Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Author: John Apostolakis 27 // Author: John Apostolakis 28 // First version: 31 May 2010 28 // First version: 31 May 2010 29 // 29 // 30 // ------------------------------------------- 30 // -------------------------------------------------------------------- 31 #include "G4VoxelSafety.hh" 31 #include "G4VoxelSafety.hh" 32 32 33 #include "G4GeometryTolerance.hh" 33 #include "G4GeometryTolerance.hh" 34 34 35 #include "G4SmartVoxelProxy.hh" 35 #include "G4SmartVoxelProxy.hh" 36 #include "G4SmartVoxelNode.hh" 36 #include "G4SmartVoxelNode.hh" 37 #include "G4SmartVoxelHeader.hh" 37 #include "G4SmartVoxelHeader.hh" 38 38 39 // ******************************************* 39 // ******************************************************************** 40 // Constructor 40 // Constructor 41 // - copied from G4VoxelNavigation (1st v 41 // - copied from G4VoxelNavigation (1st version) 42 // ******************************************* 42 // ******************************************************************** 43 // 43 // 44 G4VoxelSafety::G4VoxelSafety() 44 G4VoxelSafety::G4VoxelSafety() 45 : fVoxelAxisStack(kNavigatorVoxelStackMax,kX << 45 : fBlockList(), >> 46 fVoxelAxisStack(kNavigatorVoxelStackMax,kXAxis), 46 fVoxelNoSlicesStack(kNavigatorVoxelStackMa 47 fVoxelNoSlicesStack(kNavigatorVoxelStackMax,0), 47 fVoxelSliceWidthStack(kNavigatorVoxelStack 48 fVoxelSliceWidthStack(kNavigatorVoxelStackMax,0.), 48 fVoxelNodeNoStack(kNavigatorVoxelStackMax, 49 fVoxelNodeNoStack(kNavigatorVoxelStackMax,0), 49 fVoxelHeaderStack(kNavigatorVoxelStackMax, 50 fVoxelHeaderStack(kNavigatorVoxelStackMax,(G4SmartVoxelHeader*)nullptr) 50 { 51 { 51 kCarTolerance = G4GeometryTolerance::GetInst 52 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 52 } 53 } 53 54 54 // ******************************************* 55 // ******************************************************************** 55 // Destructor 56 // Destructor 56 // ******************************************* 57 // ******************************************************************** 57 // 58 // 58 G4VoxelSafety::~G4VoxelSafety() = default; << 59 G4VoxelSafety::~G4VoxelSafety() >> 60 { >> 61 } 59 62 60 // ******************************************* 63 // ******************************************************************** 61 // ComputeSafety 64 // ComputeSafety 62 // 65 // 63 // Calculates the isotropic distance to the ne 66 // Calculates the isotropic distance to the nearest boundary from the 64 // specified point in the local coordinate sys 67 // specified point in the local coordinate system. 65 // The localpoint utilised must be within the 68 // The localpoint utilised must be within the current volume. 66 // ******************************************* 69 // ******************************************************************** 67 // 70 // 68 G4double 71 G4double 69 G4VoxelSafety::ComputeSafety(const G4ThreeVect 72 G4VoxelSafety::ComputeSafety(const G4ThreeVector& localPoint, 70 const G4VPhysical 73 const G4VPhysicalVolume& currentPhysical, 71 G4double ma 74 G4double maxLength) 72 { 75 { 73 G4LogicalVolume *motherLogical; 76 G4LogicalVolume *motherLogical; 74 G4VSolid *motherSolid; 77 G4VSolid *motherSolid; 75 G4SmartVoxelHeader *motherVoxelHeader; 78 G4SmartVoxelHeader *motherVoxelHeader; 76 G4double motherSafety, ourSafety; 79 G4double motherSafety, ourSafety; 77 G4int localNoDaughters; 80 G4int localNoDaughters; 78 G4double daughterSafety; 81 G4double daughterSafety; 79 82 80 motherLogical = currentPhysical.GetLogicalVo 83 motherLogical = currentPhysical.GetLogicalVolume(); 81 fpMotherLogical= motherLogical; // For use 84 fpMotherLogical= motherLogical; // For use by the other methods 82 motherSolid = motherLogical->GetSolid(); 85 motherSolid = motherLogical->GetSolid(); 83 motherVoxelHeader = motherLogical->GetVoxelH 86 motherVoxelHeader = motherLogical->GetVoxelHeader(); 