Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/navigation/src/G4PropagatorInField.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/navigation/src/G4PropagatorInField.cc (Version 11.3.0) and /geometry/navigation/src/G4PropagatorInField.cc (Version 10.5)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // GEANT4 tag $ Name:  $
                                                   >>  28 // 
 26 // class G4PropagatorInField Implementation        29 // class G4PropagatorInField Implementation
 27 //                                                 30 // 
 28 //  This class implements an algorithm to trac     31 //  This class implements an algorithm to track a particle in a
 29 //  non-uniform magnetic field. It utilises an     32 //  non-uniform magnetic field. It utilises an ODE solver (with
 30 //  the Runge - Kutta method) to evolve the pa     33 //  the Runge - Kutta method) to evolve the particle, and drives it
 31 //  until the particle has traveled a set dist     34 //  until the particle has traveled a set distance or it enters a new 
 32 //  volume.                                        35 //  volume.
 33 //                                                 36 //                                                                     
 34 // 14.10.96 John Apostolakis, design and imple <<  37 // 14.10.96 John Apostolakis,   design and implementation
 35 // 17.03.97 John Apostolakis, renaming new set <<  38 // 17.03.97 John Apostolakis,   renaming new set functions being added
                                                   >>  39 //
 36 // -------------------------------------------     40 // ---------------------------------------------------------------------------
 37                                                    41 
 38 #include <iomanip>                                 42 #include <iomanip>
 39                                                    43 
 40 #include "G4PropagatorInField.hh"                  44 #include "G4PropagatorInField.hh"
 41 #include "G4ios.hh"                                45 #include "G4ios.hh"
 42 #include "G4SystemOfUnits.hh"                      46 #include "G4SystemOfUnits.hh"
 43 #include "G4ThreeVector.hh"                        47 #include "G4ThreeVector.hh"
 44 #include "G4Material.hh"                       << 
 45 #include "G4VPhysicalVolume.hh"                    48 #include "G4VPhysicalVolume.hh"
 46 #include "G4Navigator.hh"                          49 #include "G4Navigator.hh"
 47 #include "G4GeometryTolerance.hh"                  50 #include "G4GeometryTolerance.hh"
 48 #include "G4VCurvedTrajectoryFilter.hh"            51 #include "G4VCurvedTrajectoryFilter.hh"
 49 #include "G4ChordFinder.hh"                        52 #include "G4ChordFinder.hh"
 50 #include "G4MultiLevelLocator.hh"                  53 #include "G4MultiLevelLocator.hh"
 51                                                    54 
 52                                                <<  55 ///////////////////////////////////////////////////////////////////////////
 53 // ------------------------------------------- << 
 54 // Constructors and destructor                 << 
 55 //                                                 56 //
 56 G4PropagatorInField::G4PropagatorInField( G4Na <<  57 // Constructors and destructor
 57                                           G4Fi <<  58 
 58                                           G4VI <<  59 G4PropagatorInField::G4PropagatorInField( G4Navigator    *theNavigator, 
 59   : fDetectorFieldMgr(detectorFieldMgr),       <<  60                                           G4FieldManager *detectorFieldMgr,
                                                   >>  61                                           G4VIntersectionLocator *vLocator  )
                                                   >>  62   : 
                                                   >>  63     fMax_loop_count(1000),
                                                   >>  64     fUseSafetyForOptimisation(true),   // (false) is less sensitive to incorrect safety
                                                   >>  65     fZeroStepThreshold( 0.0 ),         // length of what is recognised as 'zero' step
                                                   >>  66     fDetectorFieldMgr(detectorFieldMgr), 
                                                   >>  67     fpTrajectoryFilter( 0 ),
 60     fNavigator(theNavigator),                      68     fNavigator(theNavigator),
 61     fCurrentFieldMgr(detectorFieldMgr),            69     fCurrentFieldMgr(detectorFieldMgr),
                                                   >>  70     fSetFieldMgr(false),
 62     End_PointAndTangent(G4ThreeVector(0.,0.,0.     71     End_PointAndTangent(G4ThreeVector(0.,0.,0.),
 63                         G4ThreeVector(0.,0.,0. <<  72                         G4ThreeVector(0.,0.,0.),0.0,0.0,0.0,0.0,0.0),
 64 {                                              <<  73     fParticleIsLooping(false),
 65   fEpsilonStep = (fDetectorFieldMgr != nullptr <<  74     fNoZeroStep(0), 
 66                ? fDetectorFieldMgr->GetMaximum <<  75     fVerboseLevel(0),
 67                                                <<  76     fVerbTracePiF(false),
                                                   >>  77     fFirstStepInVolume(true),
                                                   >>  78     fLastStepInVolume(true),
                                                   >>  79     fNewTrack(true)
                                                   >>  80 {
                                                   >>  81   if(fDetectorFieldMgr) { fEpsilonStep = fDetectorFieldMgr->GetMaximumEpsilonStep();}
                                                   >>  82   else                  { fEpsilonStep= 1.0e-5; } 
                                                   >>  83   fActionThreshold_NoZeroSteps = 2; 
                                                   >>  84   fSevereActionThreshold_NoZeroSteps = 10; 
                                                   >>  85   fAbandonThreshold_NoZeroSteps = 50; 
                                                   >>  86   fFull_CurveLen_of_LastAttempt = -1; 
                                                   >>  87   fLast_ProposedStepLength = -1;
                                                   >>  88   fLargestAcceptableStep = 1000.0 * meter;
 68                                                    89 
 69   fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) <<  90   fPreviousSftOrigin= G4ThreeVector(0.,0.,0.);
                                                   >>  91   fPreviousSafety= 0.0;
 70   kCarTolerance = G4GeometryTolerance::GetInst     92   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 71   fZeroStepThreshold = std::max( 1.0e5 * kCarT <<  93   fZeroStepThreshold= std::max( 1.0e5 * kCarTolerance, 1.0e-1 * micrometer );
 72                                                    94 
 73   fLargestAcceptableStep = 100.0 * meter;  //  << 
 74   fMaxStepSizeMultiplier=   0.1 ;   // 0.1 in  << 
 75   fMinBigDistance= 100. * CLHEP::mm;           << 
 76 #ifdef G4DEBUG_FIELD                               95 #ifdef G4DEBUG_FIELD
 77   G4cout << " PiF: Zero Step Threshold set to      96   G4cout << " PiF: Zero Step Threshold set to "
 78          << fZeroStepThreshold / millimeter        97          << fZeroStepThreshold / millimeter
 79          << " mm." << G4endl;                  <<  98    << " mm." << G4endl;
 80   G4cout << " PiF:   Value of kCarTolerance =      99   G4cout << " PiF:   Value of kCarTolerance = "
 81          << kCarTolerance / millimeter            100          << kCarTolerance / millimeter 
