // Returns the integral of the function to be pointed by T::f between a and b, 526 // by 96 point Gauss-Legendre integration: the 509 // by 96 point Gauss-Legendre integration: the function is evaluated exactly 527 // ten Times at interior points in the range o 510 // ten Times at interior points in the range of integration. Since the weights 528 // and abscissas are, in this case, symmetric << 511 // and abscissas are, in this case, symmetric around the midpoint of the 529 // range of integration, there are actually on 512 // range of integration, there are actually only five distinct values of each 530 // Convenient for using with some class object 513 // Convenient for using with some class object typeT 531 514 532 template <class T, class F> << 515 template <class T, class F> 533 G4double G4Integrator<T, F>::Legendre96(T& typ << 516 G4double G4Integrator::Legendre96( T& typeT, F f,G4double a, G4double b) 534 { 517 { 535 G4int i; << 518 G4int i ; 536 G4double xDiff, xMean, dx, integral; << 519 G4double xDiff, xMean, dx, integral ; 537 << 520 538 // From Abramowitz M., Stegan I.A. 1964 , Ha << 521 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 539 << 522 540 static const G4double abscissa[] = { << 523 static G4double 541 0.016276744849602969579, 0.048812985136049 << 524 abscissa[] = { 542 0.081297495464425558994, 0.113695850110665 << 525 0.016276744849602969579, 0.048812985136049731112, 543 0.145973714654896941989, 0.178096882367618 << 526 0.081297495464425558994, 0.113695850110665920911, 544 << 527 0.145973714654896941989, 0.178096882367618602759, // 6 545 0.210031310460567203603, 0.241743156163840 << 528 546 0.273198812591049141487, 0.304364944354496 << 529 0.210031310460567203603, 0.241743156163840012328, 547 0.335208522892625422616, 0.365696861472313 << 530 0.273198812591049141487, 0.304364944354496353024, 548 << 531 0.335208522892625422616, 0.365696861472313635031, // 12 549 0.395797649828908603285, 0.425478988407300 << 532 550 0.454709422167743008636, 0.483457973920596 << 533 0.395797649828908603285, 0.425478988407300545365, 551 0.511694177154667673586, 0.539388108324357 << 534 0.454709422167743008636, 0.483457973920596359768, 552 << 535 0.511694177154667673586, 0.539388108324357436227, // 18 553 0.566510418561397168404, 0.593032364777572 << 536 554 0.618925840125468570386, 0.644163403784967 << 537 0.566510418561397168404, 0.593032364777572080684, 555 0.668718310043916153953, 0.692564536642171 << 538 0.618925840125468570386, 0.644163403784967106798, 556 << 539 0.668718310043916153953, 0.692564536642171561344, // 24 557 0.715676812348967626225, 0.738030643744400 << 540 558 0.759602341176647498703, 0.780369043867433 << 541 0.715676812348967626225, 0.738030643744400132851, 559 0.800308744139140817229, 0.819400310737931 << 542 0.759602341176647498703, 0.780369043867433217604, 560 << 543 0.800308744139140817229, 0.819400310737931675539, // 30 561 0.837623511228187121494, 0.854959033434601 << 544 562 0.871388505909296502874, 0.886894517402420 << 545 0.837623511228187121494, 0.854959033434601455463, 563 0.901460635315852341319, 0.915071423120898 << 546 0.871388505909296502874, 0.886894517402420416057, 564 << 547 0.901460635315852341319, 0.915071423120898074206, // 36 565 0.927712456722308690965, 0.939370339752755 << 548 566 0.950032717784437635756, 0.959688291448742 << 549 0.927712456722308690965, 0.939370339752755216932, 567 0.968326828463264212174, 0.975939174585136 << 550 0.950032717784437635756, 0.959688291448742539300, 568 << 551 0.968326828463264212174, 0.975939174585136466453, // 42 569 0.982517263563014677447, 0.988054126329623 << 552 570 0.992543900323762624572, 0.995981842987209 << 553 0.982517263563014677447, 0.988054126329623799481, 571 0.998364375863181677724, 0.999689503883230 << 554 0.992543900323762624572, 0.995981842987209290650, 572 }; << 555 0.998364375863181677724, 0.999689503883230766828 // 48 573 << 556 } ; 574 static const G4double weight[] = { << 557 575 0.032550614492363166242, 0.032516118713868 << 558 static G4double 576 0.032447163714064269364, 0.032343822568575 << 559 weight[] = { 577 0.032206204794030250669, 0.032034456231992 << 560 0.032550614492363166242, 0.032516118713868835987, 578 << 561 0.032447163714064269364, 0.032343822568575928429, 579 0.031828758894411006535, 0.031589330770727 << 562 0.032206204794030250669, 0.032034456231992663218, // 6 580 0.031316425596862355813, 0.031010332586313 << 563 581 0.030671376123669149014, 0.030299915420827 << 564 0.031828758894411006535, 0.031589330770727168558, 582 << 565 0.031316425596862355813, 0.031010332586313837423, 583 0.029896344136328385984, 0.029461089958167 << 566 0.030671376123669149014, 0.030299915420827593794, // 12 584 0.028994614150555236543, 0.028497411065085 << 567 585 0.027970007616848334440, 0.027412962726029 << 568 0.029896344136328385984, 0.029461089958167905970, 586 << 569 0.028994614150555236543, 0.028497411065085385646, 587 0.026826866725591762198, 0.026212340735672 << 570 0.027970007616848334440, 0.027412962726029242823, // 18 588 0.025570036005349361499, 0.024900633222483 << 571 589 0.024204841792364691282, 0.023483399085926 << 572 0.026826866725591762198, 0.026212340735672413913, 590 << 573 0.025570036005349361499, 0.024900633222483610288, 591 0.022737069658329374001, 0.021966644438744 << 574 0.024204841792364691282, 0.023483399085926219842, // 24 592 0.021172939892191298988, 0.020356797154333 << 575 593 0.019519081140145022410, 0.018660679627411 << 576 0.022737069658329374001, 0.021966644438744349195, 594 << 577 0.021172939892191298988, 0.020356797154333324595, 595 0.017782502316045260838, 0.016885479864245 << 578 0.019519081140145022410, 0.018660679627411467385, // 30 596 0.015970562902562291381, 0.015038721026994 << 579 597 0.014090941772314860916, 0.013128229566961 << 580 0.017782502316045260838, 0.016885479864245172450, 598 << 581 0.015970562902562291381, 0.015038721026994938006, 599 0.012151604671088319635, 0.011162102099838 << 582 0.014090941772314860916, 0.013128229566961572637, // 36 600 0.010160770535008415758, 0.009148671230783 << 583 601 0.008126876925698759217, 0.007096470791153 << 584 0.012151604671088319635, 0.011162102099838498591, 602 << 585 0.010160770535008415758, 0.009148671230783386633, 603 0.006058545504235961683, 0.005014202742927 << 586 0.008126876925698759217, 0.007096470791153865269, // 42 604 0.003964554338444686674, 0.002910731817934 << 587 605 0.001853960788946921732, 0.000796792065552 << 588 0.006058545504235961683, 0.005014202742927517693, 606 }; << 589 0.003964554338444686674, 0.002910731817934946408, 607 xMean = 0.5 * (a + b); << 590 0.001853960788946921732, 0.000796792065552012429 // 48 608 xDiff = 0.5 * (b - a); << 591 } ; 609 integral = 0.0; << 592 xMean = 0.5*(a + b) ; 610 for(i = 0; i < 48; ++i) << 593 xDiff = 0.5*(b - a) ; 611 { << 594 integral = 0.0 ; 612 dx = xDiff * abscissa[i]; << 595 for(i=0;i<48;i++) 613 integral += weight[i] * ((typeT.