Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // Implementation of G4EnclosingCylinder, a ut << 27 // for a quick check of geometry. << 28 // 23 // 29 // Author: David C. Williams (davidw@scipp.ucs << 24 // $Id: G4EnclosingCylinder.cc,v 1.3 2001/07/11 10:00:16 gunter Exp $ >> 25 // GEANT4 tag $Name: geant4-04-00 $ >> 26 // >> 27 // >> 28 // -------------------------------------------------------------------- >> 29 // GEANT 4 class source file >> 30 // >> 31 // >> 32 // G4EnclosingCylinder.cc >> 33 // >> 34 // Implementation of a utility class for a quick check of geometry. >> 35 // 30 // ------------------------------------------- 36 // -------------------------------------------------------------------- 31 37 32 #include "G4EnclosingCylinder.hh" 38 #include "G4EnclosingCylinder.hh" 33 #include "G4PhysicalConstants.hh" << 34 #include "G4ReduciblePolygon.hh" 39 #include "G4ReduciblePolygon.hh" 35 #include "G4GeometryTolerance.hh" << 36 40 >> 41 // 37 // Constructor 42 // Constructor 38 // 43 // 39 G4EnclosingCylinder::G4EnclosingCylinder( cons << 44 G4EnclosingCylinder::G4EnclosingCylinder( const G4ReduciblePolygon *rz, 40 << 45 G4bool thePhiIsOpen, 41 << 46 G4double theStartPhi, 42 << 47 G4double theTotalPhi ) 43 : startPhi(theStartPhi), totalPhi(theTotalPh << 44 concave(theTotalPhi > pi) << 45 { 48 { 46 // << 49 // 47 // Obtain largest r and smallest and largest << 50 // Obtain largest r and smallest and largest z 48 // << 51 // 49 radius = rz->Amax(); << 52 radius = rz->Amax(); 50 zHi = rz->Bmax(); << 53 zHi = rz->Bmax(); 51 zLo = rz->Bmin(); << 54 zLo = rz->Bmin(); 52 << 55 53 G4double kCarTolerance = G4GeometryTolerance << 56 // 54 ->GetSurfaceToleran << 57 // Save phi info 55 // << 58 // 56 // Save phi info << 59 phiIsOpen = thePhiIsOpen; 57 // << 60 if ( phiIsOpen ) 58 phiIsOpen = thePhiIsOpen; << 61 { 59 if ( phiIsOpen ) << 62 startPhi = theStartPhi; 60 { << 63 totalPhi = theTotalPhi; 61 rx1 = std::cos(startPhi); << 64 62 ry1 = std::sin(startPhi); << 65 rx1 = cos(startPhi); 63 dx1 = +ry1*10*kCarTolerance; << 66 ry1 = sin(startPhi); 64 dy1 = -rx1*10*kCarTolerance; << 67 dx1 = +ry1*10*kCarTolerance; 65 << 68 dy1 = -rx1*10*kCarTolerance; 66 rx2 = std::cos(startPhi+totalPhi); << 69 67 ry2 = std::sin(startPhi+totalPhi); << 70 rx2 = cos(startPhi+totalPhi); 68 dx2 = -ry2*10*kCarTolerance; << 71 ry2 = sin(startPhi+totalPhi); 69 dy2 = +rx2*10*kCarTolerance; << 72 dx2 = -ry2*10*kCarTolerance; 70 } << 73 dy2 = +rx2*10*kCarTolerance; 71 << 74 72 // << 75 concave = totalPhi > M_PI; 73 // Add safety << 76 } 74 // << 77 75 radius += 10*kCarTolerance; << 78 // 76 zLo -= 10*kCarTolerance; << 79 // Add safety 77 zHi += 10*kCarTolerance; << 80 // >> 81 radius += 10*kCarTolerance; >> 82 zLo -= 10*kCarTolerance; >> 83 zHi += 10*kCarTolerance; 78 } 84 } 79 85 80 // Fake default constructor - sets only member << 81 // for usage restri << 82 // 86 // 83 G4EnclosingCylinder::G4EnclosingCylinder( __vo << 87 // Destructor 84 : radius(0.), zLo(0.), zHi(0.), phiIsOpen(fals << 88 // 85 concave(false) << 89 G4EnclosingCylinder::~G4EnclosingCylinder() {;} 86 { << 87 } << 88 90 >> 91 >> 92 // 89 // Outside 93 // Outside 90 // 94 // 91 // Decide very rapidly if the point is outside 95 // Decide very rapidly if the point is outside the cylinder 92 // 96 // 93 // If one is not certain, return false 97 // If one is not certain, return false 94 // 98 // 95 G4bool G4EnclosingCylinder::MustBeOutside( con << 99 G4bool G4EnclosingCylinder::MustBeOutside( const G4ThreeVector &p ) const 96 { 100 { 97 if (p.perp() > radius) return true; << 101 if (p.perp() > radius) return true; 98 if (p.z() < zLo) return true; << 102 if (p.z() < zLo) return true; 99 if (p.z() > zHi) return true; << 103 if (p.z() > zHi) return true; 100 << 104 101 if (phiIsOpen) << 105 if (phiIsOpen) { 102 { << 106 if (concave) { 103 if (concave) << 107 if ( ((p.x()-dx1)*ry1 - (p.y()-dy1)*rx1) < 0) return false; 104 { << 108 if ( ((p.x()-dx2)*ry2 - (p.y()-dy2)*rx2) > 0) return false; 105 if ( ((p.x()-dx1)*ry1 - (p.y()-dy1)*rx1) << 109 } 106 if ( ((p.x()-dx2)*ry2 - (p.y()-dy2)*rx2) << 110 else { 107 } << 111 if ( ((p.x()-dx1)*ry1 - (p.y()-dy1)*rx1) > 0) return true; 108 else << 112 if ( ((p.x()-dx2)*ry2 - (p.y()-dy2)*rx2) < 0) return true; 109 { << 113 } 110 if ( ((p.x()-dx1)*ry1 - (p.y()-dy1)*rx1) << 114 } 111 if ( ((p.x()-dx2)*ry2 - (p.y()-dy2)*rx2) << 115 112 } << 116 return false; 113 } << 114 << 115 return false; << 116 } 117 } 117 << 118 >> 119 >> 120 // 118 // Misses 121 // Misses 119 // 122 // 120 // Decide very rapidly if the trajectory is go 123 // Decide very rapidly if the trajectory is going to miss the cylinder 121 // 124 // 122 // If one is not sure, return false 125 // If one is not sure, return false 123 // 126 // 124 G4bool G4EnclosingCylinder::ShouldMiss( const << 127 G4bool G4EnclosingCylinder::ShouldMiss( const G4ThreeVector &p, const G4ThreeVector &v ) const 125 const << 126 { 128 { 127 if (!MustBeOutside(p)) return false; << 129 if (!MustBeOutside(p)) return false; 128 << 130 129 G4double cross = p.x()*v.y() - p.y()*v.x(); << 131 G4double cross = p.x()*v.y() - p.y()*v.x(); 130 if (cross > radius) return true; << 132 if (cross > radius) return true; 131 << 133 132 if (p.perp() > radius) << 134 if (p.perp() > radius) { 133 { << 135 G4double dot = p.x()*v.x() + p.y()*v.y(); 134 G4double dot = p.x()*v.x() + p.y()*v.y(); << 136 if (dot > 0) return true; 135 if (dot > 0) return true; << 137 } 136 } << 137 138 138 return false; << 139 return false; 139 } << 140 } 140 141