 82          << " mm. " << G4endl;                 << 101    << " mm. " << G4endl;
 83   fVerboseLevel = 2;                              102   fVerboseLevel = 2;
 84   fVerbTracePiF = true;                           103   fVerbTracePiF = true;   
 85 #endif                                            104 #endif 
 86                                                   105 
 87   // Defining Intersection Locator and his par    106   // Defining Intersection Locator and his parameters
 88   if ( vLocator == nullptr )                   << 107   if (vLocator==0)
 89   {                                               108   {
 90     fIntersectionLocator = new G4MultiLevelLoc << 109     fIntersectionLocator= new G4MultiLevelLocator(theNavigator);
 91     fAllocatedLocator = true;                  << 110     fAllocatedLocator= true;
 92   }                                               111   }
 93   else                                            112   else
 94   {                                               113   {
 95     fIntersectionLocator = vLocator;           << 114     fIntersectionLocator= vLocator;
 96     fAllocatedLocator = false;                 << 115     fAllocatedLocator= false;
 97   }                                               116   }
 98   RefreshIntersectionLocator();  //  Copy all     117   RefreshIntersectionLocator();  //  Copy all relevant parameters
 99 }                                                 118 }
100                                                   119 
101 // ------------------------------------------- << 120 ///////////////////////////////////////////////////////////////////////////
102 //                                                121 //
103 G4PropagatorInField::~G4PropagatorInField()       122 G4PropagatorInField::~G4PropagatorInField()
104 {                                                 123 {
105   if(fAllocatedLocator)  { delete  fIntersecti    124   if(fAllocatedLocator)  { delete  fIntersectionLocator; }
106 }                                                 125 }
107                                                   126 
108 // ------------------------------------------- << 127 ///////////////////////////////////////////////////////////////////////////
109 // Update the IntersectionLocator with current << 
110 //                                                128 //
111 void G4PropagatorInField::RefreshIntersectionL << 129 // Update the IntersectionLocator with current parameters
                                                   >> 130 void
                                                   >> 131 G4PropagatorInField::RefreshIntersectionLocator()
112 {                                                 132 {
113   fIntersectionLocator->SetEpsilonStepFor(fEps    133   fIntersectionLocator->SetEpsilonStepFor(fEpsilonStep);
114   fIntersectionLocator->SetDeltaIntersectionFo    134   fIntersectionLocator->SetDeltaIntersectionFor(fCurrentFieldMgr->GetDeltaIntersection());
115   fIntersectionLocator->SetChordFinderFor(GetC    135   fIntersectionLocator->SetChordFinderFor(GetChordFinder());
116   fIntersectionLocator->SetSafetyParametersFor    136   fIntersectionLocator->SetSafetyParametersFor( fUseSafetyForOptimisation);
117 }                                                 137 }
118                                                   138 
119 // ------------------------------------------- << 139 ///////////////////////////////////////////////////////////////////////////
120 // Compute the next geometric Step             << 
121 //                                                140 //
122 G4double G4PropagatorInField::ComputeStep(     << 141 // Compute the next geometric Step
                                                   >> 142 
                                                   >> 143 G4double
                                                   >> 144 G4PropagatorInField::ComputeStep(
123                 G4FieldTrack&      pFieldTrack    145                 G4FieldTrack&      pFieldTrack,
124                 G4double           CurrentProp    146                 G4double           CurrentProposedStepLength,
125                 G4double&          currentSafe    147                 G4double&          currentSafety,                // IN/OUT
126                 G4VPhysicalVolume* pPhysVol,   << 148                 G4VPhysicalVolume* pPhysVol)
127                 G4bool             canRelaxDel << 
128 {                                                 149 {  
129   GetChordFinder()->OnComputeStep(&pFieldTrack << 150   GetChordFinder()->OnComputeStep();
130   const G4double deltaChord = GetChordFinder() << 
131                                                   151 
132   // If CurrentProposedStepLength is too small    152   // If CurrentProposedStepLength is too small for finding Chords
133   // then return with no action (for now - TOD    153   // then return with no action (for now - TODO: some action)
134   //                                              154   //
135   const char* methodName = "G4PropagatorInFiel << 155   const char* methodName="G4PropagatorInField::ComputeStep";
136   if (CurrentProposedStepLength<kCarTolerance) << 156   if(CurrentProposedStepLength<kCarTolerance)
137   {                                               157   {
138     return kInfinity;                             158     return kInfinity;
139   }                                               159   }
140                                                   160 
141   // Introducing smooth trajectory display (ja    161   // Introducing smooth trajectory display (jacek 01/11/2002)
142   //                                              162   //
143   if (fpTrajectoryFilter != nullptr)           << 163   if (fpTrajectoryFilter)
144   {                                               164   {
145     fpTrajectoryFilter->CreateNewTrajectorySeg    165     fpTrajectoryFilter->CreateNewTrajectorySegment();
146   }                                               166   }
147                                                   167 
148   fFirstStepInVolume = fNewTrack ? true : fLas    168   fFirstStepInVolume = fNewTrack ? true : fLastStepInVolume;
149   fLastStepInVolume = false;                   << 169   fLastStepInVolume= false;
150   fNewTrack = false;                           << 170   fNewTrack= false; 
151                                                   171 
152   if( fVerboseLevel > 2 )                         172   if( fVerboseLevel > 2 )
153   {                                               173   {
154     G4cout << methodName << " called" << G4end    174     G4cout << methodName << " called" << G4endl;
155     G4cout << "   Starting FT: " << pFieldTrac    175     G4cout << "   Starting FT: " << pFieldTrack;
156     G4cout << "   Requested length = " << Curr    176     G4cout << "   Requested length = " << CurrentProposedStepLength << G4endl;
157     G4cout << "   PhysVol = ";                    177     G4cout << "   PhysVol = ";
158     if( pPhysVol != nullptr )                  << 178     if( pPhysVol )
159     {                                          << 
160        G4cout << pPhysVol->GetName() << G4endl    179        G4cout << pPhysVol->GetName() << G4endl;
161     }                                          << 
162     else                                          180     else
163     {                                          << 
164        G4cout << " N/A ";                         181        G4cout << " N/A ";
165     }                                          << 
166     G4cout << G4endl;                             182     G4cout << G4endl;