*f)(xMean << 596 { 614 } << 597 dx = xDiff*abscissa[i] ; 615 return integral *= xDiff; << 598 integral += weight[i]*((typeT.*f)(xMean + dx) + (typeT.*f)(xMean - dx)) ; >> 599 } >> 600 return integral *= xDiff ; 616 } 601 } 617 602 618 ////////////////////////////////////////////// 603 /////////////////////////////////////////////////////////////////////// 619 // 604 // 620 // Convenient for using with the pointer 'this 605 // Convenient for using with the pointer 'this' 621 606 622 template <class T, class F> << 607 template <class T, class F> 623 G4double G4Integrator<T, F>::Legendre96(T* ptr << 608 G4double G4Integrator::Legendre96( T* ptrT, F f,G4double a, G4double b) 624 { 609 { 625 return Legendre96(*ptrT, f, a, b); << 610 return Legendre96(*ptrT,f,a,b) ; 626 } << 611 } 627 612 628 ////////////////////////////////////////////// 613 /////////////////////////////////////////////////////////////////////// 629 // 614 // 630 // Convenient for using with global scope func << 615 // Convenient for using with global scope function f 631 616 632 template <class T, class F> << 617 G4double 633 G4double G4Integrator<T, F>::Legendre96(G4doub << 618 G4Integrator::Legendre96( G4double (*f)(G4double), G4double a, G4double b) 634 G4doub << 619 { 635 { << 620 G4int i ; 636 G4int i; << 621 G4double xDiff, xMean, dx, integral ; 637 G4double xDiff, xMean, dx, integral; << 622 638 << 623 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 639 // From Abramowitz M., Stegan I.A. 1964 , Ha << 624 640 << 625 static G4double 641 static const G4double abscissa[] = { << 626 abscissa[] = { 642 0.016276744849602969579, 0.048812985136049 << 627 0.016276744849602969579, 0.048812985136049731112, 643 0.081297495464425558994, 0.113695850110665 << 628 0.081297495464425558994, 0.113695850110665920911, 644 0.145973714654896941989, 0.178096882367618 << 629 0.145973714654896941989, 0.178096882367618602759, // 6 645 << 630 646 0.210031310460567203603, 0.241743156163840 << 631 0.210031310460567203603, 0.241743156163840012328, 647 0.273198812591049141487, 0.304364944354496 << 632 0.273198812591049141487, 0.304364944354496353024, 648 0.335208522892625422616, 0.365696861472313 << 633 0.335208522892625422616, 0.365696861472313635031, // 12 649 << 634 650 0.395797649828908603285, 0.425478988407300 << 635 0.395797649828908603285, 0.425478988407300545365, 651 0.454709422167743008636, 0.483457973920596 << 636 0.454709422167743008636, 0.483457973920596359768, 652 0.511694177154667673586, 0.539388108324357 << 637 0.511694177154667673586, 0.539388108324357436227, // 18 653 << 638 654 0.566510418561397168404, 0.593032364777572 << 639 0.566510418561397168404, 0.593032364777572080684, 655 0.618925840125468570386, 0.644163403784967 << 640 0.618925840125468570386, 0.644163403784967106798, 656 0.668718310043916153953, 0.692564536642171 << 641 0.668718310043916153953, 0.692564536642171561344, // 24 657 << 642 658 0.715676812348967626225, 0.738030643744400 << 643 0.715676812348967626225, 0.738030643744400132851, 659 0.759602341176647498703, 0.780369043867433 << 644 0.759602341176647498703, 0.780369043867433217604, 660 0.800308744139140817229, 0.819400310737931 << 645 0.800308744139140817229, 0.819400310737931675539, // 30 661 << 646 662 0.837623511228187121494, 0.854959033434601 << 647 0.837623511228187121494, 0.854959033434601455463, 663 0.871388505909296502874, 0.886894517402420 << 648 0.871388505909296502874, 0.886894517402420416057, 664 0.901460635315852341319, 0.915071423120898 << 649 0.901460635315852341319, 0.915071423120898074206, // 36 665 << 650 666 0.927712456722308690965, 0.939370339752755 << 651 0.927712456722308690965, 0.939370339752755216932, 667 0.950032717784437635756, 0.959688291448742 << 652 0.950032717784437635756, 0.959688291448742539300, 668 0.968326828463264212174, 0.975939174585136 << 653 0.968326828463264212174, 0.975939174585136466453, // 42 669 << 654 670 0.982517263563014677447, 0.988054126329623 << 655 0.982517263563014677447, 0.988054126329623799481, 671 0.992543900323762624572, 0.995981842987209 << 656 0.992543900323762624572, 0.995981842987209290650, 672 0.998364375863181677724, 0.999689503883230 << 657 0.998364375863181677724, 0.999689503883230766828 // 48 673 }; << 658 } ; 674 << 659 675 static const G4double weight[] = { << 660 static G4double 676 0.032550614492363166242, 0.032516118713868 << 661 weight[] = { 677 0.032447163714064269364, 0.032343822568575 << 662 0.032550614492363166242, 0.032516118713868835987, 678 0.032206204794030250669, 0.032034456231992 << 663 0.032447163714064269364, 0.032343822568575928429, 679 << 664 0.032206204794030250669, 0.032034456231992663218, // 6 680 0.031828758894411006535, 0.031589330770727 << 665 681 0.031316425596862355813, 0.031010332586313 << 666 0.031828758894411006535, 0.031589330770727168558, 682 0.030671376123669149014, 0.030299915420827 << 667 0.031316425596862355813, 0.031010332586313837423, 683 << 668 0.030671376123669149014, 0.030299915420827593794, // 12 684 0.029896344136328385984, 0.029461089958167 << 669 685 0.028994614150555236543, 0.028497411065085 << 670 0.029896344136328385984, 0.029461089958167905970, 686 0.027970007616848334440, 0.027412962726029 << 671 0.028994614150555236543, 0.028497411065085385646, 687 << 672 0.027970007616848334440, 0.027412962726029242823, // 18 688 0.026826866725591762198, 0.026212340735672 << 673 689 0.025570036005349361499, 0.024900633222483 << 674 0.026826866725591762198, 0.026212340735672413913, 690 0.024204841792364691282, 0.023483399085926 << 675 0.025570036005349361499, 0.024900633222483610288, 691 << 676 0.024204841792364691282, 0.023483399085926219842, // 24 692 0.022737069658329374001, 0.021966644438744 << 677 693 0.021172939892191298988, 0.020356797154333 << 678 0.022737069658329374001, 0.021966644438744349195, 694 0.019519081140145022410, 0.018660679627411 << 679 0.021172939892191298988, 0.020356797154333324595, 695 << 680 0.019519081140145022410, 0.018660679627411467385, // 30 696 0.017782502316045260838, 0.016885479864245 << 681 697 0.015970562902562291381, 0.015038721026994 << 682 0.017782502316045260838, 0.016885479864245172450, 698 0.014090941772314860916, 0.013128229566961 << 683 0.015970562902562291381, 0.015038721026994938006, 699 << 684 0.014090941772314860916, 0.013128229566961572637, // 36 700 0.012151604671088319635, 0.011162102099838 << 685 701 0.010160770535008415758, 0.009148671230783 << 686 0.012151604671088319635, 0.011162102099838498591, 702 0.008126876925698759217, 0.007096470791153 << 687 0.010160770535008415758, 0.009148671230783386633, 703 << 688 0.008126876925698759217, 0.007096470791153865269, // 42 704 0.006058545504235961683, 0.005014202742927 << 689 705 0.003964554338444686674, 0.002910731817934 << 690 0.006058545504235961683, 0.005014202742927517693, 706 0.001853960788946921732, 0.000796792065552 << 691 0.003964554338444686674, 0.002910731817934946408, 707 }; << 692 