Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4GaussJacobiQ.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4GaussJacobiQ.hh (Version 11.3.0) and /global/HEPNumerics/include/G4GaussJacobiQ.hh (Version 1.1)


                                                   >>   1 // This code implementation is the intellectual property of
                                                   >>   2 // the GEANT4 collaboration.
  1 //                                                  3 //
  2 // ******************************************* <<   4 // By copying, distributing or modifying the Program (or any work
  3 // * License and Disclaimer                    <<   5 // based on the Program) you indicate your acceptance of this statement,
  4 // *                                           <<   6 // and all its terms.
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                                  7 //
 26 // G4GaussJacobiQ                              <<   8 // $Id: G4GaussJacobiQ.hh,v 1.2 1999/11/16 17:30:57 gcosmo Exp $
                                                   >>   9 // GEANT4 tag $Name: geant4-01-01 $
 27 //                                                 10 //
 28 // Class description:                              11 // Class description:
 29 //                                                 12 //
 30 // Roots of ortogonal polynoms and correspondi     13 // Roots of ortogonal polynoms and corresponding weights are calculated based on
 31 // iteration method (by bisection Newton algor     14 // iteration method (by bisection Newton algorithm). Constant values for initial
 32 // approximations were derived from the book:  <<  15 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
 33 //   M. Abramowitz, I. Stegun, Handbook of mat <<  16 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
 34 //   DOVER Publications INC, New York 1965 ; c <<  17 // 10, and 22 .
                                                   >>  18 //
                                                   >>  19 // ---------------------------------------------------------------------------
                                                   >>  20 //
                                                   >>  21 // Constructor for Gauss-Jacobi integration method. 
                                                   >>  22 //
                                                   >>  23 // G4GaussJacobiQ( function pFunction,
                                                   >>  24 //                 G4double alpha,
                                                   >>  25 //                 G4double beta, 
                                                   >>  26 //       G4int nJacobi   ) 
                                                   >>  27 //
                                                   >>  28 // ----------------------------------------------------------------------------
                                                   >>  29 //
                                                   >>  30 // Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
                                                   >>  31 // from minus unit to plus unit .
                                                   >>  32 //
                                                   >>  33 // G4double Integral() const
                                                   >>  34 
                                                   >>  35 // ------------------------------- HISTORY -------------------------------------
                                                   >>  36 //
                                                   >>  37 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
 35                                                    38 
 36 // Author: V.Grichine, 13.05.1997              << 
 37 // ------------------------------------------- << 
 38 #ifndef G4GAUSSJACOBIQ_HH                          39 #ifndef G4GAUSSJACOBIQ_HH
 39 #define G4GAUSSJACOBIQ_HH 1                    <<  40 #define G4GAUSSJACOBIQ_HH
 40                                                    41 
 41 #include "G4VGaussianQuadrature.hh"                42 #include "G4VGaussianQuadrature.hh"
 42                                                    43 
 43 class G4GaussJacobiQ : public G4VGaussianQuadr     44 class G4GaussJacobiQ : public G4VGaussianQuadrature
 44 {                                                  45 {
 45  public:                                       <<  46 public:
 46   G4GaussJacobiQ(function pFunction, G4double  <<  47         // Constructor
 47                  G4int nJacobi);               <<  48 
 48   // Constructor for Gauss-Jacobi integration  <<  49         G4GaussJacobiQ( function pFunction, 
 49                                                <<  50                   G4double alpha,
 50   G4GaussJacobiQ(const G4GaussJacobiQ&) = dele <<  51                   G4double beta,
 51   G4GaussJacobiQ& operator=(const G4GaussJacob <<  52                   G4int nJacobi         ) ;
 52                                                <<  53              
 53   G4double Integral() const;                   <<  54         // Methods
 54   // Gauss-Jacobi method for integration of    <<  55            
 55   // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) f <<  56         G4double Integral() const ;
 56 };                                             <<  57 
                                                   >>  58 
                                                   >>  59 protected:
                                                   >>  60 
                                                   >>  61 private:
                                                   >>  62 
                                                   >>  63 } ;
                                                   >>  64 
 57                                                    65 
 58 #endif                                             66 #endif
 59                                                    67