167   }                                               183   }
168                                                   184   
169   // Parameters for adaptive Runge-Kutta integ    185   // Parameters for adaptive Runge-Kutta integration
170                                                   186   
171   G4double h_TrialStepSize;        // 1st Step << 187   G4double      h_TrialStepSize;        // 1st Step Size 
172   G4double TruePathLength = CurrentProposedSte << 188   G4double      TruePathLength = CurrentProposedStepLength;
173   G4double StepTaken = 0.0;                    << 189   G4double      StepTaken = 0.0; 
174   G4double s_length_taken, epsilon;            << 190   G4double      s_length_taken, epsilon ; 
175   G4bool   intersects;                         << 191   G4bool        intersects;
176   G4bool   first_substep = true;               << 192   G4bool        first_substep = true;
177                                                   193 
178   G4double NewSafety;                          << 194   G4double      NewSafety;
179   fParticleIsLooping = false;                     195   fParticleIsLooping = false;
180                                                   196 
181   // If not yet done,                             197   // If not yet done, 
182   //   Set the field manager to the local  one    198   //   Set the field manager to the local  one if the volume has one, 
183   //                      or to the global one    199   //                      or to the global one if not
184   //                                              200   //
185   if( !fSetFieldMgr )                          << 201   if( !fSetFieldMgr ) fCurrentFieldMgr= FindAndSetFieldManager( pPhysVol ); 
186   {                                            << 202   // For the next call, the field manager must again be set
187     fCurrentFieldMgr = FindAndSetFieldManager( << 203   fSetFieldMgr= false;
188   }                                            << 
189   fSetFieldMgr = false; // For next call, the  << 
190                                                   204 
191   G4FieldTrack CurrentState(pFieldTrack);      << 205   G4FieldTrack  CurrentState(pFieldTrack);
192   G4FieldTrack OriginalState = CurrentState;   << 206   G4FieldTrack  OriginalState = CurrentState;
193                                                   207 
194   // If the Step length is "infinite", then an    208   // If the Step length is "infinite", then an approximate-maximum Step
195   // length (used to calculate the relative ac << 209   // length (used to calculate the relative accuracy) must be guessed.
196   //                                              210   //
197   if( CurrentProposedStepLength >= fLargestAcc    211   if( CurrentProposedStepLength >= fLargestAcceptableStep )
198   {                                               212   {
199     G4ThreeVector StartPointA, VelocityUnit;      213     G4ThreeVector StartPointA, VelocityUnit;
200     StartPointA  = pFieldTrack.GetPosition();     214     StartPointA  = pFieldTrack.GetPosition();
201     VelocityUnit = pFieldTrack.GetMomentumDir(    215     VelocityUnit = pFieldTrack.GetMomentumDir();
202                                                   216 
203     G4double trialProposedStep = fMaxStepSizeM << 217     G4double trialProposedStep = 1.e2 * ( 10.0 * cm + 
204       fNavigator->GetWorldVolume()->GetLogical    218       fNavigator->GetWorldVolume()->GetLogicalVolume()->
205                   GetSolid()->DistanceToOut(St    219                   GetSolid()->DistanceToOut(StartPointA, VelocityUnit) );
206     CurrentProposedStepLength = std::min( tria << 220     CurrentProposedStepLength= std::min( trialProposedStep,
207                                           fLar << 221                                            fLargestAcceptableStep ); 
208   }                                               222   }
209   epsilon = fCurrentFieldMgr->GetDeltaOneStep(    223   epsilon = fCurrentFieldMgr->GetDeltaOneStep() / CurrentProposedStepLength;
                                                   >> 224   // G4double raw_epsilon= epsilon;
210   G4double epsilonMin= fCurrentFieldMgr->GetMi    225   G4double epsilonMin= fCurrentFieldMgr->GetMinimumEpsilonStep();
211   G4double epsilonMax= fCurrentFieldMgr->GetMa    226   G4double epsilonMax= fCurrentFieldMgr->GetMaximumEpsilonStep();
212   if( epsilon < epsilonMin )  { epsilon = epsi << 227   if( epsilon < epsilonMin ) epsilon = epsilonMin;
213   if( epsilon > epsilonMax )  { epsilon = epsi << 228   if( epsilon > epsilonMax ) epsilon = epsilonMax;
214   SetEpsilonStep( epsilon );                      229   SetEpsilonStep( epsilon );
215                                                   230 
                                                   >> 231 
216   // Values for Intersection Locator has to be    232   // Values for Intersection Locator has to be updated on each call for the
217   // case that CurrentFieldManager has changed    233   // case that CurrentFieldManager has changed from the one of previous step
218   //                                           << 
219   RefreshIntersectionLocator();                   234   RefreshIntersectionLocator();
220                                                   235 
221   // Shorten the proposed step in case of earl << 236   // G4cout << "G4PiF: Epsilon of current step - raw= " << raw_epsilon
                                                   >> 237   //        << " final= " << epsilon << G4endl;
                                                   >> 238 
                                                   >> 239   //  Shorten the proposed step in case of earlier problems (zero steps)
222   //                                              240   // 
223   if( fNoZeroStep > fActionThreshold_NoZeroSte    241   if( fNoZeroStep > fActionThreshold_NoZeroSteps )
224   {                                               242   {
225     G4double stepTrial;                           243     G4double stepTrial;
226                                                   244 
227     stepTrial = fFull_CurveLen_of_LastAttempt; << 245     stepTrial= fFull_CurveLen_of_LastAttempt; 
228     if( (stepTrial <= 0.0) && (fLast_ProposedS << 246     if( (stepTrial <= 0.0) && (fLast_ProposedStepLength > 0.0) ) 
229     {                                          << 247       stepTrial= fLast_ProposedStepLength; 
230       stepTrial = fLast_ProposedStepLength;    << 
231     }                                          << 
232                                                   248 
233     G4double decreaseFactor = 0.9; // Unused d    249     G4double decreaseFactor = 0.9; // Unused default
234     if(   (fNoZeroStep < fSevereActionThreshol    250     if(   (fNoZeroStep < fSevereActionThreshold_NoZeroSteps)
235        && (stepTrial > 100.0*fZeroStepThreshol    251        && (stepTrial > 100.0*fZeroStepThreshold) )
236     {                                             252     {
237       // Attempt quick convergence                253       // Attempt quick convergence
238       //                                          254       //
239       decreaseFactor= 0.25;                       255       decreaseFactor= 0.25;
240     }                                             256     } 
241     else                                          257     else
242     {                                             258     {
243       // We are in significant difficulties, p    259       // We are in significant difficulties, probably at a boundary that
244       // is either geometrically sharp or betw    260       // is either geometrically sharp or between very different materials.