0.001853960788946921732, 0.000796792065552012429 // 48 708 xMean = 0.5 * (a + b); << 693 } ; 709 xDiff = 0.5 * (b - a); << 694 xMean = 0.5*(a + b) ; 710 integral = 0.0; << 695 xDiff = 0.5*(b - a) ; 711 for(i = 0; i < 48; ++i) << 696 integral = 0.0 ; 712 { << 697 for(i=0;i<48;i++) 713 dx = xDiff * abscissa[i]; << 698 { 714 integral += weight[i] * ((*f)(xMean + dx) << 699 dx = xDiff*abscissa[i] ; 715 } << 700 integral += weight[i]*((*f)(xMean + dx) + (*f)(xMean - dx)) ; 716 return integral *= xDiff; << 701 } >> 702 return integral *= xDiff ; 717 } 703 } 718 704 719 ////////////////////////////////////////////// 705 ////////////////////////////////////////////////////////////////////////////// 720 // 706 // 721 // Methods involving Chebyshev polynomials << 707 // Methods involving Chebyshev polynomials 722 // 708 // 723 ////////////////////////////////////////////// 709 /////////////////////////////////////////////////////////////////////////// 724 // 710 // 725 // Integrates function pointed by T::f from a << 711 // Integrates function pointed by T::f from a to b by Gauss-Chebyshev 726 // quadrature method. 712 // quadrature method. 727 // Convenient for using with class object type 713 // Convenient for using with class object typeT 728 714 729 template <class T, class F> << 715 template <class T, class F> G4double 730 G4double G4Integrator<T, F>::Chebyshev(T& type << 716 G4Integrator::Chebyshev( T& typeT, F f, G4double a, 731 G4int n << 717 G4double b, G4int nChebyshev ) 732 { << 718 { 733 G4int i; << 719 G4int i ; 734 G4double xDiff, xMean, dx, integral = 0.0; << 720 G4double xDiff, xMean, dx, integral = 0.0 ; 735 << 721 736 G4int fNumber = nChebyshev; // Try to << 722 G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? 737 G4double cof = CLHEP::pi / fNumber; << 723 G4double cof = pi/fNumber ; 738 G4double* fAbscissa = new G4double[fNumber]; << 724 G4double* fAbscissa = new G4double[fNumber] ; 739 G4double* fWeight = new G4double[fNumber]; << 725 G4double* fWeight = new G4double[fNumber] ; 740 for(i = 0; i < fNumber; ++i) << 726 for(i=0;i<fNumber;i++) 741 { << 727 { 742 fAbscissa[i] = std::cos(cof * (i + 0.5)); << 728 fAbscissa[i] = cos(cof*(i + 0.5)) ; 743 fWeight[i] = cof * std::sqrt(1 - fAbscis << 729 fWeight[i] = cof*sqrt(1 - fAbscissa[i]*fAbscissa[i]) ; 744 } << 730 } 745 << 731 // 746 // << 732 // Now we ready to estimate the integral 747 // Now we ready to estimate the integral << 733 // 748 // << 734 xMean = 0.5*(a + b) ; 749 << 735 xDiff = 0.5*(b - a) ; 750 xMean = 0.5 * (a + b); << 736 for(i=0;i<fNumber;i++) 751 xDiff = 0.5 * (b - a); << 737 { 752 for(i = 0; i < fNumber; ++i) << 738 dx = xDiff*fAbscissa[i] ; 753 { << 739 integral += fWeight[i]*(typeT.*f)(xMean + dx) ; 754 dx = xDiff * fAbscissa[i]; << 740 } 755 integral += fWeight[i] * (typeT.*f)(xMean << 741 return integral *= xDiff ; 756 } << 757 delete[] fAbscissa; << 758 delete[] fWeight; << 759 return integral *= xDiff; << 760 } 742 } 761 743 762 ////////////////////////////////////////////// 744 /////////////////////////////////////////////////////////////////////// 763 // 745 // 764 // Convenient for using with 'this' pointer 746 // Convenient for using with 'this' pointer 765 747 766 template <class T, class F> << 748 template <class T, class F> G4double 767 G4double G4Integrator<T, F>::Chebyshev(T* ptrT << 749 G4Integrator::Chebyshev( T* ptrT, F f, G4double a, G4double b, G4int n) 768 G4int n << 769 { 750 { 770 return Chebyshev(*ptrT, f, a, b, n); << 751 return Chebyshev(*ptrT,f,a,b,n) ; 771 } << 752 } 772 753 773 ////////////////////////////////////////////// 754 //////////////////////////////////////////////////////////////////////// 774 // 755 // 775 // For use with global scope functions f << 756 // For use with global scope functions f 776 << 777 template <class T, class F> << 778 G4double G4Integrator<T, F>::Chebyshev(G4doubl << 779 G4doubl << 780 { << 781 G4int i; << 782 G4double xDiff, xMean, dx, integral = 0.0; << 783 << 784 G4int fNumber = nChebyshev; // Try to << 785 G4double cof = CLHEP::pi / fNumber; << 786 G4double* fAbscissa = new G4double[fNumber]; << 787 G4double* fWeight = new G4double[fNumber]; << 788 for(i = 0; i < fNumber; ++i) << 789 { << 790 fAbscissa[i] = std::cos(cof * (i + 0.5)); << 791 fWeight[i] = cof * std::sqrt(1 - fAbscis << 792 } << 793 757 794 // << 758 G4double 795 // Now we ready to estimate the integral << 759 G4Integrator::Chebyshev( G4double (*f)(G4double), 796 // << 760 G4double a, G4double b, G4int nChebyshev) 797 << 761 { 798 xMean = 0.5 * (a + b); << 762 G4int i ; 799 xDiff = 0.5 * (b - a); << 763 G4double xDiff, xMean, dx, integral = 0.0 ; 800 for(i = 0; i < fNumber; ++i) << 764 801 { << 765 G4int fNumber = nChebyshev ; // Try to reduce fNumber twice ?? 802 dx = xDiff * fAbscissa[i]; << 766 G4double cof = pi/fNumber ; 803 integral += fWeight[i] * (*f)(xMean + dx); << 767 G4double* fAbscissa = new G4double[fNumber] ; 804 } << 768 G4double* fWeight = new G4double[fNumber] ; 805 delete[] fAbscissa; << 769 for(i=0;i<fNumber;i++) 806 delete[] fWeight; << 770 { 807 return integral *= xDiff; << 771 fAbscissa[i] = cos(cof*(i + 0.5)) ; >> 772 fWeight[i] = cof*sqrt(1 - fAbscissa[i]*fAbscissa[i]) ; >> 773 } >> 774 // >> 775 // Now we ready to estimate the integral >> 776 // >> 777 xMean = 0.5*(a + b) ; >> 778 xDiff = 0.5*(b - a) ; >> 779 for(i=0;i<fNumber;i++) >> 780 { >> 781 dx = xDiff*fAbscissa[i] ; >> 782 integral += fWeight[i]*(*f)(xMean + dx) ; >> 783 } >> 784 return integral *= xDiff ; 808 } 785 } 809 786 810 ////////////////////////////////////////////// 787 ////////////////////////////////////////////////////////////////////// 811 // 788 // 812 // Method involving Laguerre polynomials 789 // Method involving Laguerre polynomials 813 // 790 // 814 ////////////////////////////////////////////// 791 ////////////////////////////////////////////////////////////////////// 815 // 792 // 816 // Integral from zero to infinity of std::pow( << 793 // Integral from zero to infinity of pow(x,alpha)*exp(-x)*f(x). 817 // The value of nLaguerre sets the accuracy. 794 // The value of nLaguerre sets the accuracy. 818 // The function creates arrays fAbscissa[0,.., << 795 // The function creates arrays fAbscissa[0,..,nLaguerre-1] and 819 // fWeight[0,..,nLaguerre-1] . << 796 // fWeight[0,..,nLaguerre-1] . 820 // Convenient for using with class object 'typ 797 // Convenient for using with class object 'typeT' and (typeT.