Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4IntersectingCone.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4IntersectingCone.cc (Version 11.3.0) and /geometry/solids/specific/src/G4IntersectingCone.cc (Version 9.4.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4IntersectingCone, a uti << 
 27 // the intersection of an arbitrary line with  << 
 28 //                                                 26 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  27 // $Id: G4IntersectingCone.cc,v 1.13 2010-07-12 15:25:37 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-04-patch-01 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 // --------------------------------------------------------------------
                                                   >>  32 // GEANT 4 class source file
                                                   >>  33 //
                                                   >>  34 //
                                                   >>  35 // G4IntersectingCone.cc
                                                   >>  36 //
                                                   >>  37 // Implementation of a utility class which calculates the intersection
                                                   >>  38 // of an arbitrary line with a fixed cone
 30 // -------------------------------------------     39 // --------------------------------------------------------------------
 31                                                    40 
 32 #include "G4IntersectingCone.hh"                   41 #include "G4IntersectingCone.hh"
 33 #include "G4GeometryTolerance.hh"                  42 #include "G4GeometryTolerance.hh"
 34                                                    43 
                                                   >>  44 //
 35 // Constructor                                     45 // Constructor
 36 //                                                 46 //
 37 G4IntersectingCone::G4IntersectingCone( const      47 G4IntersectingCone::G4IntersectingCone( const G4double r[2],
 38                                         const      48                                         const G4double z[2] )
 39 {                                              <<  49 { 
 40   const G4double halfCarTolerance              <<  50   static const G4double halfCarTolerance
 41     = 0.5 * G4GeometryTolerance::GetInstance()     51     = 0.5 * G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 42                                                    52 
                                                   >>  53   //
 43   // What type of cone are we?                     54   // What type of cone are we?
 44   //                                               55   //
 45   type1 = (std::abs(z[1]-z[0]) > std::abs(r[1] <<  56   type1 = (std::fabs(z[1]-z[0]) > std::fabs(r[1]-r[0]));
 46                                                <<  57   
 47   if (type1) // tube like                      <<  58   if (type1)
 48   {                                                59   {
 49     B = (r[1] - r[0]) / (z[1] - z[0]);         <<  60     B = (r[1]-r[0])/(z[1]-z[0]);      // tube like
 50     A = (r[0]*z[1] - r[1]*z[0]) / (z[1] -z[0]) <<  61     A = 0.5*( r[1]+r[0] - B*(z[1]+z[0]) );
 51   }                                                62   }
 52   else // disk like                            <<  63   else
 53   {                                                64   {
 54     B = (z[1] - z[0]) / (r[1] - r[0]);         <<  65     B = (z[1]-z[0])/(r[1]-r[0]);      // disk like
 55     A = (z[0]*r[1] - z[1]*r[0]) / (r[1] - r[0] <<  66     A = 0.5*( z[1]+z[0] - B*(r[1]+r[0]) );
 56   }                                                67   }
 57                                                <<  68   //
 58   // Calculate extent                              69   // Calculate extent
 59   //                                               70   //
 60   rLo = std::min(r[0], r[1]) - halfCarToleranc <<  71   if (r[0] < r[1])
 61   rHi = std::max(r[0], r[1]) + halfCarToleranc <<  72   {
 62   zLo = std::min(z[0], z[1]) - halfCarToleranc <<  73     rLo = r[0]-halfCarTolerance; rHi = r[1]+halfCarTolerance;
 63   zHi = std::max(z[0], z[1]) + halfCarToleranc <<  74   }
                                                   >>  75   else
                                                   >>  76   {
                                                   >>  77     rLo = r[1]-halfCarTolerance; rHi = r[0]+halfCarTolerance;
                                                   >>  78   }
                                                   >>  79   
                                                   >>  80   if (z[0] < z[1])
                                                   >>  81   {
                                                   >>  82     zLo = z[0]-halfCarTolerance; zHi = z[1]+halfCarTolerance;
                                                   >>  83   }
                                                   >>  84   else
                                                   >>  85   {
                                                   >>  86     zLo = z[1]-halfCarTolerance; zHi = z[0]+halfCarTolerance;
                                                   >>  87   }
 64 }                                                  88 }
 65                                                    89 
                                                   >>  90 
                                                   >>  91 //
 66 // Fake default constructor - sets only member     92 // Fake default constructor - sets only member data and allocates memory
 67 //                            for usage restri     93 //                            for usage restricted to object persistency.