84 87 85 #ifdef G4VERBOSE 88 #ifdef G4VERBOSE 86 if( fVerbose > 0 ) 89 if( fVerbose > 0 ) 87 { 90 { 88 G4cout << "*** G4VoxelSafety::ComputeSafet 91 G4cout << "*** G4VoxelSafety::ComputeSafety(): ***" << G4endl; 89 } 92 } 90 #endif 93 #endif 91 94 92 // Check that point is inside mother volume 95 // Check that point is inside mother volume 93 // 96 // 94 EInside insideMother = motherSolid->Inside( 97 EInside insideMother = motherSolid->Inside(localPoint); 95 if( insideMother != kInside ) 98 if( insideMother != kInside ) 96 { 99 { 97 #ifdef G4DEBUG_NAVIGATION 100 #ifdef G4DEBUG_NAVIGATION 98 if( insideMother == kOutside ) 101 if( insideMother == kOutside ) 99 { 102 { 100 std::ostringstream message; 103 std::ostringstream message; 101 message << "Safety method called for loc 104 message << "Safety method called for location outside current Volume." 102 << G4endl 105 << G4endl 103 << "Location for safety is Outsi 106 << "Location for safety is Outside this volume. " << G4endl 104 << "The approximate distance to 107 << "The approximate distance to the solid " 105 << "(safety from outside) is: " 108 << "(safety from outside) is: " 106 << motherSolid->DistanceToIn( lo 109 << motherSolid->DistanceToIn( localPoint ) << G4endl; 107 message << " Problem occurred with phys 110 message << " Problem occurred with physical volume: " 108 << " Name: " << currentPhysical. 111 << " Name: " << currentPhysical.GetName() 109 << " Copy No: " << currentPhysic 112 << " Copy No: " << currentPhysical.GetCopyNo() << G4endl 110 << " Local Point = " << local 113 << " Local Point = " << localPoint << G4endl; 111 message << " Description of solid: " << 114 message << " Description of solid: " << G4endl 112 << *motherSolid << G4endl; 115 << *motherSolid << G4endl; 113 G4Exception("G4VoxelSafety::ComputeSafet 116 G4Exception("G4VoxelSafety::ComputeSafety()", "GeomNav0003", 114 FatalException, message); 117 FatalException, message); 115 } 118 } 116 #endif 119 #endif 117 return 0.0; 120 return 0.0; 118 } 121 } 119 122 120 // First limit: mother safety - distance t 123 // First limit: mother safety - distance to outer boundaries 121 // 124 // 122 motherSafety = motherSolid->DistanceToOut(lo 125 motherSafety = motherSolid->DistanceToOut(localPoint); 123 ourSafety = motherSafety; // 126 ourSafety = motherSafety; // Working isotropic safety 124 127 125 #ifdef G4VERBOSE 128 #ifdef G4VERBOSE 126 if(( fCheck ) ) // && ( fVerbose == 1 )) 129 if(( fCheck ) ) // && ( fVerbose == 1 )) 127 { 130 { 128 G4cout << " Invoked DistanceToOut(p) fo 131 G4cout << " Invoked DistanceToOut(p) for mother solid: " 129 << motherSolid->GetName() 132 << motherSolid->GetName() 130 << ". Solid replied: " << motherSaf 133 << ". Solid replied: " << motherSafety << G4endl 131 << " For local point p: " << loc 134 << " For local point p: " << localPoint 132 << ", to be considered as 'mother s 135 << ", to be considered as 'mother safety'." << G4endl; 133 } 136 } 134 #endif 137 #endif 135 localNoDaughters = (G4int)motherLogical->Get << 138 localNoDaughters = motherLogical->GetNoDaughters(); 136 139 137 fBlockList.Enlarge(localNoDaughters); 140 fBlockList.Enlarge(localNoDaughters); 138 fBlockList.Reset(); 141 fBlockList.Reset(); 139 142 140 fVoxelDepth = -1; // Resets the depth -- mu 143 fVoxelDepth = -1; // Resets the depth -- must be done for next method 141 daughterSafety= SafetyForVoxelHeader(motherV 144 daughterSafety= SafetyForVoxelHeader(motherVoxelHeader, localPoint, maxLength, 142 current 145 currentPhysical, 0.0, ourSafety); 143 ourSafety= std::min( motherSafety, daughterS 146 ourSafety= std::min( motherSafety, daughterSafety ); 144 147 145 return ourSafety; 148 return ourSafety; 146 } 149 } 147 150 148 // ******************************************* 151 // ******************************************************************** 149 // SafetyForVoxelNode 152 // SafetyForVoxelNode 150 // 153 // 151 // Calculate the safety for volumes included i 154 // Calculate the safety for volumes included in current Voxel Node 152 // ******************************************* 155 // ******************************************************************** 153 // 156 // 154 G4double 157 G4double 155 G4VoxelSafety::SafetyForVoxelNode( const G4Sma 158 G4VoxelSafety::SafetyForVoxelNode( const G4SmartVoxelNode* curVoxelNode, 156 const G4Thr 159 const G4ThreeVector& localPoint ) 157 { 160 { 158 G4double ourSafety = DBL_MAX; 161 G4double ourSafety = DBL_MAX; 159 162 160 G4long curNoVolumes, contentNo; << 163 G4int curNoVolumes, contentNo, sampleNo; 161 G4int sampleNo; << 162 G4VPhysicalVolume* samplePhysical; 164 G4VPhysicalVolume* samplePhysical; 163 165 164 G4double sampleSafety = 0.0; 166 G4double sampleSafety = 0.0; 165 G4ThreeVector samplePoint; 167 G4ThreeVector samplePoint; 166 G4VSolid* ptrSolid = nullptr; 168 G4VSolid* ptrSolid = nullptr; 167 169 168 curNoVolumes = curVoxelNode->GetNoContained 170 curNoVolumes = curVoxelNode->GetNoContained(); 169 171 170 for ( contentNo=curNoVolumes-1; contentNo>= 172 for ( contentNo=curNoVolumes-1; contentNo>=0; contentNo-- ) 171 { 173 { 172 sampleNo = curVoxelNode->GetVolume((G4in << 174 sampleNo = curVoxelNode->GetVolume(contentNo); 173 if ( !fBlockList.IsBlocked(sampleNo) ) 175 if ( !fBlockList.IsBlocked(sampleNo) ) 174 { 176 { 175 fBlockList.BlockVolume(sampleNo); 177 fBlockList.BlockVolume(sampleNo); 176 178 177 samplePhysical = fpMotherLogical->GetD 179 samplePhysical = fpMotherLogical->GetDaughter(sampleNo); 178 G4AffineTransform sampleTf(samplePhysi 180 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 179 samplePhysi 181 samplePhysical->GetTranslation()); 180 sampleTf.Invert(); 182 sampleTf.Invert(); 181 samplePoint = sampleTf.TransformPoint( 183 samplePoint = sampleTf.TransformPoint(localPoint); 182 ptrSolid = samplePhysical->GetLogicalV 184 ptrSolid = samplePhysical->GetLogicalVolume()->GetSolid(); 183 185 184 sampleSafety = ptrSolid->DistanceToIn( 186 sampleSafety = ptrSolid->DistanceToIn(samplePoint); 185 ourSafety = std::min( sampleSafety, ou 187 ourSafety = std::min( sampleSafety, ourSafety ); 186 #ifdef G4VERBOSE 188 #ifdef G4VERBOSE 187 if(( fCheck ) && ( fVerbose == 1 )) 189 if(( fCheck ) && ( fVerbose == 1 )) 188 { 190 { 189 G4cout << "*** G4VoxelSafety::Safety 191 G4cout << "*** G4VoxelSafety::SafetyForVoxelNode(): ***" << G4endl 190 << " Invoked DistanceToIn( 192 << " Invoked DistanceToIn(p) for daughter solid: " 191 << ptrSolid->GetName() 193 << ptrSolid->GetName() 192 << ". Solid replied: " << sam 194 << ". Solid replied: " << sampleSafety << G4endl 193 << " For local point p: " 195 << " For local point p: " << samplePoint 194 << ", to be considered as 'da 196 << ", to be considered as 'daughter safety'." << G4endl; 195 } 197 } 196 #endif 198 #endif 197 } 199 } 198 } // end for contentNo 200 } // end for contentNo 199 201 200 return ourSafety; 202 return ourSafety; 201 } 203 } 202 204 203 // ******************************************* 205 // ******************************************************************** 204 // SafetyForVoxelHeader 206 // SafetyForVoxelHeader 205 // 207 // 206 // Cycles through levels of headers to process 208 // Cycles through levels of headers to process each node level 207 // Obtained by modifying VoxelLocate (to cycle 209 // Obtained by modifying VoxelLocate (to cycle through Node Headers) 208 // ******************************************* 210 // ********************************************************************* 209 // 211 // 210 G4double 212 G4double 211 G4VoxelSafety::SafetyForVoxelHeader( const G4S 213 G4VoxelSafety::SafetyForVoxelHeader( const G4SmartVoxelHeader* pHeader, 212 const G4T 214 const G4ThreeVector& localPoint, 213 G4d 215 G4double maxLength, 214 const G4V 216 const G4VPhysicalVolume& currentPhysical, //Debug 215 G4d 217 G4double distUpperDepth_Sq, 216 