*f) function 821 // (T::f) 798 // (T::f) 822 799 823 template <class T, class F> << 800 template <class T, class F> G4double 824 G4double G4Integrator<T, F>::Laguerre(T& typeT << 801 G4Integrator::Laguerre( T& typeT, F f, G4double alpha, G4int nLaguerre ) 825 G4int nL << 802 { 826 { << 803 const G4double tolerance = 1.0e-10 ; 827 const G4double tolerance = 1.0e-10; << 804 const G4int maxNumber = 12 ; 828 const G4int maxNumber = 12; << 805 G4int i, j, k ; 829 G4int i, j, k; << 806 G4double newton, newton1, temp1, temp2, temp3, temp, cofi ; 830 G4double nwt = 0., nwt1, temp1, temp2, << 807 G4double integral = 0.0 ; 831 G4double integral = 0.0; << 808 832 << 809 G4int fNumber = nLaguerre ; 833 G4int fNumber = nLaguerre; << 810 G4double* fAbscissa = new G4double[fNumber] ; 834 G4double* fAbscissa = new G4double[fNumber]; << 811 G4double* fWeight = new G4double[fNumber] ; 835 G4double* fWeight = new G4double[fNumber]; << 812 >> 813 for(i=1;i<=fNumber;i++) // Loop over the desired roots >> 814 { >> 815 if(i == 1) >> 816 { >> 817 newton = (1.0 + alpha)*(3.0 + 0.92*alpha)/(1.0 + 2.4*fNumber + 1.8*alpha) ; >> 818 } >> 819 else if(i == 2) >> 820 { >> 821 newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; >> 822 } >> 823 else >> 824 { >> 825 cofi = i - 2 ; >> 826 newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi))* >> 827 (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; >> 828 } >> 829 for(k=1;k<=maxNumber;k++) >> 830 { >> 831 temp1 = 1.0 ; >> 832 temp2 = 0.0 ; 836 833 837 for(i = 1; i <= fNumber; ++i) // Loop over << 834 for(j=1;j<=fNumber;j++) 838 { << 835 { 839 if(i == 1) << 836 temp3 = temp2 ; 840 { << 837 temp2 = temp1 ; 841 nwt = (1.0 + alpha) * (3.0 + 0.92 * alph << 838 temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; 842 (1.0 + 2.4 * fNumber + 1.8 * alpha << 839 } 843 } << 840 temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; 844 else if(i == 2) << 841 newton1 = newton ; 845 { << 842 newton = newton1 - temp1/temp ; 846 nwt += (15.0 + 6.25 * alpha) / (1.0 + 0. << 843 847 } << 844 if(fabs(newton - newton1) <= tolerance) 848 else << 845 { 849 { << 846 break ; 850 cofi = i - 2; << 847 } 851 nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof << 848 } 852 1.26 * cofi * alpha / (1.0 + 3.5 << 849 if(k > maxNumber) 853 (nwt - fAbscissa[i - 3]) / (1.0 + << 850 { 854 } << 851 G4Exception("Too many (>12) iterations in G4Integration::Laguerre") ; 855 for(k = 1; k <= maxNumber; ++k) << 852 } 856 { << 853 857 temp1 = 1.0; << 854 fAbscissa[i-1] = newton ; 858 temp2 = 0.0; << 855 fWeight[i-1] = -exp(GammaLogarithm(alpha + fNumber) - 859 << 856 GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; 860 for(j = 1; j <= fNumber; ++j) << 857 } 861 { << 858 // 862 temp3 = temp2; << 859 // Integral evaluation 863 temp2 = temp1; << 860 // 864 temp1 = << 861 for(i=0;i<fNumber;i++) 865 ((2 * j - 1 + alpha - nwt) * temp2 - << 862 { 866 } << 863 integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ; 867 temp = (fNumber * temp1 - (fNumber + alp << 864 } 868 nwt1 = nwt; << 865 return integral ; 869 nwt = nwt1 - temp1 / temp; << 866 } 870 << 871 if(std::fabs(nwt - nwt1) <= tolerance) << 872 { << 873 break; << 874 } << 875 } << 876 if(k > maxNumber) << 877 { << 878 G4Exception("G4Integrator<T,F>::Laguerre << 879 FatalException, "Too many (> << 880 } << 881 << 882 fAbscissa[i - 1] = nwt; << 883 fWeight[i - 1] = -std::exp(GammaLogarith << 884 GammaLogarithm( << 885 (temp * fNumber * temp2); << 886 } << 887 867 888 // << 889 // Integral evaluation << 890 // << 891 868 892 for(i = 0; i < fNumber; ++i) << 893 { << 894 integral += fWeight[i] * (typeT.*f)(fAbsci << 895 } << 896 delete[] fAbscissa; << 897 delete[] fWeight; << 898 return integral; << 899 } << 900 869 901 ////////////////////////////////////////////// 870 ////////////////////////////////////////////////////////////////////// 902 // 871 // 903 // 872 // 904 873 905 template <class T, class F> << 874 template <class T, class F> G4double 906 G4double G4Integrator<T, F>::Laguerre(T* ptrT, << 875 G4Integrator::Laguerre( T* ptrT, F f, G4double alpha, G4int nLaguerre ) 907 G4int nL << 908 { 876 { 909 return Laguerre(*ptrT, f, alpha, nLaguerre); << 877 return Laguerre(*ptrT,f,alpha,nLaguerre) ; 910 } 878 } 911 879 912 ////////////////////////////////////////////// 880 //////////////////////////////////////////////////////////////////////// 913 // 881 // 914 // For use with global scope functions f << 882 // For use with global scope functions f 915 << 916 template <class T, class F> << 917 G4double G4Integrator<T, F>::Laguerre(G4double << 918 G4int nL << 919 { << 920 const G4double tolerance = 1.0e-10; << 921 const G4int maxNumber = 12; << 922 G4int i, j, k; << 923 G4double nwt = 0., nwt1, temp1, temp2, << 924 G4double integral = 0.0; << 925 << 926 G4int fNumber = nLaguerre; << 927 G4double* fAbscissa = new G4double[fNumber]; << 928 G4double* fWeight = new G4double[fNumber]; << 929 << 930 for(i = 1; i <= fNumber; ++i) // Loop over << 931 { << 932 if(i == 1) << 933 { << 934 nwt = (1.0 + alpha) * (3.0 + 0.92 * alph << 935 (1.0 + 2.4 * fNumber + 1.8 * alpha << 936 } << 937 else if(i == 2) << 938 { << 939 nwt += (15.0 + 6.25 * alpha) / (1.0 + 0. << 940 } << 941 else << 942 { << 943 cofi = i - 2; << 944 nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof << 945 1.26 * cofi * alpha / (1.0 + 3.5 << 946 (nwt - fAbscissa[i - 3]) / (1.0 + << 947 } << 948 for(k = 1; k <= maxNumber; ++k) << 949 { << 950 temp1 = 1.0; << 951 temp2 = 0.0; << 952 << 953 for(j = 1; j <= fNumber; ++j) << 954 { << 955 temp3 = temp2; << 956 temp2 = temp1; << 957 temp1 = << 958 ((2 * j - 1 + alpha - nwt) * temp2 - << 959 } << 960 temp = (fNumber * temp1 - (fNumber + alp << 961 nwt1 = nwt; << 962 nwt = nwt1 - temp1 / temp; << 963 << 964 if(std::fabs(nwt - nwt1) <= tolerance) << 965 { << 966 break; << 967 } << 968 } << 969 if(k > maxNumber) << 970 { << 971 G4Exception("G4Integrator<T,F>::Laguerre << 972 "Too many (>12) iterations." << 973 } << 974 << 975 fAbscissa[i - 1] = nwt; << 976 fWeight[i - 1] = -std::exp(GammaLogarith << 977 GammaLogarithm( << 978 (temp * fNumber * temp2); << 979 } << 980 883 981 // << 884 G4double 982 // Integral evaluation << 885 G4Integrator::Laguerre( G4double (*f)(G4double), 983 // << 886 G4double alpha, G4int nLaguerre) >> 887 { >> 888 const G4double tolerance = 1.0e-10 ; >> 889 const G4int maxNumber = 12 ; >> 890 G4int i, j, k ; >> 891 G4double newton, newton1, temp1, temp2, temp3, temp, cofi ; >> 892 G4double integral = 0.0 ; >> 893 >> 894 G4int fNumber = nLaguerre ; >> 895 G4double* fAbscissa = new G4double[fNumber] ; >> 896 G4double* fWeight = new G4double[fNumber] ; >> 897 >> 898 for(i=1;i<=fNumber;i++) // Loop over the desired roots >> 899 { >> 900 if(i == 1) >> 901 { >> 902 newton = (1.0 + alpha)*(3.0 + 0.92*alpha)/(1.0 + 2.4*fNumber + 1.8*alpha) ; >> 903 } >> 904 else if(i == 2) >> 905 { >> 906 newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ; >> 907 } >> 908 else >> 909 { >> 910 cofi = i - 2 ; >> 911 newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi))* >> 912 (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ; >> 913 } >> 914 for(k=1;k<=maxNumber;k++) >> 915 { >> 916 temp1 = 1.0 ; >> 917 temp2 = 0.0 ; 984 918 985 for(i = 0; i < fNumber; i++) << 919 for(j=1;j<=fNumber;j++) 986 { << 920 { 987 integral += fWeight[i] * (*f)(fAbscissa[i] << 921 temp3 = temp2 ; 988 } << 922 temp2 = temp1 ; 989 delete[] fAbscissa; << 923 temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ; 990 delete[] fWeight; << 924 } 991 return integral; << 925 temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ; >> 926 newton1 = newton ; >> 927 newton = newton1 - temp1/temp ; >> 928 >> 929 if(fabs(newton - newton1) <= tolerance) >> 930 { >> 931 break ; >> 932 } >> 933 } >> 934 if(k > maxNumber) >> 935 { >> 936 G4Exception("Too many (>12) iterations in G4Integration::Laguerre") ; >> 937 } >> 938 >> 939 fAbscissa[i-1] = newton ; >> 940 fWeight[i-1] = -exp(GammaLogarithm(alpha + fNumber) - >> 941 GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ; >> 942 } >> 943 // >> 944 // Integral evaluation >> 945 // >> 946 for(i=0;i<fNumber;i++) >> 947 { >> 948 integral += fWeight[i]*(*f)(fAbscissa[i]) ; >> 949 } >> 950 return integral ; 992 } 951 } 993 952 994 ////////////////////////////////////////////// 953 /////////////////////////////////////////////////////////////////////// 995 // 954 // 996 // Auxiliary function which returns the value << 955 // Auxiliary function which returns the value of log(gamma-function(x)) 997 // Returns the value ln(Gamma(xx) for xx > 0. << 956 // Returns the value ln(Gamma(xx) for xx > 0. Full accuracy is obtained for 998 // xx > 1. For 0 < xx < 1. the reflection form 957 // xx > 1. For 0 < xx < 1. the reflection formula (6.1.4) can be used first. 999 // (Adapted from Numerical Recipes in C) 958 // (Adapted from Numerical Recipes in C) 1000 // 959 // 1001 960 1002 template <class T, class F> << 961 G4double G4Integrator::GammaLogarithm(G4double xx) 1003 G4double G4Integrator<T, F>::GammaLogarithm(G << 1004 { 962 { 1005 static const G4double cof[6] = { 76.1800917 << 963 static G4double cof[6] = { 76.18009172947146, -86.50532032941677, 1006 24.0140982 << 964 24.01409824083091, -1.231739572450155, 1007 0.12086509 << 965 0.1208650973866179e-2, -0.5395239384953e-5 } ; 1008 G4int j; << 966 register HepInt j; 1009 G4double x = xx - 1.0; << 967 G4double x = xx - 1.0 ; 1010 G4double tmp = x + 5.5; << 968 G4double tmp = x + 5.5 ; 1011 tmp -= (x + 0.5) * std::log(tmp); << 969 tmp -= (x + 0.5) * log(tmp) ; 1012 G4double ser = 1.000000000190015; << 970 G4double ser = 1.000000000190015 ; 1013 971 1014 for(j = 0; j <= 5; ++j) << 972 for ( j = 0; j <= 5; j++ ) 1015 { 973 { 1016 x += 1.0; << 974 x += 1.0 ; 1017 ser += cof[j] / x; << 975 ser += cof[j]/x ; 1018 } 976 } 1019 return -tmp + std::log(2.5066282746310005 * << 977 return -tmp + log(2.5066282746310005*ser) ; 1020 } 978 } 1021 979 1022 ///////////////////////////////////////////// 980 /////////////////////////////////////////////////////////////////////// 1023 // 981 // 1024 // Method involving Hermite polynomials 982 // Method involving Hermite polynomials 1025 // 983 // 1026 ///////////////////////////////////////////// 984 /////////////////////////////////////////////////////////////////////// 1027 // 985 // 1028 // 986 // 1029 // Gauss-Hermite method for integration of st << 987 // Gauss-Hermite method for integration of exp(-x*x)*f(x) 1030 // from minus infinity to plus infinity . << 988 // from minus infinity to plus infinity . 1031 // 989 // 1032 990 1033 template <class T, class F> << 991 template <class T, class F> 1034 G4double G4Integrator<T, F>::Hermite(T& typeT << 992 G4double G4Integrator::Hermite( T& typeT, F f, G4int nHermite) 1035 { 993 { 1036 const G4double tolerance = 1.0e-12; << 994 const G4double tolerance = 1.0e-12 ; 1037 const G4int maxNumber = 12; << 995 const G4int maxNumber = 12 ; 1038 << 996 1039 G4int i, j, k; << 997 G4int i, j, k ; 1040 G4double integral = 0.0; << 998 G4double integral = 0.0 ; 1041 G4double nwt = 0., nwt1, temp1, temp2, << 999 G4double newton, newton1, temp1, temp2, temp3, temp ; 1042 1000 1043 G4double piInMinusQ = << 1001 G4double piInMinusQ = pow(pi,-0.25) ; // 1.0/sqrt(sqrt(pi)) ?? 1044 std::pow(CLHEP::pi, -0.25); // 1.0/std:: << 1045 1002 1046 G4int fNumber = (nHermite + 1) / 2; << 1003 G4int fNumber = (nHermite +1)/2 ; 1047 G4double* fAbscissa = new G4double[fNumber] << 1004 G4double* fAbscissa = new G4double[fNumber] ; 1048 G4double* fWeight = new G4double[fNumber] << 1005 G4double* fWeight = new G4double[fNumber] ; 1049 1006 1050 for(i = 1; i <= fNumber; ++i) << 1007 for(i=1;i<=fNumber;i++) 1051 { << 1008 { 1052 if(i == 1) << 1009 if(i == 1) 1053 { << 1010 { 1054 nwt = std::sqrt((G4double)(2 * nHermite << 1011 newton = sqrt((G4double)(2*nHermite + 1)) - 1055 1.85575001 * std::pow((G4double)( << 1012 1.85575001*pow((G4double)(2*nHermite + 1),-0.16666999) ; 1056 } << 1013 } 1057 else if(i == 2) << 1014 else if(i == 2) 1058 { << 1015 { 1059 nwt -= 1.14001 * std::pow((G4double) nH << 1016 newton -= 1.14001*pow((G4double)nHermite,0.425999)/newton ; 1060 } << 1017 } 1061 else if(i == 3) << 1018 else if(i == 3) 1062 { << 1019 { 1063 nwt = 1.86002 * nwt - 0.86002 * fAbscis << 1020 newton = 1.86002*newton - 0.86002*fAbscissa[0] ; 1064 } << 1021 } 1065 else if(i == 4) << 1022 else if(i == 4) 1066 { << 1023 { 1067 nwt = 1.91001 * nwt - 0.91001 * fAbscis << 1024 newton = 1.91001*newton - 0.91001*fAbscissa[1] ; 1068 } << 1025 } 1069 else << 1026 else 1070 { << 1027 { 1071 nwt = 2.0 * nwt - fAbscissa[i - 3]; << 1028 newton = 2.0*newton - fAbscissa[i - 3] ; 1072 } << 1029 } 1073 for(k = 1; k <= maxNumber; ++k) << 1030 for(k=1;k<=maxNumber;k++) 1074 { << 1031 { 1075 temp1 = piInMinusQ; << 1032 temp1 = piInMinusQ ; 1076 temp2 = 0.0; << 1033 temp2 = 0.0 ; 1077 << 1078 for(j = 1; j <= nHermite; ++j) << 1079 { << 1080 temp3 = temp2; << 1081 temp2 = temp1; << 1082 temp1 = nwt * std::sqrt(2.0 / j) * te << 1083 std::sqrt(((G4double)(j - 1)) << 1084 } << 1085 temp = std::sqrt((G4double) 2 * nHermit << 1086 nwt1 = nwt; << 1087 nwt = nwt1 - temp1 / temp; << 1088 << 1089 if(std::fabs(nwt - nwt1) <= tolerance) << 1090 { << 1091 break; << 1092 } << 1093 } << 1094 if(k > maxNumber) << 1095 { << 1096 G4Exception("G4Integrator<T,F>::Hermite << 1097 FatalException, "Too many ( << 1098 } << 1099 fAbscissa[i - 1] = nwt; << 1100 fWeight[i - 1] = 2.0 / (temp * temp); << 1101 } << 1102 << 1103 // << 1104 // Integral calculation << 1105 // << 1106 1034 1107 for(i = 0; i < fNumber; ++i) << 1035 for(j=1;j<=nHermite;j++) 1108 { << 1036 { 1109 integral += << 1037 temp3 = temp2 ; 1110 fWeight[i] * ((typeT.*f)(fAbscissa[i]) << 1038 temp2 = temp1 ; 1111 } << 1039 temp1 = newton*sqrt(2.0/j)*temp2 - 1112 delete[] fAbscissa; << 1040 sqrt(((G4double)(j - 1))/j)*temp3 ; 1113 delete[] fWeight; << 1041 } 1114 return integral; << 1042 temp = sqrt((G4double)2*nHermite)*temp2 ; >> 1043 newton1 = newton ; >> 1044 newton = newton1 - temp1/temp ; >> 1045 >> 1046 if(fabs(newton - newton1) <= tolerance) >> 1047 { >> 1048 break ; >> 1049 } >> 1050 } >> 1051 if(k > maxNumber) >> 1052 { >> 1053 G4Exception("Too many (>12) iterations in G4Integrator::Hermite") ; >> 1054 } >> 1055 fAbscissa[i-1] = newton ; >> 1056 fWeight[i-1] = 2.0/(temp*temp) ; >> 1057 } >> 1058 // >> 1059 // Integral calculation >> 1060 // >> 1061 for(i=0;i<fNumber;i++) >> 1062 { >> 1063 integral += fWeight[i]*( (typeT.