Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4GaussJacobiQ 26 // G4GaussJacobiQ 27 // 27 // 28 // Class description: 28 // Class description: 29 // 29 // 30 // Roots of ortogonal polynoms and correspondi 30 // Roots of ortogonal polynoms and corresponding weights are calculated based on 31 // iteration method (by bisection Newton algor 31 // iteration method (by bisection Newton algorithm). Constant values for initial 32 // approximations were derived from the book: 32 // approximations were derived from the book: 33 // M. Abramowitz, I. Stegun, Handbook of mat 33 // M. Abramowitz, I. Stegun, Handbook of mathematical functions, 34 // DOVER Publications INC, New York 1965 ; c 34 // DOVER Publications INC, New York 1965 ; chapters 9, 10, and 22. 35 35 36 // Author: V.Grichine, 13.05.1997 36 // Author: V.Grichine, 13.05.1997 37 // ------------------------------------------- 37 // -------------------------------------------------------------------- 38 #ifndef G4GAUSSJACOBIQ_HH 38 #ifndef G4GAUSSJACOBIQ_HH 39 #define G4GAUSSJACOBIQ_HH 1 39 #define G4GAUSSJACOBIQ_HH 1 40 40 41 #include "G4VGaussianQuadrature.hh" 41 #include "G4VGaussianQuadrature.hh" 42 42 43 class G4GaussJacobiQ : public G4VGaussianQuadr 43 class G4GaussJacobiQ : public G4VGaussianQuadrature 44 { 44 { 45 public: 45 public: 46 G4GaussJacobiQ(function pFunction, G4double 46 G4GaussJacobiQ(function pFunction, G4double alpha, G4double beta, 47 G4int nJacobi); 47 G4int nJacobi); 48 // Constructor for Gauss-Jacobi integration 48 // Constructor for Gauss-Jacobi integration method. 49 49 50 G4GaussJacobiQ(const G4GaussJacobiQ&) = dele 50 G4GaussJacobiQ(const G4GaussJacobiQ&) = delete; 51 G4GaussJacobiQ& operator=(const G4GaussJacob 51 G4GaussJacobiQ& operator=(const G4GaussJacobiQ&) = delete; 52 52 53 G4double Integral() const; 53 G4double Integral() const; 54 // Gauss-Jacobi method for integration of 54 // Gauss-Jacobi method for integration of 55 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) f 55 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) from minus unit to plus unit. 56 }; 56 }; 57 57 58 #endif 58 #endif 59 59