 68 //                                                 94 //
 69 G4IntersectingCone::G4IntersectingCone( __void     95 G4IntersectingCone::G4IntersectingCone( __void__& )
 70   : zLo(0.), zHi(0.), rLo(0.), rHi(0.), A(0.), <<  96   : zLo(0.), zHi(0.), rLo(0.), rHi(0.), type1(false), A(0.), B(0.)
 71 {                                                  97 {
 72 }                                                  98 }
 73                                                    99 
                                                   >> 100 
                                                   >> 101 //
 74 // Destructor                                     102 // Destructor
 75 //                                                103 //
 76 G4IntersectingCone::~G4IntersectingCone() = de << 104 G4IntersectingCone::~G4IntersectingCone()
                                                   >> 105 {
                                                   >> 106 }
                                                   >> 107 
 77                                                   108 
                                                   >> 109 //
 78 // HitOn                                          110 // HitOn
 79 //                                                111 //
 80 // Check r or z extent, as appropriate, to see    112 // Check r or z extent, as appropriate, to see if the point is possibly
 81 // on the cone.                                   113 // on the cone.
 82 //                                                114 //
 83 G4bool G4IntersectingCone::HitOn( const G4doub    115 G4bool G4IntersectingCone::HitOn( const G4double r,
 84                                   const G4doub    116                                   const G4double z )
 85 {                                                 117 {
 86   //                                              118   //
 87   // Be careful! The inequalities cannot be "<    119   // Be careful! The inequalities cannot be "<=" and ">=" here without
 88   // punching a tiny hole in our shape!           120   // punching a tiny hole in our shape!
 89   //                                              121   //
 90   if (type1)                                      122   if (type1)
 91   {                                               123   {
 92     if (z < zLo || z > zHi) return false;         124     if (z < zLo || z > zHi) return false;
 93   }                                               125   }
 94   else                                            126   else
 95   {                                               127   {
 96     if (r < rLo || r > rHi) return false;         128     if (r < rLo || r > rHi) return false;
 97   }                                               129   }
 98                                                   130 
 99   return true;                                    131   return true;
100 }                                                 132 }
101                                                   133 
                                                   >> 134 
                                                   >> 135 //
102 // LineHitsCone                                   136 // LineHitsCone
103 //                                                137 //
104 // Calculate the intersection of a line with o    138 // Calculate the intersection of a line with our conical surface, ignoring
105 // any phi division                               139 // any phi division
106 //                                                140 //
107 G4int G4IntersectingCone::LineHitsCone( const  << 141 G4int G4IntersectingCone::LineHitsCone( const G4ThreeVector &p,
108                                         const  << 142                                         const G4ThreeVector &v,
109                                                << 143                                               G4double *s1, G4double *s2 )
110 {                                                 144 {
111   if (type1)                                      145   if (type1)
112   {                                               146   {
113     return LineHitsCone1( p, v, s1, s2 );         147     return LineHitsCone1( p, v, s1, s2 );
114   }                                               148   }
115   else                                            149   else
116   {                                               150   {
117     return LineHitsCone2( p, v, s1, s2 );         151     return LineHitsCone2( p, v, s1, s2 );
118   }                                               152   }
119 }                                                 153 }
120                                                   154 
                                                   >> 155 
                                                   >> 156 //
121 // LineHitsCone1                                  157 // LineHitsCone1
122 //                                                158 //
123 // Calculate the intersections of a line with     159 // Calculate the intersections of a line with a conical surface. Only
124 // suitable if zPlane[0] != zPlane[1].            160 // suitable if zPlane[0] != zPlane[1].