G4d 218 G4double previousMinSafety 217 ) 219 ) 218 { 220 { 219 const G4SmartVoxelHeader* const targetVoxelH 221 const G4SmartVoxelHeader* const targetVoxelHeader = pHeader; 220 G4SmartVoxelNode* targetVoxelNode = nullptr; 222 G4SmartVoxelNode* targetVoxelNode = nullptr; 221 223 222 const G4SmartVoxelProxy* sampleProxy; 224 const G4SmartVoxelProxy* sampleProxy; 223 EAxis targetHeaderAxis; 225 EAxis targetHeaderAxis; 224 G4double targetHeaderMin, targetHeaderMax, t 226 G4double targetHeaderMin, targetHeaderMax, targetHeaderNodeWidth; 225 G4int targetHeaderNoSlices; 227 G4int targetHeaderNoSlices; 226 G4int targetNodeNo; 228 G4int targetNodeNo; 227 229 228 G4double minSafety = previousMinSafety; 230 G4double minSafety = previousMinSafety; 229 G4double ourSafety = DBL_MAX; 231 G4double ourSafety = DBL_MAX; 230 unsigned int checkedNum= 0; 232 unsigned int checkedNum= 0; 231 233 232 ++fVoxelDepth; 234 ++fVoxelDepth; 233 // fVoxelDepth set by ComputeSafety or prev 235 // fVoxelDepth set by ComputeSafety or previous level call 234 236 235 targetHeaderAxis = targetVoxelHeader->G 237 targetHeaderAxis = targetVoxelHeader->GetAxis(); 236 targetHeaderNoSlices = (G4int)targetVoxelHe << 238 targetHeaderNoSlices = targetVoxelHeader->GetNoSlices(); 237 targetHeaderMin = targetVoxelHeader->G 239 targetHeaderMin = targetVoxelHeader->GetMinExtent(); 238 targetHeaderMax = targetVoxelHeader->G 240 targetHeaderMax = targetVoxelHeader->GetMaxExtent(); 239 241 240 targetHeaderNodeWidth = (targetHeaderMax-tar 242 targetHeaderNodeWidth = (targetHeaderMax-targetHeaderMin) 241 / targetHeaderNoSlic 243 / targetHeaderNoSlices; 242 244 243 G4double localCrd = localPoint(targetHeaderA 245 G4double localCrd = localPoint(targetHeaderAxis); 244 246 245 const auto candNodeNo = G4int( (localCrd-ta << 247 const G4int candNodeNo = G4int( (localCrd-targetHeaderMin) 246 / targetHeade 248 / targetHeaderNodeWidth ); 247 // Ensure that it is between 0 and targetHea 249 // Ensure that it is between 0 and targetHeader->GetMaxExtent() - 1 248 250 249 #ifdef G4DEBUG_VOXELISATION 251 #ifdef G4DEBUG_VOXELISATION 250 if( candNodeNo < 0 || candNodeNo > targetHea 252 if( candNodeNo < 0 || candNodeNo > targetHeaderNoSlices-1 ) 251 { 253 { 252 G4ExceptionDescription ed; 254 G4ExceptionDescription ed; 253 ed << " Potential ERROR." 255 ed << " Potential ERROR." 254 << " Point is outside range of Voxel i 256 << " Point is outside range of Voxel in current coordinate" << G4endl; 255 ed << " Node number of point " << localP 257 ed << " Node number of point " << localPoint 256 << "is outside the range. " << G4endl; 258 << "is outside the range. " << G4endl; 257 ed << " Voxel node Num= " << candNodeN 259 ed << " Voxel node Num= " << candNodeNo << " versus minimum= " << 0 258 << " and maximum= " << targetHeaderNoS 260 << " and maximum= " << targetHeaderNoSlices-1 << G4endl; 259 ed << " Axis = " << targetHeaderAxis 261 ed << " Axis = " << targetHeaderAxis 260 << " No of slices = " << targetHeader 262 << " No of slices = " << targetHeaderNoSlices << G4endl; 261 ed << " Local coord = " << localCrd 263 ed << " Local coord = " << localCrd 262 << " Voxel Min = " << targetHeaderMin 264 << " Voxel Min = " << targetHeaderMin 263 << " Max = " << targetHeade 265 << " Max = " << targetHeaderMax << G4endl; 264 G4LogicalVolume *pLogical= currentPhysica 266 G4LogicalVolume *pLogical= currentPhysical.GetLogicalVolume(); 265 ed << " Current volume (physical) = " << 267 ed << " Current volume (physical) = " << currentPhysical.GetName() 266 << " (logical) = " << pLogical->GetN 268 << " (logical) = " << pLogical->GetName() << G4endl; 267 G4VSolid* pSolid= pLogical->GetSolid(); 269 G4VSolid* pSolid= pLogical->GetSolid(); 268 ed << " Solid type = " << pSolid->GetEnt 270 ed << " Solid type = " << pSolid->GetEntityType() << G4endl; 269 ed << *pSolid << G4endl; 271 ed << *pSolid << G4endl; 270 G4Exception("G4VoxelSafety::SafetyForVoxe 