Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4GaussJacobiQ.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4GaussJacobiQ.hh (Version 11.3.0) and /global/HEPNumerics/include/G4GaussJacobiQ.hh (Version 10.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4GaussJacobiQ                              <<  26 //
                                                   >>  27 // $Id: G4GaussJacobiQ.hh 67970 2013-03-13 10:10:06Z gcosmo $
 27 //                                                 28 //
 28 // Class description:                              29 // Class description:
 29 //                                                 30 //
 30 // Roots of ortogonal polynoms and correspondi     31 // Roots of ortogonal polynoms and corresponding weights are calculated based on
 31 // iteration method (by bisection Newton algor     32 // iteration method (by bisection Newton algorithm). Constant values for initial
 32 // approximations were derived from the book:  <<  33 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
 33 //   M. Abramowitz, I. Stegun, Handbook of mat <<  34 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
 34 //   DOVER Publications INC, New York 1965 ; c <<  35 // 10, and 22 .
                                                   >>  36 //
                                                   >>  37 // ---------------------------------------------------------------------------
                                                   >>  38 //
                                                   >>  39 // Constructor for Gauss-Jacobi integration method. 
                                                   >>  40 //
                                                   >>  41 // G4GaussJacobiQ( function pFunction,
                                                   >>  42 //                 G4double alpha,
                                                   >>  43 //                 G4double beta, 
                                                   >>  44 //       G4int nJacobi   ) 
                                                   >>  45 //
                                                   >>  46 // ----------------------------------------------------------------------------
                                                   >>  47 //
                                                   >>  48 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
                                                   >>  49 // from minus unit to plus unit .
                                                   >>  50 //
                                                   >>  51 // G4double Integral() const
                                                   >>  52 
                                                   >>  53 // ------------------------------- HISTORY -------------------------------------
                                                   >>  54 //
                                                   >>  55 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
 35                                                    56 
 36 // Author: V.Grichine, 13.05.1997              << 
 37 // ------------------------------------------- << 
 38 #ifndef G4GAUSSJACOBIQ_HH                          57 #ifndef G4GAUSSJACOBIQ_HH
 39 #define G4GAUSSJACOBIQ_HH 1                    <<  58 #define G4GAUSSJACOBIQ_HH
 40                                                    59 
 41 #include "G4VGaussianQuadrature.hh"                60 #include "G4VGaussianQuadrature.hh"
 42                                                    61 
 43 class G4GaussJacobiQ : public G4VGaussianQuadr     62 class G4GaussJacobiQ : public G4VGaussianQuadrature
 44 {                                                  63 {
 45  public:                                       <<  64 public:
 46   G4GaussJacobiQ(function pFunction, G4double  <<  65         // Constructor
 47                  G4int nJacobi);               <<  66 
 48   // Constructor for Gauss-Jacobi integration  <<  67         G4GaussJacobiQ( function pFunction, 
 49                                                <<  68                   G4double alpha,
 50   G4GaussJacobiQ(const G4GaussJacobiQ&) = dele <<  69                   G4double beta,
 51   G4GaussJacobiQ& operator=(const G4GaussJacob <<  70                   G4int nJacobi         ) ;
 52                                                <<  71              
 53   G4double Integral() const;                   <<  72         // Methods
 54   // Gauss-Jacobi method for integration of    <<  73            
 55   // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) f <<  74         G4double Integral() const ;
                                                   >>  75 
                                                   >>  76 private:
                                                   >>  77 
                                                   >>  78   G4GaussJacobiQ(const G4GaussJacobiQ&);
                                                   >>  79   G4GaussJacobiQ& operator=(const G4GaussJacobiQ&);
 56 };                                                 80 };
 57                                                    81 
 58 #endif                                             82 #endif
 59                                                    83