125 //                                                161 //
126 // Equation of a line:                            162 // Equation of a line:
127 //                                                163 //
128 //       x = x0 + s*tx      y = y0 + s*ty         164 //       x = x0 + s*tx      y = y0 + s*ty      z = z0 + s*tz
129 //                                                165 //
130 // Equation of a conical surface:                 166 // Equation of a conical surface:
131 //                                                167 //
132 //       x**2 + y**2 = (A + B*z)**2               168 //       x**2 + y**2 = (A + B*z)**2
133 //                                                169 //
134 // Solution is quadratic:                         170 // Solution is quadratic:
135 //                                                171 //
136 //  a*s**2 + b*s + c = 0                          172 //  a*s**2 + b*s + c = 0
137 //                                                173 //
138 // where:                                         174 // where:
139 //                                                175 //
140 //  a = tx**2 + ty**2 - (B*tz)**2              << 176 //  a = x0**2 + y0**2 - (A + B*z0)**2
141 //                                                177 //
142 //  b = 2*( px*vx + py*vy - B*(A + B*pz)*vz )  << 178 //  b = 2*( x0*tx + y0*ty - (A*B - B*B*z0)*tz)
143 //                                                179 //
144 //  c = x0**2 + y0**2 - (A + B*z0)**2          << 180 //  c = tx**2 + ty**2 - (B*tz)**2
145 //                                                181 //
146 // Notice, that if a < 0, this indicates that     182 // Notice, that if a < 0, this indicates that the two solutions (assuming
147 // they exist) are in opposite cones (that is,    183 // they exist) are in opposite cones (that is, given z0 = -A/B, one z < z0
148 // and the other z > z0). For our shapes, the     184 // and the other z > z0). For our shapes, the invalid solution is one
149 // which produces A + Bz < 0, or the one where    185 // which produces A + Bz < 0, or the one where Bz is smallest (most negative).
150 // Since Bz = B*s*tz, if B*tz > 0, we want the    186 // Since Bz = B*s*tz, if B*tz > 0, we want the largest s, otherwise,
151 // the smaller.                                   187 // the smaller.
152 //                                                188 //
153 // If there are two solutions on one side of t    189 // If there are two solutions on one side of the cone, we want to make
154 // sure that they are on the "correct" side, t    190 // sure that they are on the "correct" side, that is A + B*z0 + s*B*tz >= 0.
155 //                                                191 //
156 // If a = 0, we have a linear problem: s = c/b    192 // If a = 0, we have a linear problem: s = c/b, which again gives one solution.
157 // This should be rare.                           193 // This should be rare.
158 //                                                194 //
159 // For b*b - 4*a*c = 0, we also have one solut    195 // For b*b - 4*a*c = 0, we also have one solution, which is almost always
160 // a line just grazing the surface of a the co << 196 // a line just grazing the surface of a the cone, which we want to ignore. 
161 // However, there are two other, very rare, po    197 // However, there are two other, very rare, possibilities:
162 // a line intersecting the z axis and either:     198 // a line intersecting the z axis and either:
163 //       1. At the same angle std::atan(B) to     199 //       1. At the same angle std::atan(B) to just miss one side of the cone, or
164 //       2. Intersecting the cone apex (0,0,-A    200 //       2. Intersecting the cone apex (0,0,-A/B)
165 // We *don't* want to miss these! How do we id    201 // We *don't* want to miss these! How do we identify them? Well, since
166 // this case is rare, we can at least swallow     202 // this case is rare, we can at least swallow a little more CPU than we would
167 // normally be comfortable with. Intersection     203 // normally be comfortable with. Intersection with the z axis means
168 // x0*ty - y0*tx = 0. Case (1) means a==0, and    204 // x0*ty - y0*tx = 0. Case (1) means a==0, and we've already dealt with that
169 // above. Case (2) means a < 0.                   205 // above. Case (2) means a < 0.