*f)(fAbscissa[i]) + >> 1064 (typeT.*f)(-fAbscissa[i]) ) ; >> 1065 } >> 1066 return integral ; 1115 } 1067 } 1116 1068 >> 1069 1117 ///////////////////////////////////////////// 1070 //////////////////////////////////////////////////////////////////////// 1118 // 1071 // 1119 // For use with 'this' pointer 1072 // For use with 'this' pointer 1120 1073 1121 template <class T, class F> << 1074 template <class T, class F> 1122 G4double G4Integrator<T, F>::Hermite(T* ptrT, << 1075 G4double G4Integrator::Hermite( T* ptrT, F f, G4int n) 1123 { 1076 { 1124 return Hermite(*ptrT, f, n); << 1077 return Hermite(*ptrT,f,n) ; 1125 } << 1078 } 1126 1079 1127 ///////////////////////////////////////////// 1080 //////////////////////////////////////////////////////////////////////// 1128 // 1081 // 1129 // For use with global scope f 1082 // For use with global scope f 1130 1083 1131 template <class T, class F> << 1084 G4double G4Integrator::Hermite( G4double (*f)(G4double), G4int nHermite) 1132 G4double G4Integrator<T, F>::Hermite(G4double << 1133 { 1085 { 1134 const G4double tolerance = 1.0e-12; << 1086 const G4double tolerance = 1.0e-12 ; 1135 const G4int maxNumber = 12; << 1087 const G4int maxNumber = 12 ; 1136 << 1088 1137 G4int i, j, k; << 1089 G4int i, j, k ; 1138 G4double integral = 0.0; << 1090 G4double integral = 0.0 ; 1139 G4double nwt = 0., nwt1, temp1, temp2, << 1091 G4double newton, newton1, temp1, temp2, temp3, temp ; 1140 << 1092 1141 G4double piInMinusQ = << 1093 G4double piInMinusQ = pow(pi,-0.25) ; // 1.0/sqrt(sqrt(pi)) ?? 1142 std::pow(CLHEP::pi, -0.25); // 1.0/std:: << 1094 1143 << 1095 G4int fNumber = (nHermite +1)/2 ; 1144 G4int fNumber = (nHermite + 1) / 2; << 1096 G4double* fAbscissa = new G4double[fNumber] ; 1145 G4double* fAbscissa = new G4double[fNumber] << 1097 G4double* fWeight = new G4double[fNumber] ; 1146 G4double* fWeight = new G4double[fNumber] << 1098 1147 << 1099 for(i=1;i<=fNumber;i++) 1148 for(i = 1; i <= fNumber; ++i) << 1100 { 1149 { << 1101 if(i == 1) 1150 if(i == 1) << 1102 { 1151 { << 1103 newton = sqrt((G4double)(2*nHermite + 1)) - 1152 nwt = std::sqrt((G4double)(2 * nHermite << 1104 1.85575001*pow((G4double)(2*nHermite + 1),-0.16666999) ; 1153 1.85575001 * std::pow((G4double)( << 1105 } 1154 } << 1106 else if(i == 2) 1155 else if(i == 2) << 1107 { 1156 { << 1108 newton -= 1.14001*pow((G4double)nHermite,0.425999)/newton ; 1157 nwt -= 1.14001 * std::pow((G4double) nH << 1109 } 1158 } << 1110 else if(i == 3) 1159 else if(i == 3) << 1111 { 1160 { << 1112 newton = 1.86002*newton - 0.86002*fAbscissa[0] ; 1161 nwt = 1.86002 * nwt - 0.86002 * fAbscis << 1113 } 1162 } << 1114 else if(i == 4) 1163 else if(i == 4) << 1115 { 1164 { << 1116 newton = 1.91001*newton - 0.91001*fAbscissa[1] ; 1165 nwt = 1.91001 * nwt - 0.91001 * fAbscis << 1117 } 1166 } << 1118 else 1167 else << 1119 { 1168 { << 1120 newton = 2.0*newton - fAbscissa[i - 3] ; 1169 nwt = 2.0 * nwt - fAbscissa[i - 3]; << 1121 } 1170 } << 1122 for(k=1;k<=maxNumber;k++) 1171 for(k = 1; k <= maxNumber; ++k) << 1123 { 1172 { << 1124 temp1 = piInMinusQ ; 1173 temp1 = piInMinusQ; << 1125 temp2 = 0.0 ; 1174 temp2 = 0.0; << 1175 << 1176 for(j = 1; j <= nHermite; ++j) << 1177 { << 1178 temp3 = temp2; << 1179 temp2 = temp1; << 1180 temp1 = nwt * std::sqrt(2.0 / j) * te << 1181 std::sqrt(((G4double)(j - 1)) << 1182 } << 1183 temp = std::sqrt((G4double) 2 * nHermit << 1184 nwt1 = nwt; << 1185 nwt = nwt1 - temp1 / temp; << 1186 << 1187 if(std::fabs(nwt - nwt1) <= tolerance) << 1188 { << 1189 break; << 1190 } << 1191 } << 1192 if(k > maxNumber) << 1193 { << 1194 G4Exception("G4Integrator<T,F>::Hermite << 1195 "Too many (>12) iterations. << 1196 } << 1197 fAbscissa[i - 1] = nwt; << 1198 fWeight[i - 1] = 2.0 / (temp * temp); << 1199 } << 1200 << 1201 // << 1202 // Integral calculation << 1203 // << 1204 1126 1205 for(i = 0; i < fNumber; ++i) << 1127 for(j=1;j<=nHermite;j++) 1206 { << 1128 { 1207 integral += fWeight[i] * ((*f)(fAbscissa[ << 1129 temp3 = temp2 ; 1208 } << 1130 temp2 = temp1 ; 1209 delete[] fAbscissa; << 1131 temp1 = newton*sqrt(2.0/j)*temp2 - 1210 delete[] fWeight; << 1132 sqrt(((G4double)(j - 1))/j)*temp3 ; 1211 return integral; << 1133 } >> 1134 temp = sqrt((G4double)2*nHermite)*temp2 ; >> 1135 newton1 = newton ; >> 1136 newton = newton1 - temp1/temp ; >> 1137 >> 1138 if(fabs(newton - newton1) <= tolerance) >> 1139 { >> 1140 break ; >> 1141 } >> 1142 } >> 1143 if(k > maxNumber) >> 1144 { >> 1145 G4Exception("Too many (>12) iterations in G4Integrator::Hermite") ; >> 1146 } >> 1147 fAbscissa[i-1] = newton ; >> 1148 fWeight[i-1] = 2.0/(temp*temp) ; >> 1149 } >> 1150 // >> 1151 // Integral calculation >> 1152 // >> 1153 for(i=0;i<fNumber;i++) >> 1154 { >> 1155 integral += fWeight[i]*( (*f)(fAbscissa[i]) + (*f)(-fAbscissa[i]) ) ; >> 1156 } >> 1157 return integral ; 1212 } 1158 } 1213 1159 1214 ///////////////////////////////////////////// 1160 //////////////////////////////////////////////////////////////////////////// 1215 // 1161 // 1216 // Method involving Jacobi polynomials 1162 // Method involving Jacobi polynomials 1217 // 1163 // 1218 ///////////////////////////////////////////// 1164 //////////////////////////////////////////////////////////////////////////// 1219 // 1165 // 1220 // Gauss-Jacobi method for integration of ((1 1166 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x) 1221 // from minus unit to plus unit . 1167 // from minus unit to plus unit . 1222 // 1168 // 1223 1169 1224 template <class T, class F> << 1170 template <class T, class F> 1225 G4double G4Integrator<T, F>::Jacobi(T& typeT, << 1171 G4double G4Integrator::Jacobi( T& typeT, F f, G4double alpha, 1226 G4double << 1172 G4double beta, G4int nJacobi) 1227 { << 1173 { 1228 const G4double tolerance = 1.0e-12; << 1174 const G4double tolerance = 1.0e-12 ; 1229 const G4double maxNumber = 12; << 1175 const G4double maxNumber = 12 ; 1230 G4int i, k, j; << 1176 G4int i, k, j ; 1231 G4double alphaBeta, alphaReduced, betaReduc << 1177 G4double alphaBeta, alphaReduced, betaReduced, root1, root2, root3 ; 1232 << 1178 G4double a, b, c, newton1, newton2, newton3, newton, temp, root, rootTemp ; 1233 G4double a, b, c, nwt1, nwt2, nwt3, nwt, te << 1179 1234 << 1180 G4int fNumber = nJacobi ; 1235 G4int fNumber = nJacobi; << 1181 G4double* fAbscissa = new G4double[fNumber] ; 1236 G4double* fAbscissa = new G4double[fNumber] << 1182 G4double* fWeight = new G4double[fNumber] ; 1237 G4double* fWeight = new G4double[fNumber] << 1183 1238 << 1184 for (i=1;i<=nJacobi;i++) 1239 for(i = 1; i <= nJacobi; ++i) << 1185 { 1240 { << 1186 if (i == 1) 1241 if(i == 1) << 1187 { 1242 { << 1188 alphaReduced = alpha/nJacobi ; 1243 alphaReduced = alpha / nJacobi; << 1189 