245       // Careful decreases to cope with tolera << 261       // Careful decreases to cope with tolerance are required.
246       //                                          262       //
247       if( stepTrial > 100.0*fZeroStepThreshold << 263       if( stepTrial > 100.0*fZeroStepThreshold )
248         decreaseFactor = 0.35;     // Try decr    264         decreaseFactor = 0.35;     // Try decreasing slower
249       } else if( stepTrial > 30.0*fZeroStepThr << 265       else if( stepTrial > 30.0*fZeroStepThreshold )
250         decreaseFactor= 0.5;       // Try yet     266         decreaseFactor= 0.5;       // Try yet slower decrease
251       } else if( stepTrial > 10.0*fZeroStepThr << 267       else if( stepTrial > 10.0*fZeroStepThreshold )
252         decreaseFactor= 0.75;      // Try even    268         decreaseFactor= 0.75;      // Try even slower decreases
253       } else {                                 << 269       else
254         decreaseFactor= 0.9;       // Try very    270         decreaseFactor= 0.9;       // Try very slow decreases
255       }                                        << 
256      }                                            271      }
257      stepTrial *= decreaseFactor;                 272      stepTrial *= decreaseFactor;
258                                                   273 
259 #ifdef G4DEBUG_FIELD                              274 #ifdef G4DEBUG_FIELD
260      if( fVerboseLevel > 2                        275      if( fVerboseLevel > 2
261       || (fNoZeroStep >= fSevereActionThreshol << 276          || (fNoZeroStep >= fSevereActionThreshold_NoZeroSteps)
                                                   >> 277         )
262      {                                            278      {
263         G4cerr << " " << methodName               279         G4cerr << " " << methodName
264                << "  Decreasing step after " <    280                << "  Decreasing step after " << fNoZeroStep << " zero steps "
265                << " - in volume " << pPhysVol;    281                << " - in volume " << pPhysVol;
266         if( pPhysVol )                            282         if( pPhysVol )
267            G4cerr << " with name " << pPhysVol    283            G4cerr << " with name " << pPhysVol->GetName();
268         else                                      284         else
269            G4cerr << " i.e. *unknown* volume."    285            G4cerr << " i.e. *unknown* volume.";
270         G4cerr << G4endl;                         286         G4cerr << G4endl;
271         PrintStepLengthDiagnostic(CurrentPropo    287         PrintStepLengthDiagnostic(CurrentProposedStepLength, decreaseFactor,
272                                   stepTrial, p    288                                   stepTrial, pFieldTrack);
273      }                                            289      }
274 #endif                                            290 #endif
275      if( stepTrial == 0.0 )  //  Change to mak    291      if( stepTrial == 0.0 )  //  Change to make it < 0.1 * kCarTolerance ??
276      {                                            292      {
277        std::ostringstream message;                293        std::ostringstream message;
278        message << "Particle abandoned due to l    294        message << "Particle abandoned due to lack of progress in field."
279                << G4endl                          295                << G4endl
280                << "  Properties : " << pFieldT    296                << "  Properties : " << pFieldTrack << G4endl
281                << "  Attempting a zero step =     297                << "  Attempting a zero step = " << stepTrial << G4endl
282                << "  while attempting to progr    298                << "  while attempting to progress after " << fNoZeroStep
283                << " trial steps. Will abandon     299                << " trial steps. Will abandon step.";
284        G4Exception(methodName, "GeomNav1002",     300        G4Exception(methodName, "GeomNav1002", JustWarning, message);
285        fParticleIsLooping = true;              << 301        fParticleIsLooping= true;
286        return 0;  // = stepTrial;                 302        return 0;  // = stepTrial;
287      }                                            303      }
288      if( stepTrial < CurrentProposedStepLength    304      if( stepTrial < CurrentProposedStepLength )
289      {                                         << 
290        CurrentProposedStepLength = stepTrial;     305        CurrentProposedStepLength = stepTrial;
291      }                                         << 
292   }                                               306   }
293   fLast_ProposedStepLength = CurrentProposedSt    307   fLast_ProposedStepLength = CurrentProposedStepLength;
294                                                   308 
295   G4int do_loop_count = 0;                        309   G4int do_loop_count = 0; 
296   do  // Loop checking, 07.10.2016, JA         << 310   do  // Loop checking, 07.10.2016, J.Apostolakis
297   {                                               311   { 
298     G4FieldTrack SubStepStartState = CurrentSt    312     G4FieldTrack SubStepStartState = CurrentState;
299     G4ThreeVector SubStartPoint = CurrentState    313     G4ThreeVector SubStartPoint = CurrentState.GetPosition(); 
300                                                   314     
301     if(!first_substep)                            315     if(!first_substep)
302     {                                             316     {
303       if( fVerboseLevel > 4 )                     317       if( fVerboseLevel > 4 )
304       {                                           318       {
305         G4cout << " PiF: Calling Nav/Locate Gl    319         G4cout << " PiF: Calling Nav/Locate Global Point within-Volume "
306                << G4endl;                         320                << G4endl;
307       }                                           321       }
308       fNavigator->LocateGlobalPointWithinVolum    322       fNavigator->LocateGlobalPointWithinVolume( SubStartPoint );
309     }                                             323     }
310                                                   324 
311     // How far to attempt to move the particle    325     // How far to attempt to move the particle !