170 //                                                206 //
171 // Now: x0*tx + y0*ty = 0 in terms of roundoff    207 // Now: x0*tx + y0*ty = 0 in terms of roundoff error. We can write:
172 //             Delta = x0*tx + y0*ty              208 //             Delta = x0*tx + y0*ty
173 //             b = 2*( Delta - B*(A + B*z0)*tz << 209 //             b = 2*( Delta - (A*B + B*B*z0)*tz )
174 // For:                                           210 // For:
175 //             b*b - 4*a*c = epsilon              211 //             b*b - 4*a*c = epsilon
176 // where epsilon is small, then:                  212 // where epsilon is small, then:
177 //             Delta = epsilon/2/B                213 //             Delta = epsilon/2/B
178 //                                             << 214 // 
179 G4int G4IntersectingCone::LineHitsCone1( const << 215 G4int G4IntersectingCone::LineHitsCone1( const G4ThreeVector &p,
180                                          const << 216                                          const G4ThreeVector &v,
181                                                << 217                                                G4double *s1, G4double *s2 )
182 {                                                 218 {
183   static const G4double EPS = DBL_EPSILON; //  << 
184                                            //  << 
185   G4double x0 = p.x(), y0 = p.y(), z0 = p.z();    219   G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
186   G4double tx = v.x(), ty = v.y(), tz = v.z();    220   G4double tx = v.x(), ty = v.y(), tz = v.z();
187                                                   221 
188   // Value of radical can be inaccurate due to << 222   G4double a = tx*tx + ty*ty - sqr(B*tz);
189   // if to calculate the coefficiets a,b,c lik << 223   G4double b = 2*( x0*tx + y0*ty - (A*B + B*B*z0)*tz);
190   //     G4double a = tx*tx + ty*ty - sqr(B*tz << 224   G4double c = x0*x0 + y0*y0 - sqr(A + B*z0);
191   //     G4double b = 2*( x0*tx + y0*ty - B*(A << 225   
192   //     G4double c = x0*x0 + y0*y0 - sqr(A +  << 226   G4double radical = b*b - 4*a*c;
193   //                                           << 227  
194   // For more accurate calculation of radical  << 228   if (radical < -1E-6*std::fabs(b))  { return 0; }    // No solution
195   // are splitted in two components, radial an << 229   
196   //                                           << 230   if (radical < 1E-6*std::fabs(b))
197   G4double ar = tx*tx + ty*ty;                 << 
198   G4double az = sqr(B*tz);                     << 
199   G4double br = 2*(x0*tx + y0*ty);             << 
200   G4double bz = 2*B*(A + B*z0)*tz;             << 
201   G4double cr = x0*x0 + y0*y0;                 << 
202   G4double cz = sqr(A + B*z0);                 << 
203                                                << 
204   // Instead radical = b*b - 4*a*c             << 
205   G4double arcz = 4*ar*cz;                     << 
206   G4double azcr = 4*az*cr;                     << 
207   G4double radical = (br*br - 4*ar*cr) + ((std << 
208                                                << 
209   // Find the coefficients                     << 
210   G4double a = ar - az;                        << 
211   G4double b = br - bz;                        << 
212   G4double c = cr - cz;                        << 
213                                                << 
214   if (radical < -EPS*std::fabs(b))  { return 0 << 
215                                                << 
216   if (radical < EPS*std::fabs(b))              << 
217   {                                               231   {
218     //                                            232     //
219     // The radical is roughly zero: check for     233     // The radical is roughly zero: check for special, very rare, cases
220     //                                            234     //
221     if (std::fabs(a) > 1/kInfinity)               235     if (std::fabs(a) > 1/kInfinity)
222       {                                           236       {
223       if(B==0.) { return 0; }                     237       if(B==0.) { return 0; }
224       if ( std::fabs(x0*ty - y0*tx) < std::fab << 238       if ( std::fabs(x0*ty - y0*tx) < std::fabs(1E-6/B) )
225       {                                           239       {
226          *s1 = -0.5*b/a;                          240          *s1 = -0.5*b/a;
227          return 1;                                241          return 1;
228       }                                           242       }
229       return 0;                                   243       return 0;
230     }                                             244     }
231   }                                               245   }
232   else                                            246   else
233   {                                               247   {
234     radical = std::sqrt(radical);                 248     radical = std::sqrt(radical);
235   }                                               249   }
236                                                << 250   
237   if (a > 1/kInfinity)                            251   if (a > 1/kInfinity)
238   {                                               252   {
239     G4double sa, sb, q = -0.5*( b + (b < 0 ? -    253     G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
240     sa = q/a;                                     254     sa = q/a;
241     sb = c/q;                                     255     sb = c/q;
242     if (sa < sb) { *s1 = sa; *s2 = sb; } else     256     if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