272 G4Exception("G4VoxelSafety::SafetyForVoxelHeader()", "GeomNav1003", 271 JustWarning, ed, 273 JustWarning, ed, 272 "Point is outside range of Vo 274 "Point is outside range of Voxel in current coordinate"); 273 } 275 } 274 #endif 276 #endif 275 277 276 const G4int pointNodeNo = 278 const G4int pointNodeNo = 277 std::max( 0, std::min( candNodeN 279 std::max( 0, std::min( candNodeNo, targetHeaderNoSlices-1 ) ); 278 280 279 #ifdef G4VERBOSE 281 #ifdef G4VERBOSE 280 if( fVerbose > 2 ) 282 if( fVerbose > 2 ) 281 { 283 { 282 G4cout << G4endl; 284 G4cout << G4endl; 283 G4cout << "**** G4VoxelSafety::SafetyForVo 285 G4cout << "**** G4VoxelSafety::SafetyForVoxelHeader " << G4endl; 284 G4cout << " Called at Depth = " << fV 286 G4cout << " Called at Depth = " << fVoxelDepth; 285 G4cout << " Calculated pointNodeNo= " << p 287 G4cout << " Calculated pointNodeNo= " << pointNodeNo 286 << " from position= " << localPoi 288 << " from position= " << localPoint(targetHeaderAxis) 287 << " min= " << targetHeaderMin 289 << " min= " << targetHeaderMin 288 << " max= " << targetHeaderMax 290 << " max= " << targetHeaderMax 289 << " width= " << targetHeaderNode 291 << " width= " << targetHeaderNodeWidth 290 << " no-slices= " << targetHeaderN 292 << " no-slices= " << targetHeaderNoSlices 291 << " axis= " << targetHeaderAxis 293 << " axis= " << targetHeaderAxis << G4endl; 292 } 294 } 293 else if (fVerbose == 1) 295 else if (fVerbose == 1) 294 { 296 { 295 G4cout << " VoxelSafety: Depth = " << fVo 297 G4cout << " VoxelSafety: Depth = " << fVoxelDepth 296 << " Number of Slices = " << target 298 << " Number of Slices = " << targetHeaderNoSlices 297 << " Header (address) = " << target 299 << " Header (address) = " << targetVoxelHeader << G4endl; 298 } 300 } 299 #endif 301 #endif 300 302 301 // Stack info for stepping 303 // Stack info for stepping 302 // 304 // 303 fVoxelAxisStack[fVoxelDepth] = targetHeaderA 305 fVoxelAxisStack[fVoxelDepth] = targetHeaderAxis; 304 fVoxelNoSlicesStack[fVoxelDepth] = targetHea 306 fVoxelNoSlicesStack[fVoxelDepth] = targetHeaderNoSlices; 305 fVoxelSliceWidthStack[fVoxelDepth] = targetH 307 fVoxelSliceWidthStack[fVoxelDepth] = targetHeaderNodeWidth; 306 308 307 fVoxelHeaderStack[fVoxelDepth] = pHeader; 309 fVoxelHeaderStack[fVoxelDepth] = pHeader; 308 310 309 G4int trialUp = -1, trialDown = -1; 311 G4int trialUp = -1, trialDown = -1; 310 G4double distUp = DBL_MAX, distDown = DBL_MA 312 G4double distUp = DBL_MAX, distDown = DBL_MAX; 311 313 312 // Using Equivalent voxels - this is pre-ini 314 // Using Equivalent voxels - this is pre-initialisation only 313 // 315 // 314 G4int nextUp = pointNodeNo+1; 316 G4int nextUp = pointNodeNo+1; 315 G4int nextDown = pointNodeNo-1; 317 G4int nextDown = pointNodeNo-1; 316 318 317 G4int nextNodeNo = pointNodeNo; 319 G4int nextNodeNo = pointNodeNo; 318 G4double distAxis; // Distance in current A 320 G4double distAxis; // Distance in current Axis 319 distAxis = 0.0; // Starting in node contain 321 distAxis = 0.0; // Starting in node containing local Coordinate 320 322 321 G4bool nextIsInside = false; 323 G4bool nextIsInside = false; 322 324 323 G4double distMaxInterest= std::min( previous 325 G4double distMaxInterest= std::min( previousMinSafety, maxLength); 324 // We will not look beyond this distance. 326 // We will not look beyond this distance. 