312     //                                            326     //
313     h_TrialStepSize = CurrentProposedStepLengt    327     h_TrialStepSize = CurrentProposedStepLength - StepTaken;
314                                                   328 
315     if (canRelaxDeltaChord &&                  << 
316         fIncreaseChordDistanceThreshold > 0  & << 
317         do_loop_count > fIncreaseChordDistance << 
318         do_loop_count % fIncreaseChordDistance << 
319     {                                          << 
320         GetChordFinder()->SetDeltaChord(       << 
321           GetChordFinder()->GetDeltaChord() *  << 
322         );                                     << 
323     }                                          << 
324                                                << 
325     // Integrate as far as "chord miss" rule a    329     // Integrate as far as "chord miss" rule allows.
326     //                                            330     //
327     s_length_taken = GetChordFinder()->Advance    331     s_length_taken = GetChordFinder()->AdvanceChordLimited( 
328                              CurrentState,        332                              CurrentState,    // Position & velocity
329                              h_TrialStepSize,     333                              h_TrialStepSize,
330                              fEpsilonStep,        334                              fEpsilonStep,
331                              fPreviousSftOrigi    335                              fPreviousSftOrigin,
332                              fPreviousSafety ) << 336                              fPreviousSafety
333       // CurrentState is now updated with the  << 337                              );
                                                   >> 338     //  CurrentState is now updated with the final position and velocity. 
334                                                   339 
335     fFull_CurveLen_of_LastAttempt = s_length_t    340     fFull_CurveLen_of_LastAttempt = s_length_taken;
336                                                   341 
337     G4ThreeVector EndPointB = CurrentState.Get << 342     G4ThreeVector  EndPointB = CurrentState.GetPosition(); 
338     G4ThreeVector InterSectionPointE;          << 343     G4ThreeVector  InterSectionPointE;
339     G4double      LinearStepLength;            << 344     G4double       LinearStepLength;
340                                                   345  
341     // Intersect chord AB with geometry           346     // Intersect chord AB with geometry
342     //                                         << 
343     intersects= IntersectChord( SubStartPoint,    347     intersects= IntersectChord( SubStartPoint, EndPointB, 
344                                 NewSafety, Lin << 348                                 NewSafety,     LinearStepLength, 
345                                 InterSectionPo    349                                 InterSectionPointE );
346       // E <- Intersection Point of chord AB a << 350     // E <- Intersection Point of chord AB and either volume A's surface 
347       //                                  or a << 351     //                                  or a daughter volume's surface ..
348                                                   352 
349     if( first_substep )                           353     if( first_substep )
350     {                                             354     { 
351        currentSafety = NewSafety;                 355        currentSafety = NewSafety;
352     } // Updating safety in other steps is pot    356     } // Updating safety in other steps is potential future extention
353                                                   357 
354     if( intersects )                              358     if( intersects )
355     {                                             359     {
356        G4FieldTrack IntersectPointVelct_G(Curr    360        G4FieldTrack IntersectPointVelct_G(CurrentState);  // FT-Def-Construct
357                                                   361 
358        // Find the intersection point of AB tr    362        // Find the intersection point of AB true path with the surface
359        //   of vol(A), if it exists. Start wit    363        //   of vol(A), if it exists. Start with point E as first "estimate".
360        G4bool recalculatedEndPt = false;       << 364        G4bool recalculatedEndPt= false;
361                                                   365        
362        G4bool found_intersection = fIntersecti    366        G4bool found_intersection = fIntersectionLocator->
363          EstimateIntersectionPoint( SubStepSta    367          EstimateIntersectionPoint( SubStepStartState, CurrentState, 
364                                     InterSecti    368                                     InterSectionPointE, IntersectPointVelct_G,
365                                     recalculat    369                                     recalculatedEndPt, fPreviousSafety,
366                                     fPreviousS    370                                     fPreviousSftOrigin);
367        intersects = found_intersection;           371        intersects = found_intersection;
368        if( found_intersection )                   372        if( found_intersection )
369        {                                          373        {        
370           End_PointAndTangent= IntersectPointV    374           End_PointAndTangent= IntersectPointVelct_G;  // G is our EndPoint ...
