Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4GaussJacobiQ << 23 // >> 24 // $Id: G4GaussJacobiQ.hh,v 1.4 2001/07/11 10:00:39 gunter Exp $ >> 25 // GEANT4 tag $Name: geant4-05-01 $ 27 // 26 // 28 // Class description: 27 // Class description: 29 // 28 // 30 // Roots of ortogonal polynoms and correspondi 29 // Roots of ortogonal polynoms and corresponding weights are calculated based on 31 // iteration method (by bisection Newton algor 30 // iteration method (by bisection Newton algorithm). Constant values for initial 32 // approximations were derived from the book: << 31 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook 33 // M. Abramowitz, I. Stegun, Handbook of mat << 32 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9, 34 // DOVER Publications INC, New York 1965 ; c << 33 // 10, and 22 . >> 34 // >> 35 // --------------------------------------------------------------------------- >> 36 // >> 37 // Constructor for Gauss-Jacobi integration method. >> 38 // >> 39 // G4GaussJacobiQ( function pFunction, >> 40 // G4double alpha, >> 41 // G4double beta, >> 42 // G4int nJacobi ) >> 43 // >> 44 // ---------------------------------------------------------------------------- >> 45 // >> 46 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*pFunction(x) >> 47 // from minus unit to plus unit . >> 48 // >> 49 // G4double Integral() const >> 50 >> 51 // ------------------------------- HISTORY ------------------------------------- >> 52 // >> 53 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0 35 54 36 // Author: V.Grichine, 13.05.1997 << 37 // ------------------------------------------- << 38 #ifndef G4GAUSSJACOBIQ_HH 55 #ifndef G4GAUSSJACOBIQ_HH 39 #define G4GAUSSJACOBIQ_HH 1 << 56 #define G4GAUSSJACOBIQ_HH 40 57 41 #include "G4VGaussianQuadrature.hh" 58 #include "G4VGaussianQuadrature.hh" 42 59 43 class G4GaussJacobiQ : public G4VGaussianQuadr 60 class G4GaussJacobiQ : public G4VGaussianQuadrature 44 { 61 { 45 public: << 62 public: 46 G4GaussJacobiQ(function pFunction, G4double << 63 // Constructor 47 G4int nJacobi); << 64 48 // Constructor for Gauss-Jacobi integration << 65 G4GaussJacobiQ( function pFunction, 49 << 66 G4double alpha, 50 G4GaussJacobiQ(const G4GaussJacobiQ&) = dele << 67 G4double beta, 51 G4GaussJacobiQ& operator=(const G4GaussJacob << 68 G4int nJacobi ) ; 52 << 69 53 G4double Integral() const; << 70 // Methods 54 // Gauss-Jacobi method for integration of << 71 55 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) f << 72 G4double Integral() const ; >> 73 >> 74 private: >> 75 >> 76 G4GaussJacobiQ(const G4GaussJacobiQ&); >> 77 G4GaussJacobiQ& operator=(const G4GaussJacobiQ&); 56 }; 78 }; 57 79 58 #endif 80 #endif 59 81