325 // This distance will be updated to reflec 327 // This distance will be updated to reflect the 326 // max ( minSafety, maxLength ) at each st 328 // max ( minSafety, maxLength ) at each step 327 329 328 targetNodeNo = pointNodeNo; 330 targetNodeNo = pointNodeNo; 329 do 331 do 330 { 332 { 331 G4double nodeSafety = DBL_MAX, headerSafe 333 G4double nodeSafety = DBL_MAX, headerSafety = DBL_MAX; 332 fVoxelNodeNoStack[fVoxelDepth] = targetNo 334 fVoxelNodeNoStack[fVoxelDepth] = targetNodeNo; 333 335 334 ++checkedNum; 336 ++checkedNum; 335 337 336 sampleProxy = targetVoxelHeader->GetSlice 338 sampleProxy = targetVoxelHeader->GetSlice(targetNodeNo); 337 339 338 #ifdef G4DEBUG_NAVIGATION 340 #ifdef G4DEBUG_NAVIGATION 339 assert( sampleProxy != 0); 341 assert( sampleProxy != 0); 340 if( fVerbose > 2 ) 342 if( fVerbose > 2 ) 341 { 343 { 342 G4cout << " -Checking node " << targetN 344 G4cout << " -Checking node " << targetNodeNo 343 << " is proxy with address " << 345 << " is proxy with address " << sampleProxy << G4endl; 344 } 346 } 345 #endif 347 #endif 346 348 347 if ( sampleProxy == nullptr ) << 349 if ( sampleProxy == 0 ) 348 { 350 { 349 G4ExceptionDescription ed; 351 G4ExceptionDescription ed; 350 ed << " Problem for node number= " << t 352 ed << " Problem for node number= " << targetNodeNo 351 << " Number of slides = " << targ 353 << " Number of slides = " << targetHeaderNoSlices 352 << G4endl; 354 << G4endl; 353 G4Exception( "G4VoxelSafety::SafetyForV 355 G4Exception( "G4VoxelSafety::SafetyForVoxelHeader()", "GeomNav0003", 354 FatalException, ed, 356 FatalException, ed, 355 "Problem sampleProxy is Ze 357 "Problem sampleProxy is Zero. Failure in loop."); 356 } 358 } 357 else if ( sampleProxy->IsNode() ) 359 else if ( sampleProxy->IsNode() ) 358 { 360 { 359 targetVoxelNode = sampleProxy->GetNode( 361 targetVoxelNode = sampleProxy->GetNode(); 360 362 361 // Deal with the node here [ i.e. the l 363 // Deal with the node here [ i.e. the last level ] 362 // 364 // 363 nodeSafety= SafetyForVoxelNode( targetV 365 nodeSafety= SafetyForVoxelNode( targetVoxelNode, localPoint); 364 #ifdef G4DEBUG_NAVIGATION 366 #ifdef G4DEBUG_NAVIGATION 365 if( fVerbose > 2 ) 367 if( fVerbose > 2 ) 366 { 368 { 367 G4cout << " -- It is a Node "; 369 G4cout << " -- It is a Node "; 368 G4cout << " its safety= " << node 370 G4cout << " its safety= " << nodeSafety 369 << " our level Saf = " << our 371 << " our level Saf = " << ourSafety 370 << " MinSaf= " << minSafety 372 << " MinSaf= " << minSafety << G4endl; 371 } 373 } 372 #endif 374 #endif 373 ourSafety= std::min( ourSafety, nodeSa 375 ourSafety= std::min( ourSafety, nodeSafety ); 374 376 375 trialUp = targetVoxelNode->GetMaxEquiv 377 trialUp = targetVoxelNode->GetMaxEquivalentSliceNo()+1; 376 trialDown = targetVoxelNode->GetMinEqu 378 trialDown = targetVoxelNode->GetMinEquivalentSliceNo()-1; 377 } 379 } 378 else 380 else 379 { 381 { 380 const G4SmartVoxelHeader* pNewVoxelHea 382 const G4SmartVoxelHeader* pNewVoxelHeader = sampleProxy->GetHeader(); 381 383 382 G4double distCombined_Sq; 384 G4double distCombined_Sq; 383 distCombined_Sq = distUpperDepth_Sq + 385 distCombined_Sq = distUpperDepth_Sq + distAxis*distAxis; 384 386 385 #ifdef G4DEBUG_NAVIGATION 387 #ifdef G4DEBUG_NAVIGATION 386 if( fVerbose > 2 ) 388 if( fVerbose > 2 ) 387 { 389 { 388 G4double distCombined= std::sqrt( di 390 G4double distCombined= std::sqrt( distCombined_Sq ); 389 G4double distUpperDepth= std::sqrt ( 391 G4double distUpperDepth= std::sqrt ( distUpperDepth_Sq ); 390 G4cout << " -- It is a Header " << G 392 G4cout << " -- It is a Header " << G4endl; 391 G4cout << " Recurse to deal with ne 393 G4cout << " Recurse to deal with next level, fVoxelDepth= " 392 << fVoxelDepth+1 << G4endl; 394 << fVoxelDepth+1 << G4endl; 393 G4cout << " Distances: Upper= " << 395 G4cout << " Distances: Upper= " << distUpperDepth 394 << " Axis= " << distAxis 396 << " Axis= " << distAxis 395 << " Combined= " << distCombi 397 << " Combined= " << distCombined << G4endl; 396 } 398 } 397 #endif 399 #endif 398 400 399 // Recurse to deal with lower levels 401 // Recurse to deal with lower levels 400 // 402 // 401 headerSafety= SafetyForVoxelHeader( pN 403 headerSafety= SafetyForVoxelHeader( pNewVoxelHeader, localPoint, 402 ma 404 maxLength, currentPhysical, 403 di 405 distCombined_Sq, minSafety); 404 ourSafety = std::min( ourSafety, heade 406 ourSafety = std::min( ourSafety, headerSafety ); 405 407 406 #ifdef G4DEBUG_NAVIGATION 408 #ifdef