371           StepTaken = TruePathLength = Interse    375           StepTaken = TruePathLength = IntersectPointVelct_G.GetCurveLength()
372                                      - Origina << 376                                       - OriginalState.GetCurveLength();
373        }                                          377        }
374        else                                       378        else
375        {                                          379        {
376           // Either "minor" chords do not inte    380           // Either "minor" chords do not intersect
377           // or else stopped (due to too many     381           // or else stopped (due to too many steps)
378           //                                      382           //
379           if( recalculatedEndPt )                 383           if( recalculatedEndPt )
380           {                                       384           {
381              G4double endAchieved = IntersectP    385              G4double endAchieved = IntersectPointVelct_G.GetCurveLength();
382              G4double endExpected = CurrentSta    386              G4double endExpected = CurrentState.GetCurveLength(); 
383                                                   387 
384              // Detect failure - due to too ma    388              // Detect failure - due to too many steps
385              G4bool shortEnd = endAchieved        389              G4bool shortEnd = endAchieved
386                              < (endExpected*(1    390                              < (endExpected*(1.0-CLHEP::perMillion));
387                                                   391 
388              G4double stepAchieved = endAchiev    392              G4double stepAchieved = endAchieved
389                                    - SubStepSt    393                                    - SubStepStartState.GetCurveLength();
390                                                   394 
391              // Update remaining state - must     395              // Update remaining state - must work for 'full' step or
392              // abandonned intersection           396              // abandonned intersection
393              //                                   397              //
394              CurrentState = IntersectPointVelc << 398              CurrentState= IntersectPointVelct_G;
395              s_length_taken = stepAchieved;       399              s_length_taken = stepAchieved;
396              if( shortEnd )                       400              if( shortEnd )
397              {                                    401              {
398                 fParticleIsLooping = true;        402                 fParticleIsLooping = true;
399              }                                    403              } 
400           }                                       404           }
401        }                                          405        }
402     }                                             406     }
403     if( !intersects )                             407     if( !intersects )
404     {                                             408     {
405       StepTaken += s_length_taken;             << 409       StepTaken += s_length_taken; 
406                                                << 410       // For smooth trajectory display (jacek 01/11/2002)
407       if (fpTrajectoryFilter != nullptr) // Fo << 411       if (fpTrajectoryFilter) {
408       {                                        << 
409         fpTrajectoryFilter->TakeIntermediatePo    412         fpTrajectoryFilter->TakeIntermediatePoint(CurrentState.GetPosition());
410       }                                           413       }
411     }                                             414     }
412     first_substep = false;                        415     first_substep = false;
413                                                   416 
414 #ifdef G4DEBUG_FIELD                              417 #ifdef G4DEBUG_FIELD
415     if( fNoZeroStep > fActionThreshold_NoZeroS    418     if( fNoZeroStep > fActionThreshold_NoZeroSteps )
416     {                                             419     {
417       if( fNoZeroStep > fSevereActionThreshold    420       if( fNoZeroStep > fSevereActionThreshold_NoZeroSteps )
418         G4cout << " Above 'Severe Action' thre    421         G4cout << " Above 'Severe Action' threshold -- for Zero steps.  ";
419       else                                        422       else
420         G4cout << " Above 'action' threshold -    423         G4cout << " Above 'action' threshold -- for Zero steps.  ";         
421       G4cout << " Number of zero steps = " <<     424       G4cout << " Number of zero steps = " << fNoZeroStep << G4endl;
422       printStatus( SubStepStartState,  // or O    425       printStatus( SubStepStartState,  // or OriginalState,
423                    CurrentState, CurrentPropos << 426                    CurrentState,  CurrentProposedStepLength, 
424                    NewSafety, do_loop_count, p << 427                    NewSafety,     do_loop_count,  pPhysVol );
425     }                                             428     }
426     if( (fVerboseLevel > 1) && (do_loop_count     429     if( (fVerboseLevel > 1) && (do_loop_count > fMax_loop_count-10 ))
427     {                                             430     {
428       if( do_loop_count == fMax_loop_count-9 )    431       if( do_loop_count == fMax_loop_count-9 )
429       {                                           432       {
430         G4cout << " G4PropagatorInField::Compu    433         G4cout << " G4PropagatorInField::ComputeStep(): " << G4endl
431                << "  Difficult track - taking     434                << "  Difficult track - taking many sub steps." << G4endl;
432         printStatus( SubStepStartState, SubSte    435         printStatus( SubStepStartState, SubStepStartState, CurrentProposedStepLength, 
433                      NewSafety, 0, pPhysVol );    436                      NewSafety, 0, pPhysVol );        
434       }                                           437       }
435       printStatus( SubStepStartState, CurrentS    438       printStatus( SubStepStartState, CurrentState, CurrentProposedStepLength, 
436                    NewSafety, do_loop_count, p    439                    NewSafety, do_loop_count, pPhysVol );
437     }                                             440     }
438 #endif                                            441 #endif
439                                                   442 
440     ++do_loop_count;                           << 443     do_loop_count++;
441                                                   444 
442   } while( (!intersects )                         445   } while( (!intersects )
443         && (!fParticleIsLooping)                  446         && (!fParticleIsLooping)
444         && (StepTaken + kCarTolerance < Curren    447         && (StepTaken + kCarTolerance < CurrentProposedStepLength)  
445         && ( do_loop_count < fMax_loop_count )    448         && ( do_loop_count < fMax_loop_count ) );
446                                                   449 
447   if(  do_loop_count >= fMax_loop_count           450   if(  do_loop_count >= fMax_loop_count
448     && (StepTaken + kCarTolerance < CurrentPro << 451       && (StepTaken + kCarTolerance < CurrentProposedStepLength)
                                                   >> 452      )
449   {                                               453   {
450     fParticleIsLooping = true;                    454     fParticleIsLooping = true;
451   }                                               455   }
452   if ( ( fParticleIsLooping ) && (fVerboseLeve << 456   if ( fParticleIsLooping ) // && (fVerboseLevel > 0) )
453   {                                               457   {
454     ReportLoopingParticle( do_loop_count, Step    458     ReportLoopingParticle( do_loop_count, StepTaken,
455                            CurrentProposedStep    459                            CurrentProposedStepLength, methodName,
456                            CurrentState.GetMom    460                            CurrentState.GetMomentum(), pPhysVol );
457   }                                               461   }
458                                                   462     
459   if( !intersects )                               463   if( !intersects )
460   {                                               464   {
461     // Chord AB or "minor chords" do not inter    465     // Chord AB or "minor chords" do not intersect
462     // B is the endpoint Step of the current S    466     // B is the endpoint Step of the current Step.