betaReduced = beta/nJacobi ; 1244 betaReduced = beta / nJacobi; << 1190 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 1245 root1 = (1.0 + alpha) * (2.78002 << 1191 0.767999*alphaReduced/nJacobi) ; 1246 0.767999 * alp << 1192 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 1247 root2 = 1.0 + 1.48 * alphaReduce << 1193 0.451998*alphaReduced*alphaReduced + 1248 0.451998 * alphaReduced * alpha << 1194 0.83001*alphaReduced*betaReduced ; 1249 0.83001 * alphaReduced * betaRe << 1195 root = 1.0-root1/root2 ; 1250 root = 1.0 - root1 / root2; << 1196 } 1251 } << 1197 else if (i == 2) 1252 else if(i == 2) << 1198 { 1253 { << 1199 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; 1254 root1 = (4.1002 + alpha) / ((1.0 + alph << 1200 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; 1255 root2 = 1.0 + 0.06 * (nJacobi - 8.0) * << 1201 root3=1.0+0.012002*beta*(1.0+0.24997*fabs(alpha))/nJacobi ; 1256 root3 = << 1202 root -= (1.0-root)*root1*root2*root3 ; 1257 1.0 + 0.012002 * beta * (1.0 + 0.2499 << 1203 } 1258 root -= (1.0 - root) * root1 * root2 * << 1204 else if (i == 3) 1259 } << 1205 { 1260 else if(i == 3) << 1206 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; 1261 { << 1207 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; 1262 root1 = (1.67001 + 0.27998 * alpha) / ( << 1208 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; 1263 root2 = 1.0 + 0.22 * (nJacobi - 8.0) / << 1209 root -= (fAbscissa[0]-root)*root1*root2*root3 ; 1264 root3 = 1.0 + 8.0 * beta / ((6.28001 + << 1210 } 1265 root -= (fAbscissa[0] - root) * root1 * << 1211 else if (i == nJacobi-1) 1266 } << 1212 { 1267 else if(i == nJacobi - 1) << 1213 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; 1268 { << 1214 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; 1269 root1 = (1.0 + 0.235002 * beta) / (0.76 << 1215 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; 1270 root2 = 1.0 / (1.0 + 0.639002 * (nJacob << 1216 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; 1271 (1.0 + 0.71001 * << 1217 } 1272 root3 = 1.0 / (1.0 + 20.0 * alpha / ((7 << 1218 else if (i == nJacobi) 1273 root += (root - fAbscissa[nJacobi - 4]) << 1219 { 1274 } << 1220 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; 1275 else if(i == nJacobi) << 1221 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; 1276 { << 1222 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; 1277 root1 = (1.0 + 0.37002 * beta) / (1.670 << 1223 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; 1278 root2 = 1.0 / (1.0 + 0.22 * (nJacobi - << 1224 } 1279 root3 = << 1225 else 1280 1.0 / (1.0 + 8.0 * alpha / ((6.28002 << 1226 { 1281 root += (root - fAbscissa[nJacobi - 3]) << 1227 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; 1282 } << 1228 } 1283 else << 1229 alphaBeta = alpha + beta ; 1284 { << 1230 for (k=1;k<=maxNumber;k++) 1285 root = 3.0 * fAbscissa[i - 2] - 3.0 * f << 1231 { 1286 } << 1232 temp = 2.0 + alphaBeta ; 1287 alphaBeta = alpha + beta; << 1233 newton1 = (alpha-beta+temp*root)/2.0 ; 1288 for(k = 1; k <= maxNumber; ++k) << 1234 newton2 = 1.0 ; 1289 { << 1235 for (j=2;j<=nJacobi;j++) 1290 temp = 2.0 + alphaBeta; << 1236 { 1291 nwt1 = (alpha - beta + temp * root) / 2 << 1237 newton3 = newton2 ; 1292 nwt2 = 1.0; << 1238 newton2 = newton1 ; 1293 for(j = 2; j <= nJacobi; ++j) << 1239 temp = 2*j+alphaBeta ; 1294 { << 1240 a = 2*j*(j+alphaBeta)*(temp-2.0) ; 1295 nwt3 = nwt2; << 1241 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; 1296 nwt2 = nwt1; << 1242 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; 1297 temp = 2 * j + alphaBeta; << 1243 newton1 = (b*newton2-c*newton3)/a ; 1298 a = 2 * j * (j + alphaBeta) * (tem << 1244 } 1299 b = (temp - 1.0) * << 1245 newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 1300 (alpha * alpha - beta * beta + te << 1246 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ 1301 c = 2.0 * (j - 1 + alpha) * (j - 1 << 1247 (temp*(1.0 - root*root)) ; 1302 nwt1 = (b * nwt2 - c * nwt3) / a; << 1248 rootTemp = root ; 1303 } << 1249 root = rootTemp - newton1/newton ; 1304 nwt = (nJacobi * (alpha - beta - temp * << 1250 if (fabs(root-rootTemp) <= tolerance) 1305 2.0 * (nJacobi + alpha) * (nJaco << 1251 { 1306 (temp * (1.0 - root * root)); << 1252 break ; 1307 rootTemp = root; << 1253 } 1308 root = rootTemp - nwt1 / nwt; << 1254 } 1309 if(std::fabs(root - rootTemp) <= tolera << 1255 if (k > maxNumber) 1310 { << 1256 { 1311 break; << 1257 G4Exception("Too many iterations (>12) in G4Integrator::Jacobi") ; 1312 } << 1258 } 1313 } << 1259 fAbscissa[i-1] = root ; 1314 if(k > maxNumber) << 1260 fWeight[i-1] = exp(GammaLogarithm((G4double)(alpha+nJacobi)) + 1315 { << 1261 GammaLogarithm((G4double)(beta+nJacobi)) - 1316 G4Exception("G4Integrator<T,F>::Jacobi( << 1262 GammaLogarithm((G4double)(nJacobi+1.0)) - 1317 FatalException, "Too many ( << 1263 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) 1318 } << 1264 *temp*pow(2.0,alphaBeta)/(newton*newton2) ; 1319 fAbscissa[i - 1] = root; << 1265 } 1320 fWeight[i - 1] = << 1266 // 1321 std::exp(GammaLogarithm((G4double)(alph << 1267 // Calculation of the integral 1322 GammaLogarithm((G4double)(beta << 1268 // 1323 GammaLogarithm((G4double)(nJac << 1269 G4double integral = 0.0 ; 1324 GammaLogarithm((G4double)(nJac << 1270 for(i=0;i<fNumber;i++) 1325 temp * std::pow(2.0, alphaBeta) / (nwt << 1271 { 1326 } << 1272 integral += fWeight[i]*(typeT.*f)(fAbscissa[i]) ; 1327 << 1273 } 1328 // << 1274 return integral ; 1329 // Calculation of the integral << 1330 // << 1331 << 1332 G4double integral = 0.0; << 1333 for(i = 0; i < fNumber; ++i) << 1334 { << 1335 integral += fWeight[i] * (typeT.*f)(fAbsc << 1336 } << 1337 delete[] fAbscissa; << 1338 delete[] fWeight; << 1339 return integral; << 1340 } 1275 } 1341 1276 >> 1277 1342 ///////////////////////////////////////////// 1278 ///////////////////////////////////////////////////////////////////////// 1343 // 1279 // 1344 // For use with 'this' pointer 1280 // For use with 'this' pointer 1345 1281 1346 template <class T, class F> << 1282 template <class T, class F> 1347 G4double G4Integrator<T, F>::Jacobi(T* ptrT, << 1283 G4double G4Integrator::Jacobi( T* ptrT, F f, G4double alpha, 1348 G4int n) << 1284 G4double beta, G4int n) 1349 { 1285 { 1350 return Jacobi(*ptrT, f, alpha, beta, n); << 1286 return Jacobi(*ptrT,f,alpha,beta,n) ; 1351 } << 1287 } 1352 1288 1353 ///////////////////////////////////////////// 1289 ///////////////////////////////////////////////////////////////////////// 1354 // 1290 // 1355 // For use with global scope f << 1291 // For use with global scope f 1356 1292 1357 template <class T, class F> << 1293 G4double G4Integrator::Jacobi( G4double (*f)(G4double), G4double alpha, 1358 G4double G4Integrator<T, F>::Jacobi(G4double << 1294 G4double beta, G4int nJacobi) 1359 G4double << 1295 { 1360 { << 1296 const G4double tolerance = 1.0e-12 ; 1361 const G4double