243     if (A + B*(z0+(*s1)*tz) < 0)  { return 0;     257     if (A + B*(z0+(*s1)*tz) < 0)  { return 0; }
244     return 2;                                     258     return 2;
245   }                                               259   }
246   else if (a < -1/kInfinity)                      260   else if (a < -1/kInfinity)
247   {                                               261   {
248     G4double sa, sb, q = -0.5*( b + (b < 0 ? -    262     G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
249     sa = q/a;                                     263     sa = q/a;
250     sb = c/q;                                     264     sb = c/q;
251     *s1 = (B*tz > 0)^(sa > sb) ? sb : sa;         265     *s1 = (B*tz > 0)^(sa > sb) ? sb : sa;
252     return 1;                                     266     return 1;
253   }                                               267   }
254   else if (std::fabs(b) < 1/kInfinity)            268   else if (std::fabs(b) < 1/kInfinity)
255   {                                               269   {
256     return 0;                                     270     return 0;
257   }                                               271   }
258   else                                            272   else
259   {                                               273   {
260     *s1 = -c/b;                                   274     *s1 = -c/b;
261     if (A + B*(z0+(*s1)*tz) < 0)  { return 0;     275     if (A + B*(z0+(*s1)*tz) < 0)  { return 0; }
262     return 1;                                     276     return 1;
263   }                                               277   }
264 }                                                 278 }
265                                                   279 
                                                   >> 280   
                                                   >> 281 //
266 // LineHitsCone2                                  282 // LineHitsCone2
267 //                                                283 //
268 // See comments under LineHitsCone1. In this r    284 // See comments under LineHitsCone1. In this routine, case2, we have:
269 //                                                285 //
270 //   Z = A + B*R                                  286 //   Z = A + B*R
271 //                                                287 //
272 // The solution is still quadratic:               288 // The solution is still quadratic:
273 //                                                289 //
274 //  a = tz**2 - B*B*(tx**2 + ty**2)               290 //  a = tz**2 - B*B*(tx**2 + ty**2)
275 //                                                291 //
276 //  b = 2*( (z0-A)*tz - B*B*(x0*tx+y0*ty) )       292 //  b = 2*( (z0-A)*tz - B*B*(x0*tx+y0*ty) )
277 //                                                293 //
278 //  c = ( (z0-A)**2 - B*B*(x0**2 + y0**2) )       294 //  c = ( (z0-A)**2 - B*B*(x0**2 + y0**2) )
279 //                                                295 //
280 // The rest is much the same, except some deta    296 // The rest is much the same, except some details.
281 //                                                297 //
282 // a > 0 now means we intersect only once in t    298 // a > 0 now means we intersect only once in the correct hemisphere.
283 //                                                299 //
284 // a > 0 ? We only want solution which produce << 300 // a > 0 ? We only want solution which produces R > 0. 
285 // since R = (z0+s*tz-A)/B, for tz/B > 0, this    301 // since R = (z0+s*tz-A)/B, for tz/B > 0, this is the largest s
286 //          for tz/B < 0, this is the smallest    302 //          for tz/B < 0, this is the smallest s
287 // thus, same as in case 1 ( since sign(tz/B)     303 // thus, same as in case 1 ( since sign(tz/B) = sign(tz*B) )
288 //                                                304 //
289 G4int G4IntersectingCone::LineHitsCone2( const << 305 G4int G4IntersectingCone::LineHitsCone2( const G4ThreeVector &p,
290                                          const << 306                                          const G4ThreeVector &v,
291                                                << 307                                                G4double *s1, G4double *s2 )
292 {                                                 308 {
293   static const G4double EPS = DBL_EPSILON; //  << 
294                                            //  << 
295   G4double x0 = p.x(), y0 = p.y(), z0 = p.z();    309   G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
296   G4double tx = v.x(), ty = v.y(), tz = v.z();    310   G4double tx = v.x(), ty = v.y(), tz = v.z();
297                                                << 311   
                                                   >> 312   
298   // Special case which might not be so rare:     313   // Special case which might not be so rare: B = 0 (precisely)
299   //                                              314   //
300   if (B==0)                                       315   if (B==0)
301   {                                               316   {
302     if (std::fabs(tz) < 1/kInfinity)  { return    317     if (std::fabs(tz) < 1/kInfinity)  { return 0; }
303                                                << 318     
304     *s1 = (A-z0)/tz;                              319     *s1 = (A-z0)/tz;
305     return 1;                                     320     return 1;
306   }                                               321   }
307                                                   322 
308   // Value of radical can be inaccurate due to << 
309   // if to calculate the coefficiets a,b,c lik << 
