Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // 26 // G4GaussHermiteQ << 8 // $Id: G4GaussHermiteQ.hh,v 1.3 2000/11/20 17:26:42 gcosmo Exp $ >> 9 // GEANT4 tag $Name: geant4-03-00 $ 27 // 10 // 28 // Class description: 11 // Class description: 29 // 12 // 30 // Roots of ortogonal polynoms and correspondi 13 // Roots of ortogonal polynoms and corresponding weights are calculated based on 31 // iteration method (by bisection Newton algor 14 // iteration method (by bisection Newton algorithm). Constant values for initial 32 // approximations were derived from the book: << 15 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook 33 // M. Abramowitz, I. Stegun, Handbook of mat << 16 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9, 34 // DOVER Publications INC, New York 1965 ; c << 17 // 10, and 22 . >> 18 // >> 19 // -------------------------------------------------------------------------- >> 20 // >> 21 // Constructor for Gauss-Hermite quadrature method . The function GaussHermite >> 22 // should be called then >> 23 // >> 24 // G4GaussHermiteQ( function pFunction, G4int nHermite ) >> 25 // >> 26 // ---------------------------------------------------------------------------- >> 27 // >> 28 // Gauss-Hermite method for integration of exp(-x*x)*nFunction(x) from minus infinity >> 29 // to plus infinity . >> 30 // >> 31 // G4double Integral() const >> 32 >> 33 // ------------------------------- HISTORY ------------------------------------- >> 34 // >> 35 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0 35 36 36 // Author: V.Grichine, 13.05.1997 V.Grichine << 37 // ------------------------------------------- << 38 #ifndef G4GAUSSHERMITEQ_HH 37 #ifndef G4GAUSSHERMITEQ_HH 39 #define G4GAUSSHERMITEQ_HH 1 << 38 #define G4GAUSSHERMITEQ_HH 40 39 41 #include "G4VGaussianQuadrature.hh" 40 #include "G4VGaussianQuadrature.hh" 42 41 43 class G4GaussHermiteQ : public G4VGaussianQuad 42 class G4GaussHermiteQ : public G4VGaussianQuadrature 44 { 43 { 45 public: << 44 public: 46 // Constructor << 45 // Constructor >> 46 >> 47 G4GaussHermiteQ( function pFunction, G4int nHermite ) ; >> 48 >> 49 // Methods >> 50 >> 51 G4double Integral() const ; >> 52 >> 53 >> 54 private: >> 55 >> 56 G4GaussHermiteQ(const G4GaussHermiteQ&); >> 57 G4GaussHermiteQ& operator=(const G4GaussHermiteQ&); 47 58 48 G4GaussHermiteQ(function pFunction, G4int nH << 49 // Constructor for Gauss-Hermite quadrature << 50 // The function GaussHermite should be calle << 51 << 52 G4GaussHermiteQ(const G4GaussHermiteQ&) = de << 53 G4GaussHermiteQ& operator=(const G4GaussHerm << 54 << 55 G4double Integral() const; << 56 // Gauss-Hermite method for integration of s << 57 // minus infinity to plus infinity. << 58 }; 59 }; 59 60 60 #endif 61 #endif 61 62