G4DEBUG_NAVIGATION 407 if( fVerbose > 2 ) 409 if( fVerbose > 2 ) 408 { 410 { 409 G4cout << " >> Header safety = 411 G4cout << " >> Header safety = " << headerSafety 410 << " our level Saf = " << our 412 << " our level Saf = " << ourSafety << G4endl; 411 } 413 } 412 #endif 414 #endif 413 trialUp = pNewVoxelHeader->GetMaxEqu 415 trialUp = pNewVoxelHeader->GetMaxEquivalentSliceNo()+1; 414 trialDown = pNewVoxelHeader->GetMinEqu 416 trialDown = pNewVoxelHeader->GetMinEquivalentSliceNo()-1; 415 } 417 } 416 minSafety = std::min( minSafety, ourSafet 418 minSafety = std::min( minSafety, ourSafety ); 417 419 418 // Find next closest Voxel 420 // Find next closest Voxel 419 // - first try: by simple subtraction 421 // - first try: by simple subtraction 420 // - later: using distance (TODO - t 422 // - later: using distance (TODO - tbc) 421 // 423 // 422 if( targetNodeNo >= pointNodeNo ) 424 if( targetNodeNo >= pointNodeNo ) 423 { 425 { 424 nextUp = trialUp; 426 nextUp = trialUp; 425 // distUp = std::max( targetHeaderMa 427 // distUp = std::max( targetHeaderMax-localCrd, 0.0 ); 426 G4double lowerEdgeOfNext = targetHeade 428 G4double lowerEdgeOfNext = targetHeaderMin 427 + nextUp * ta 429 + nextUp * targetHeaderNodeWidth; 428 distUp = lowerEdgeOfNext-localCrd ; 430 distUp = lowerEdgeOfNext-localCrd ; 429 if( distUp < 0.0 ) 431 if( distUp < 0.0 ) 430 { 432 { 431 distUp = DBL_MAX; // On the wrong 433 distUp = DBL_MAX; // On the wrong side - must not be considered 432 } 434 } 433 #ifdef G4DEBUG_NAVIGATION 435 #ifdef G4DEBUG_NAVIGATION 434 if( fVerbose > 2 ) 436 if( fVerbose > 2 ) 435 { 437 { 436 G4cout << " > Updated nextUp= " << ne 438 G4cout << " > Updated nextUp= " << nextUp << G4endl; 437 } 439 } 438 #endif 440 #endif 439 } 441 } 440 442 441 if( targetNodeNo <= pointNodeNo ) 443 if( targetNodeNo <= pointNodeNo ) 442 { 444 { 443 nextDown = trialDown; 445 nextDown = trialDown; 444 // distDown = std::max( localCrd-targ 446 // distDown = std::max( localCrd-targetHeaderMin, 0.0); 445 G4double upperEdgeOfNext = targetHead 447 G4double upperEdgeOfNext = targetHeaderMin 446 + (nextDown+ 448 + (nextDown+1) * targetHeaderNodeWidth; 447 distDown = localCrd-upperEdgeOfNext; 449 distDown = localCrd-upperEdgeOfNext; 448 if( distDown < 0.0 ) 450 if( distDown < 0.0 ) 449 { 451 { 450 distDown= DBL_MAX; // On the wrong 452 distDown= DBL_MAX; // On the wrong side - must not be considered 451 } 453 } 452 #ifdef G4DEBUG_NAVIGATION 454 #ifdef G4DEBUG_NAVIGATION 453 if( fVerbose > 2 ) 455 if( fVerbose > 2 ) 454 { 456 { 455 G4cout << " > Updated nextDown= " << 457 G4cout << " > Updated nextDown= " << nextDown << G4endl; 456 } 458 } 457 #endif 459 #endif 458 } 460 } 459 461 460 #ifdef G4DEBUG_NAVIGATION 462 #ifdef G4DEBUG_NAVIGATION 461 if( fVerbose > 2 ) 463 if( fVerbose > 2 ) 462 { 464 { 463 G4cout << " Node= " << pointNodeNo 465 G4cout << " Node= " << pointNodeNo 464 << " Up: next= " << nextUp << 466 << " Up: next= " << nextUp << " d# " 465 << nextUp - pointNodeNo 467 << nextUp - pointNodeNo 466 << " trialUp= " << trialUp << " 468 << " trialUp= " << trialUp << " d# " 467 << trialUp - pointNodeNo 469 << trialUp - pointNodeNo 468 << " Down: next= " << nextDown < 470 << " Down: next= " << nextDown << " d# " 469 << targetNodeNo - nextDown 471 << targetNodeNo - nextDown 470 << " trialDwn= " << trialDown << 472 << " trialDwn= " << trialDown << " d# " 471 << targetNodeNo - trialDown 473 << targetNodeNo - trialDown 472 << " condition (next is Inside)= 474 << " condition (next is Inside)= " << nextIsInside 473 << G4endl; 475 << G4endl; 474 } 476 } 475 #endif 477 #endif 476 478 477 G4bool UpIsClosest; 479 G4bool UpIsClosest; 478 UpIsClosest = distUp < distDown; 480 UpIsClosest = distUp < distDown; 479 481 480 if( (nextUp < targetHeaderNoSlices) 482 if( (nextUp < targetHeaderNoSlices) 481 && (UpIsClosest || (nextDown < 0)) ) 483 && (UpIsClosest || (nextDown < 0)) ) 482 { 484 { 483 nextNodeNo = nextUp; 485 nextNodeNo = nextUp; 484 distAxis = distUp; 486 distAxis = distUp; 485 ++nextUp; // Default 487 ++nextUp; // Default 486 #ifdef G4VERBOSE 488 #ifdef G4VERBOSE 487 if( fVerbose > 2 ) 489 if( fVerbose > 2 ) 488 { 490 { 489 G4cout << " > Chose Up. Depth= " < 491 G4cout << " > Chose Up. Depth= " << fVoxelDepth 490 << " Nodes: next= " << next 492 << " Nodes: next= " << nextNodeNo 491 << " new nextUp= " << nextU 493 << " new nextUp= " << nextUp 492 << " Dist = " << distAxis << 494 << " Dist = " << distAxis << G4endl; 493 } 495 } 494 #endif 496 #endif 495 } 497 } 496 else 498 else 497 { 499 { 498 nextNodeNo = nextDown; 500 nextNodeNo = nextDown; 499 distAxis = distDown; 501 distAxis = distDown; 500 --nextDown; // A default value 502 --nextDown; // A default value 501 #ifdef G4VERBOSE 503 #ifdef G4VERBOSE 502 if( fVerbose > 2 ) 504 if( fVerbose > 2 ) 503 { 505 { 504 G4cout << " > Chose Down. Depth= " < 506 G4cout << " > Chose Down. Depth= " << fVoxelDepth 505 << " Nodes: next= " << nextNo 507 << " Nodes: next= " << nextNodeNo 506 << " new nextDown= " << nextD 508 << " new nextDown= " << nextDown 507 << " Dist = " << distAxis << G 509 << " Dist = " << distAxis << G4endl; 508 } 510 } 509 #endif 511 #endif 510 } 512 } 511 513 512 nextIsInside = (nextNodeNo >= 0) && (next 514 nextIsInside = (nextNodeNo >= 0) && (nextNodeNo < targetHeaderNoSlices); 513 if( nextIsInside ) 515 if( nextIsInside ) 514 { 516 { 515 targetNodeNo= nextNodeNo; 517 targetNodeNo= nextNodeNo; 516 518 517 #ifdef G4DEBUG_NAVIGATION 519 #ifdef G4DEBUG_NAVIGATION 518 assert( targetVoxelHeader->GetSlice(nex 520 assert( targetVoxelHeader->GetSlice(nextNodeNo) != 0 ); 519 G4bool bContinue = (distAxis<minSafety) 521 G4bool bContinue = (distAxis<minSafety); 520 if( !bContinue ) 522 if( !bContinue ) 521 { 523 { 522 if( fVerbose > 2 ) 524 if( fVerbose > 2 ) 523 { 525 { 524 G4cout << " Can skip remaining at d 526 G4cout << " Can skip remaining at depth " << targetHeaderAxis 525 << " >> distAxis= " << dist 527 << " >> distAxis= " << distAxis 526 << " minSafety= " << minSafe 528 << " minSafety= " << minSafety << G4endl; 527 } 529 } 528 } 530 } 529 #endif 531 #endif 530 } 532 } 531 else 533 else 532 { 534 { 533 #ifdef G4DEBUG_NAVIGATION 535 #ifdef G4DEBUG_NAVIGATION 534 if( fVerbose > 2) 536 if( fVerbose > 2) 535 { 537 { 536 G4cout << " VoxSaf> depth= " << fVoxe 538 G4cout << " VoxSaf> depth= " << fVoxelDepth << G4endl; 537 G4cout << " VoxSaf> No more candidate 539 G4cout << " VoxSaf> No more candidates: nodeDown= " << nextDown 538 << " nodeUp= " << nextUp 540 << " nodeUp= " << nextUp 539 << " lastSlice= " << targetHea 541 << " lastSlice= " << targetHeaderNoSlices << G4endl; 540 } 542 } 541 #endif 543 #endif 542 } 544 } 543 545 544 // This calculation can be 'hauled'-up to 546 // This calculation can be 'hauled'-up to where minSafety is calculated 545 // 547 // 546 distMaxInterest = std::min( minSafety, ma 548 distMaxInterest = std::min( minSafety, maxLength ); 547 549 548 } while ( nextIsInside && ( distAxis*distAxi 550 } while ( nextIsInside && ( distAxis*distAxis + distUpperDepth_Sq 549 < distMaxInterest* 551 < distMaxInterest*distMaxInterest ) ); 550 552 551 #ifdef G4VERBOSE 553 #ifdef G4VERBOSE 552 if( fVerbose > 0 ) 554 if( fVerbose > 0 ) 553 { 555 { 554 G4cout << " Ended for targetNodeNo -- chec 556 G4cout << " Ended for targetNodeNo -- checked " << checkedNum << " out of " 555 << targetHeaderNoSlices << " slices 557 << targetHeaderNoSlices << " slices." << G4endl; 556 G4cout << " ===== Returning from SafetyFor 558 G4cout << " ===== Returning from SafetyForVoxelHeader " 557 << " Depth= " << fVoxelDepth << G4 559 << " Depth= " << fVoxelDepth << G4endl 558 << G4endl; 560 << G4endl; 559 } 561 } 560 #endif 562 #endif 561 563 562 // Go back one level 564 // Go back one level 563 fVoxelDepth--; 565 fVoxelDepth--; 564 566 565 return ourSafety; 567 return ourSafety; 566 } 568 } 567 569