310   //   G4double a = tz*tz - B2*(tx*tx + ty*ty) << 
311   //   G4double b = 2*( (z0-A)*tz - B2*(x0*tx  << 
312   //   G4double c = sqr(z0-A) - B2*( x0*x0 + y << 
313   //                                           << 
314   // For more accurate calculation of radical  << 
315   // are splitted in two components, radial an << 
316   //                                           << 
317   G4double B2 = B*B;                              323   G4double B2 = B*B;
318                                                   324 
319   G4double az = tz*tz;                         << 325   G4double a = tz*tz - B2*(tx*tx + ty*ty);
320   G4double ar = B2*(tx*tx + ty*ty);            << 326   G4double b = 2*( (z0-A)*tz - B2*(x0*tx + y0*ty) );
321   G4double bz = 2*(z0-A)*tz;                   << 327   G4double c = sqr(z0-A) - B2*( x0*x0 + y0*y0 );
322   G4double br = 2*B2*(x0*tx + y0*ty);          << 328   
323   G4double cz = sqr(z0-A);                     << 329   G4double radical = b*b - 4*a*c;
324   G4double cr = B2*(x0*x0 + y0*y0);            << 330  
325                                                << 331   if (radical < -1E-6*std::fabs(b)) { return 0; }   // No solution
326   // Instead radical = b*b - 4*a*c             << 332   
327   G4double arcz = 4*ar*cz;                     << 333   if (radical < 1E-6*std::fabs(b))
328   G4double azcr = 4*az*cr;                     << 
329   G4double radical = (br*br - 4*ar*cr) + ((std << 
330                                                << 
331   // Find the coefficients                     << 
332   G4double a = az - ar;                        << 
333   G4double b = bz - br;                        << 
334   G4double c = cz - cr;                        << 
335                                                << 
336   if (radical < -EPS*std::fabs(b)) { return 0; << 
337                                                << 
338   if (radical < EPS*std::fabs(b))              << 
339   {                                               334   {
340     //                                            335     //
341     // The radical is roughly zero: check for     336     // The radical is roughly zero: check for special, very rare, cases
342     //                                            337     //
343     if (std::fabs(a) > 1/kInfinity)               338     if (std::fabs(a) > 1/kInfinity)
344     {                                             339     {
345       if ( std::fabs(x0*ty - y0*tx) < std::fab << 340       if ( std::fabs(x0*ty - y0*tx) < std::fabs(1E-6/B) )
346       {                                           341       {
347         *s1 = -0.5*b/a;                           342         *s1 = -0.5*b/a;
348         return 1;                                 343         return 1;
349       }                                           344       }
350       return 0;                                   345       return 0;
351     }                                             346     }
352   }                                               347   }
353   else                                            348   else
354   {                                               349   {
355     radical = std::sqrt(radical);                 350     radical = std::sqrt(radical);
356   }                                               351   }
357                                                << 352   
358   if (a < -1/kInfinity)                           353   if (a < -1/kInfinity)
359   {                                               354   {
360     G4double sa, sb, q = -0.5*( b + (b < 0 ? -    355     G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
361     sa = q/a;                                     356     sa = q/a;
362     sb = c/q;                                     357     sb = c/q;
363     if (sa < sb) { *s1 = sa; *s2 = sb; } else     358     if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
364     if ((z0 + (*s1)*tz  - A)/B < 0)  { return     359     if ((z0 + (*s1)*tz  - A)/B < 0)  { return 0; }
365     return 2;                                     360     return 2;
366   }                                               361   }
367   else if (a > 1/kInfinity)                       362   else if (a > 1/kInfinity)
368   {                                               363   {
369     G4double sa, sb, q = -0.5*( b + (b < 0 ? -    364     G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
370     sa = q/a;                                     365     sa = q/a;
371     sb = c/q;                                     366     sb = c/q;
372     *s1 = (tz*B > 0)^(sa > sb) ? sb : sa;         367     *s1 = (tz*B > 0)^(sa > sb) ? sb : sa;
373     return 1;                                     368     return 1;
374   }                                               369   }
375   else if (std::fabs(b) < 1/kInfinity)            370   else if (std::fabs(b) < 1/kInfinity)
376   {                                               371   {
377     return 0;                                     372     return 0;
378   }                                               373   }
379   else                                            374   else
380   {                                               375   {
381     *s1 = -c/b;                                   376     *s1 = -c/b;
382     if ((z0 + (*s1)*tz  - A)/B < 0)  { return     377     if ((z0 + (*s1)*tz  - A)/B < 0)  { return 0; }
383     return 1;                                     378     return 1;
384   }                                               379   }
385 }                                                 380 }
386                                                   381