463     //                                            467     //
464     End_PointAndTangent = CurrentState;           468     End_PointAndTangent = CurrentState; 
465     TruePathLength = StepTaken;   //  Original    469     TruePathLength = StepTaken;   //  Original code
466                                                << 
467     // Tried the following to avoid potential     470     // Tried the following to avoid potential issue with round-off error
468     // - but has issues... Suppressing this ch    471     // - but has issues... Suppressing this change JA 2015/05/02
469     // TruePathLength = CurrentProposedStepLen    472     // TruePathLength = CurrentProposedStepLength;
470   }                                               473   }
471   fLastStepInVolume = intersects;                 474   fLastStepInVolume = intersects;
472                                                   475   
473   // Set pFieldTrack to the return value          476   // Set pFieldTrack to the return value
474   //                                              477   //
475   pFieldTrack = End_PointAndTangent;              478   pFieldTrack = End_PointAndTangent;
476                                                   479 
477 #ifdef G4VERBOSE                                  480 #ifdef G4VERBOSE
478   // Check that "s" is correct                    481   // Check that "s" is correct
479   //                                              482   //
480   if( std::fabs(OriginalState.GetCurveLength()    483   if( std::fabs(OriginalState.GetCurveLength() + TruePathLength 
481       - End_PointAndTangent.GetCurveLength())     484       - End_PointAndTangent.GetCurveLength()) > 3.e-4 * TruePathLength )
482   {                                               485   {
483     std::ostringstream message;                   486     std::ostringstream message;
484     message << "Curve length mis-match between    487     message << "Curve length mis-match between original state "
485             << "and proposed endpoint of propa    488             << "and proposed endpoint of propagation." << G4endl
486             << "  The curve length of the endp    489             << "  The curve length of the endpoint should be: " 
487             << OriginalState.GetCurveLength()     490             << OriginalState.GetCurveLength() + TruePathLength << G4endl
488             << "  and it is instead: "            491             << "  and it is instead: "
489             << End_PointAndTangent.GetCurveLen    492             << End_PointAndTangent.GetCurveLength() << "." << G4endl
490             << "  A difference of: "              493             << "  A difference of: "
491             << OriginalState.GetCurveLength()     494             << OriginalState.GetCurveLength() + TruePathLength 
492                - End_PointAndTangent.GetCurveL    495                - End_PointAndTangent.GetCurveLength() << G4endl
493             << "  Original state = " << Origin    496             << "  Original state = " << OriginalState   << G4endl
494             << "  Proposed state = " << End_Po    497             << "  Proposed state = " << End_PointAndTangent;
495     G4Exception(methodName, "GeomNav0003", Fat    498     G4Exception(methodName, "GeomNav0003", FatalException, message);
496   }                                               499   }
497 #endif                                            500 #endif
498                                                   501 
499   if( TruePathLength+kCarTolerance >= CurrentP    502   if( TruePathLength+kCarTolerance >= CurrentProposedStepLength )
500   {                                               503   {
501      fNoZeroStep = 0;                             504      fNoZeroStep = 0;     
502   }                                               505   }
503   else                                            506   else
504   {                                               507   {     
505      // In particular anomalous cases, we can     508      // In particular anomalous cases, we can get repeated zero steps
506      // We identify these cases and take corre    509      // We identify these cases and take corrective action when they occur.
507      //                                           510      // 
508      if( TruePathLength < std::max( fZeroStepT    511      if( TruePathLength < std::max( fZeroStepThreshold, 0.5*kCarTolerance ) )
509      {                                            512      {
510         ++fNoZeroStep;                         << 513         fNoZeroStep++;
511      }                                            514      }
512      else                                      << 515      else{
513      {                                         << 
514         fNoZeroStep = 0;                          516         fNoZeroStep = 0;
515      }                                            517      }
516   }                                               518   }
517   if( fNoZeroStep > fAbandonThreshold_NoZeroSt    519   if( fNoZeroStep > fAbandonThreshold_NoZeroSteps )
518   {                                               520   { 
519      fParticleIsLooping = true;                   521      fParticleIsLooping = true;
520      ReportStuckParticle( fNoZeroStep, Current << 522      ReportStuckParticle( fNoZeroStep, CurrentProposedStepLength, fFull_CurveLen_of_LastAttempt,
521                           fFull_CurveLen_of_La << 523                                pPhysVol );
522      fNoZeroStep = 0;                             524      fNoZeroStep = 0; 
523   }                                               525   }
524                                                   526  
525   GetChordFinder()->SetDeltaChord(deltaChord); << 
526   return TruePathLength;                          527   return TruePathLength;
527 }                                                 528 }
528                                                   529 
529 // ------------------------------------------- << 530 ///////////////////////////////////////////////////////////////////////////
530 // Dumps status of propagator                  << 
531 //                                                531 //
                                                   >> 532 // Dumps status of propagator.
