Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4Torus.icc,v 1.1 2002/10/28 11:43:04 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-05-01 $ >> 26 // >> 27 // -------------------------------------------------------------------- >> 28 // GEANT 4 inline definitions file >> 29 // >> 30 // G4Torus.icc >> 31 // 26 // Implementation of inline methods of G4Torus 32 // Implementation of inline methods of G4Torus 27 // ------------------------------------------- 33 // -------------------------------------------------------------------- 28 34 29 inline 35 inline 30 G4double G4Torus::GetRmin() const 36 G4double G4Torus::GetRmin() const 31 { 37 { 32 return fRmin ; 38 return fRmin ; 33 } 39 } 34 40 35 inline 41 inline 36 G4double G4Torus::GetRmax() const 42 G4double G4Torus::GetRmax() const 37 { 43 { 38 return fRmax ; 44 return fRmax ; 39 } 45 } 40 46 41 inline 47 inline 42 G4double G4Torus::GetRtor() const 48 G4double G4Torus::GetRtor() const 43 { 49 { 44 return fRtor ; 50 return fRtor ; 45 } 51 } 46 52 47 inline 53 inline 48 G4double G4Torus::GetSPhi() const 54 G4double G4Torus::GetSPhi() const 49 { 55 { 50 return fSPhi ; 56 return fSPhi ; 51 } 57 } 52 58 53 inline 59 inline 54 G4double G4Torus::GetDPhi() const 60 G4double G4Torus::GetDPhi() const 55 { 61 { 56 return fDPhi ; 62 return fDPhi ; 57 } 63 } 58 64 >> 65 // Utility functions >> 66 >> 67 inline >> 68 G4double G4Torus::TorusEquation (G4double x, G4double y, G4double z, >> 69 G4double R0, G4double R1) const >> 70 { >> 71 // R0 : Radius of all little circles >> 72 // R1 : Radius of little circles >> 73 >> 74 // An interesting property is that the sign >> 75 // tell if the point is inside or outside >> 76 // or if > EPSILON on the surface >> 77 >> 78 G4double temp; >> 79 >> 80 temp = ((x*x + y*y + z*z) + R0*R0 - R1*R1) ; >> 81 temp = temp*temp ; >> 82 temp = temp - 4*R0*R0*(x*x + y*y) ; >> 83 >> 84 // > 0 Outside >> 85 // < 0 Inside >> 86 >> 87 return temp ; >> 88 } >> 89 >> 90 inline >> 91 G4double G4Torus::TorusDerivativeX (G4double x, G4double y, G4double z, >> 92 G4double R0, G4double R1) const >> 93 { >> 94 return 4*x*(x*x + y*y + z*z + R0*R0 - R1*R1) - 8*R0*R0*x ; >> 95 } >> 96 >> 97 inline >> 98 G4double G4Torus::TorusDerivativeY (G4double x, G4double y, G4double z, >> 99 G4double R0, G4double R1) const >> 100 { >> 101 return 4*y*(x*x + y*y + z*z + R0*R0 - R1*R1) - 8*R0*R0*y ; >> 102 } >> 103 >> 104 inline >> 105 G4double G4Torus::TorusDerivativeZ (G4double x, G4double y, G4double z, >> 106 G4double R0, G4double R1) const >> 107 { >> 108 return 4*z*(x*x + y*y + z*z + R0*R0 - R1*R1) ; >> 109 } >> 110 59 inline 111 inline 60 G4double G4Torus::GetSinStartPhi () const << 112 G4double G4Torus::TorusGradient(G4double dx, G4double dy, G4double dz, >> 113 G4double x, G4double y, G4double z, >> 114 G4double Rmax, G4double Rmin) const 61 { 115 { 62 return std::sin(fSPhi); << 116 // This tells the normal at a surface point >> 117 >> 118 G4double result; >> 119 result = 0; >> 120 result += dx*TorusDerivativeX(x,y,z,Rmax,Rmin); >> 121 result += dy*TorusDerivativeY(x,y,z,Rmax,Rmin); >> 122 result += dz*TorusDerivativeZ(x,y,z,Rmax,Rmin); >> 123 >> 124 return result; 63 } 125 } 64 126 >> 127 // ----------- G4TorusEquation methods --------------- >> 128 