tolerance = 1.0e-12; << 1297 const G4double maxNumber = 12 ; 1362 const G4double maxNumber = 12; << 1298 G4int i, k, j ; 1363 G4int i, k, j; << 1299 G4double alphaBeta, alphaReduced, betaReduced, root1, root2, root3 ; 1364 G4double alphaBeta, alphaReduced, betaReduc << 1300 G4double a, b, c, newton1, newton2, newton3, newton, temp, root, rootTemp ; 1365 << 1301 1366 G4double a, b, c, nwt1, nwt2, nwt3, nwt, te << 1302 G4int fNumber = nJacobi ; 1367 << 1303 G4double* fAbscissa = new G4double[fNumber] ; 1368 G4int fNumber = nJacobi; << 1304 G4double* fWeight = new G4double[fNumber] ; 1369 G4double* fAbscissa = new G4double[fNumber] << 1305 1370 G4double* fWeight = new G4double[fNumber] << 1306 for (i=1;i<=nJacobi;i++) 1371 << 1307 { 1372 for(i = 1; i <= nJacobi; ++i) << 1308 if (i == 1) 1373 { << 1309 { 1374 if(i == 1) << 1310 alphaReduced = alpha/nJacobi ; 1375 { << 1311 betaReduced = beta/nJacobi ; 1376 alphaReduced = alpha / nJacobi; << 1312 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 1377 betaReduced = beta / nJacobi; << 1313 0.767999*alphaReduced/nJacobi) ; 1378 root1 = (1.0 + alpha) * (2.78002 << 1314 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced + 1379 0.767999 * alp << 1315 0.451998*alphaReduced*alphaReduced + 1380 root2 = 1.0 + 1.48 * alphaReduce << 1316 0.83001*alphaReduced*betaReduced ; 1381 0.451998 * alphaReduced * alpha << 1317 root = 1.0-root1/root2 ; 1382 0.83001 * alphaReduced * betaRe << 1318 } 1383 root = 1.0 - root1 / root2; << 1319 else if (i == 2) 1384 } << 1320 { 1385 else if(i == 2) << 1321 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; 1386 { << 1322 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; 1387 root1 = (4.1002 + alpha) / ((1.0 + alph << 1323 root3=1.0+0.012002*beta*(1.0+0.24997*fabs(alpha))/nJacobi ; 1388 root2 = 1.0 + 0.06 * (nJacobi - 8.0) * << 1324 root -= (1.0-root)*root1*root2*root3 ; 1389 root3 = << 1325 } 1390 1.0 + 0.012002 * beta * (1.0 + 0.2499 << 1326 else if (i == 3) 1391 root -= (1.0 - root) * root1 * root2 * << 1327 { 1392 } << 1328 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; 1393 else if(i == 3) << 1329 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; 1394 { << 1330 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; 1395 root1 = (1.67001 + 0.27998 * alpha) / ( << 1331 root -= (fAbscissa[0]-root)*root1*root2*root3 ; 1396 root2 = 1.0 + 0.22 * (nJacobi - 8.0) / << 1332 } 1397 root3 = 1.0 + 8.0 * beta / ((6.28001 + << 1333 else if (i == nJacobi-1) 1398 root -= (fAbscissa[0] - root) * root1 * << 1334 { 1399 } << 1335 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; 1400 else if(i == nJacobi - 1) << 1336 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; 1401 { << 1337 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; 1402 root1 = (1.0 + 0.235002 * beta) / (0.76 << 1338 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; 1403 root2 = 1.0 / (1.0 + 0.639002 * (nJacob << 1339 } 1404 (1.0 + 0.71001 * << 1340 else if (i == nJacobi) 1405 root3 = 1.0 / (1.0 + 20.0 * alpha / ((7 << 1341 { 1406 root += (root - fAbscissa[nJacobi - 4]) << 1342 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; 1407 } << 1343 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; 1408 else if(i == nJacobi) << 1344 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; 1409 { << 1345 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; 1410 root1 = (1.0 + 0.37002 * beta) / (1.670 << 1346 } 1411 root2 = 1.0 / (1.0 + 0.22 * (nJacobi - << 1347 else 1412 root3 = << 1348 { 1413 1.0 / (1.0 + 8.0 * alpha / ((6.28002 << 1349 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; 1414 root += (root - fAbscissa[nJacobi - 3]) << 1350 } 1415 } << 1351 alphaBeta = alpha + beta ; 1416 else << 1352 for (k=1;k<=maxNumber;k++) 1417 { << 1353 { 1418 root = 3.0 * fAbscissa[i - 2] - 3.0 * f << 1354 temp = 2.0 + alphaBeta ; 1419 } << 1355 newton1 = (alpha-beta+temp*root)/2.0 ; 1420 alphaBeta = alpha + beta; << 1356 newton2 = 1.0 ; 1421 for(k = 1; k <= maxNumber; ++k) << 1357 for (j=2;j<=nJacobi;j++) 1422 { << 1358 { 1423 temp = 2.0 + alphaBeta; << 1359 newton3 = newton2 ; 1424 nwt1 = (alpha - beta + temp * root) / 2 << 1360 newton2 = newton1 ; 1425 nwt2 = 1.0; << 1361 temp = 2*j+alphaBeta ; 1426 for(j = 2; j <= nJacobi; ++j) << 1362 a = 2*j*(j+alphaBeta)*(temp-2.0) ; 1427 { << 1363 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; 1428 nwt3 = nwt2; << 1364 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; 1429 nwt2 = nwt1; << 1365 newton1 = (b*newton2-c*newton3)/a ; 1430 temp = 2 * j + alphaBeta; << 1366 } 1431 a = 2 * j * (j + alphaBeta) * (tem << 1367 newton = (nJacobi*(alpha - beta - temp*root)*newton1 + 1432 b = (temp - 1.0) * << 1368 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ 1433 (alpha * alpha - beta * beta + te << 1369 (temp*(1.0 - root*root)) ; 1434 c = 2.0 * (j - 1 + alpha) * (j - 1 << 1370 rootTemp = root ; 1435 nwt1 = (b * nwt2 - c * nwt3) / a; << 1371 root = rootTemp - newton1/newton ; 1436 } << 1372 if (fabs(root-rootTemp) <= tolerance) 1437 nwt = (nJacobi * (alpha - beta - temp * << 1373 { 1438 2.0 * (nJacobi + alpha) * (nJaco << 1374 break ; 1439 (temp * (1.0 - root * root)); << 1375 } 1440 rootTemp = root; << 1376 } 1441 root = rootTemp - nwt1 / nwt; << 1377 if (k > maxNumber) 1442 if(std::fabs(root - rootTemp) <= tolera << 1378 { 1443 { << 1379 G4Exception("Too many iterations (>12) in G4Integrator::Jacobi") ; 1444 break; << 1380 } 1445 } << 1381 fAbscissa[i-1] = root ; 1446 } << 1382 fWeight[i-1] = exp(GammaLogarithm((G4double)(alpha+nJacobi)) + 1447 if(k > maxNumber) << 1383 GammaLogarithm((G4double)(beta+nJacobi)) - 1448 { << 1384 GammaLogarithm((G4double)(nJacobi+1.0)) - 1449 G4Exception("G4Integrator<T,F>::Jacobi( << 1385 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) 1450 "Too many (>12) iterations. << 1386 *temp*pow(2.0,alphaBeta)/(newton*newton2) ; 1451 } << 1387 } 1452 fAbscissa[i - 1] = root; << 1388 // 1453 fWeight[i - 1] = << 1389 // Calculation of the integral 1454 std::exp(GammaLogarithm((G4double)(alph << 1390 // 1455 GammaLogarithm((G4double)(beta << 1391 G4double integral = 0.0 ; 1456 GammaLogarithm((G4double)(nJac << 1392 for(i=0;i<fNumber;i++) 1457 GammaLogarithm((G4double)(nJac << 1393 { 1458 temp * std::pow(2.0, alphaBeta) / (nwt << 1394 integral += fWeight[i]*(*f)(fAbscissa[i]) ; 1459 } << 1395 } >> 1396 return integral ; >> 1397 } 1460 1398 1461 // << 1462 // Calculation of the integral << 1463 // << 1464 1399 1465 G4double integral = 0.0; << 1466 for(i = 0; i < fNumber; ++i) << 1467 { << 1468 integral += fWeight[i] * (*f)(fAbscissa[i << 1469 } << 1470 delete[] fAbscissa; << 1471 delete[] fWeight; << 1472 return integral; << 1473 } << 1474 1400 1475 // 1401 // 1476 // 1402 // 1477 ///////////////////////////////////////////// 1403 /////////////////////////////////////////////////////////////////// >> 1404 >> 1405 >> 1406 >> 1407 1478 1408