65 inline 129 inline 66 G4double G4Torus::GetCosStartPhi () const << 130 void G4TorusEquation::setRadius (G4double Rmax, G4double Rmin) 67 { 131 { 68 return std::cos(fSPhi); << 132 R0 = Rmax; >> 133 R1 = Rmin; 69 } 134 } 70 135 71 inline 136 inline 72 G4double G4Torus::GetSinEndPhi () const << 137 void G4TorusEquation::setPosition (G4double x,G4double y,G4double z) 73 { 138 { 74 return std::sin(fSPhi+fDPhi); << 139 Px = x; >> 140 Py = y; >> 141 Pz = z; 75 } 142 } 76 143 77 inline 144 inline 78 G4double G4Torus::GetCosEndPhi () const << 145 void G4TorusEquation::setPosition (const G4ThreeVector& p) 79 { 146 { 80 return std::cos(fSPhi+fDPhi); << 147 Px = p.x(); >> 148 Py = p.y(); >> 149 Pz = p.z(); 81 } 150 } 82 151 83 inline 152 inline 84 G4double G4Torus::GetCubicVolume() << 153 void G4TorusEquation::setDirection (G4double dirx,G4double diry,G4double dirz) 85 { 154 { 86 if(fCubicVolume != 0.) {;} << 155 dx = dirx; 87 else { fCubicVolume = fDPhi*CLHEP::pi*fRtor << 156 dy = diry; 88 return fCubicVolume; << 157 dz = dirz; 89 } 158 } 90 159 91 inline 160 inline 92 G4double G4Torus::GetSurfaceArea() << 161 void G4TorusEquation::setDirection (const G4ThreeVector& v) 93 { 162 { 94 if(fSurfaceArea != 0.) {;} << 163 dx = v.x(); 95 else << 164 dy = v.y(); 96 { << 165 dz = v.z(); 97 fSurfaceArea = fDPhi*CLHEP::twopi*fRtor*(f << 166 } 98 if(fDPhi < CLHEP::twopi) << 167 99 { << 168 inline 100 fSurfaceArea = fSurfaceArea + CLHEP::two << 169 G4double G4TorusEquation::TorusEquation (G4double x, G4double y, G4double z) 101 } << 170 { 102 } << 171 // An interesting property is that the sign 103 return fSurfaceArea; << 172 // tells if the point is inside or outside >> 173 // or if > EPSILON on the surface >> 174 >> 175 G4double temp; >> 176 >> 177 temp = ((x*x + y*y + z*z) + R0*R0 - R1*R1) ; >> 178 temp = temp*temp ; >> 179 temp = temp - 4*R0*R0*(x*x + y*y) ; >> 180 >> 181 // > 0 Outside >> 182 // < 0 Inside >> 183 >> 184 return temp ; >> 185 } >> 186 >> 187 inline >> 188 G4double G4TorusEquation::TorusDerivativeX (G4double x, G4double y, G4double z) >> 189 { >> 190 return 4*x*(x*x + y*y + z*z + R0*R0 - R1*R1) - 8*R0*R0*x ; >> 191 } >> 192 >> 193 inline >> 194 G4double G4TorusEquation::TorusDerivativeY (G4double x, G4double y, G4double z) >> 195 { >> 196 return 4*y*(x*x + y*y + z*z + R0*R0 - R1*R1) - 8*R0*R0*y ; >> 197 } >> 198 >> 199 inline >> 200 G4double G4TorusEquation::TorusDerivativeZ (G4double x, G4double y, G4double z) >> 201 { >> 202 return 4*z*(x*x + y*y + z*z + R0*R0 - R1*R1) ; >> 203 } >> 204 >> 205 inline >> 206 G4double G4TorusEquation::Function (G4double value) >> 207 { >> 208 G4double Lx,Ly,Lz; >> 209 G4double result; >> 210 >> 211 Lx = Px + value*dx; >> 212 Ly = Py + value*dy; >> 213 Lz = Pz + value*dz; >> 214 >> 215 result = TorusEquation(Lx,Ly,Lz); >> 216 return result ; >> 217 } >> 218 >> 219 inline >> 220 G4double G4TorusEquation::Derivative(G4double value) >> 221 { >> 222 G4double Lx,Ly,Lz; >> 223 G4double result; >> 224 >> 225 Lx = Px + value*dx; >> 226 Ly = Py + value*dy; >> 227 Lz = Pz + value*dz; >> 228 >> 229 result = dx*TorusDerivativeX(Lx,Ly,Lz); >> 230 result += dy*TorusDerivativeY(Lx,Ly,Lz); >> 231 result += dz*TorusDerivativeZ(Lx,Ly,Lz); >> 232 >> 233 return result; 104 } 234 } 105 235