                                                   >> 533 
532 void                                              534 void
533 G4PropagatorInField::printStatus( const G4Fiel << 535 G4PropagatorInField::printStatus( const G4FieldTrack&        StartFT,
534                                   const G4Fiel << 536                                   const G4FieldTrack&        CurrentFT, 
535                                         G4doub << 537                                         G4double             requestStep, 
536                                         G4doub << 538                                         G4double             safety,
537                                         G4int  << 539                                         G4int                stepNo, 
538                                         G4VPhy << 540                                         G4VPhysicalVolume*   startVolume)
539 {                                                 541 {
540   const G4int verboseLevel = fVerboseLevel;    << 542   const G4int verboseLevel=fVerboseLevel;
541   const G4ThreeVector StartPosition       = St    543   const G4ThreeVector StartPosition       = StartFT.GetPosition();
542   const G4ThreeVector StartUnitVelocity   = St    544   const G4ThreeVector StartUnitVelocity   = StartFT.GetMomentumDir();
543   const G4ThreeVector CurrentPosition     = Cu    545   const G4ThreeVector CurrentPosition     = CurrentFT.GetPosition();
544   const G4ThreeVector CurrentUnitVelocity = Cu    546   const G4ThreeVector CurrentUnitVelocity = CurrentFT.GetMomentumDir();
545                                                   547 
546   G4double step_len = CurrentFT.GetCurveLength    548   G4double step_len = CurrentFT.GetCurveLength() - StartFT.GetCurveLength();
547                                                   549 
548   G4long oldprec;   // cout/cerr precision set << 550   G4int oldprec;   // cout/cerr precision settings
549                                                   551       
550   if( ((stepNo == 0) && (verboseLevel <3)) ||     552   if( ((stepNo == 0) && (verboseLevel <3)) || (verboseLevel >= 3) )
551   {                                               553   {
552     oldprec = G4cout.precision(4);                554     oldprec = G4cout.precision(4);
                                                   >> 555 //    G4cout << std::setw( 6)  << " " 
                                                   >> 556 //           << std::setw( 25) << " Current Position  and  Direction" << " "
                                                   >> 557 //           << G4endl; 
553     G4cout << std::setw( 5) << "Step#"            558     G4cout << std::setw( 5) << "Step#" 
554            << std::setw(10) << "  s  " << " "     559            << std::setw(10) << "  s  " << " "
555            << std::setw(10) << "X(mm)" << " "     560            << std::setw(10) << "X(mm)" << " "
556            << std::setw(10) << "Y(mm)" << " "     561            << std::setw(10) << "Y(mm)" << " "  
557            << std::setw(10) << "Z(mm)" << " "     562            << std::setw(10) << "Z(mm)" << " "
558            << std::setw( 7) << " N_x " << " "     563            << std::setw( 7) << " N_x " << " "
559            << std::setw( 7) << " N_y " << " "     564            << std::setw( 7) << " N_y " << " "
560            << std::setw( 7) << " N_z " << " "     565            << std::setw( 7) << " N_z " << " " ;
561     G4cout << std::setw( 7) << " Delta|N|" <<     566     G4cout << std::setw( 7) << " Delta|N|" << " "
562            << std::setw( 9) << "StepLen" << "     567            << std::setw( 9) << "StepLen" << " "  
563            << std::setw(12) << "StartSafety" <    568            << std::setw(12) << "StartSafety" << " "  
564            << std::setw( 9) << "PhsStep" << "     569            << std::setw( 9) << "PhsStep" << " ";  
565     if( startVolume != nullptr )               << 570     if( startVolume )
566       { G4cout << std::setw(18) << "NextVolume    571       { G4cout << std::setw(18) << "NextVolume" << " "; }
567     G4cout.precision(oldprec);                    572     G4cout.precision(oldprec);
568     G4cout << G4endl;                             573     G4cout << G4endl;
569   }                                               574   }
570   if((stepNo == 0) && (verboseLevel <=3))         575   if((stepNo == 0) && (verboseLevel <=3))
571   {                                               576   {
572     // Recurse to print the start values          577     // Recurse to print the start values
573     //                                            578     //
574     printStatus( StartFT, StartFT, -1.0, safet    579     printStatus( StartFT, StartFT, -1.0, safety, -1, startVolume);
575   }                                               580   }
576   if( verboseLevel <= 3 )                         581   if( verboseLevel <= 3 )
577   {                                               582   {
578     if( stepNo >= 0)                              583     if( stepNo >= 0)
579       { G4cout << std::setw( 4) << stepNo << "    584       { G4cout << std::setw( 4) << stepNo << " "; }
580     else                                          585     else
581       { G4cout << std::setw( 5) << "Start" ; }    586       { G4cout << std::setw( 5) << "Start" ; }
582     oldprec = G4cout.precision(8);                587     oldprec = G4cout.precision(8);
583     G4cout << std::setw(10) << CurrentFT.GetCu    588     G4cout << std::setw(10) << CurrentFT.GetCurveLength() << " "; 
584     G4cout.precision(8);                          589     G4cout.precision(8);
585     G4cout << std::setw(10) << CurrentPosition    590     G4cout << std::setw(10) << CurrentPosition.x() << " "
586            << std::setw(10) << CurrentPosition    591            << std::setw(10) << CurrentPosition.y() << " "
587            << std::setw(10) << CurrentPosition    592            << std::setw(10) << CurrentPosition.z() << " ";
588     G4cout.precision(4);                          593     G4cout.precision(4);
589     G4cout << std::setw( 7) << CurrentUnitVelo    594     G4cout << std::setw( 7) << CurrentUnitVelocity.x() << " "
590            << std::setw( 7) << CurrentUnitVelo    595            << std::setw( 7) << CurrentUnitVelocity.y() << " "
591            << std::setw( 7) << CurrentUnitVelo    596            << std::setw( 7) << CurrentUnitVelocity.z() << " ";
592     G4cout.precision(3);                          597     G4cout.precision(3); 
593     G4cout << std::setw( 7)                       598     G4cout << std::setw( 7)
594            << CurrentFT.GetMomentum().mag()-St    599            << CurrentFT.GetMomentum().mag()-StartFT.GetMomentum().mag() << " "; 
595     G4cout << std::setw( 9) << step_len << " "    600     G4cout << std::setw( 9) << step_len << " "; 
596     G4cout << std::setw(12) << safety << " ";     601     G4cout << std::setw(12) << safety << " ";
597     if( requestStep != -1.0 )                     602     if( requestStep != -1.0 ) 
598       { G4cout << std::setw( 9) << requestStep    603       { G4cout << std::setw( 9) << requestStep << " "; }
599     else                                          604     else
600       { G4cout << std::setw( 9) << "Init/NotKn    605       { G4cout << std::setw( 9) << "Init/NotKnown" << " "; }
601     if( startVolume != nullptr)                << 606     if( startVolume != 0)
602       { G4cout << std::setw(12) << startVolume    607       { G4cout << std::setw(12) << startVolume->GetName() << " "; }
603     G4cout.precision(oldprec);                    608     G4cout.precision(oldprec);
604     G4cout << G4endl;                             609     G4cout << G4endl;
605   }                                               610   }
606   else // if( verboseLevel > 3 )                  611   else // if( verboseLevel > 3 )
607   {                                               612   {
608     //  Multi-line output                         613     //  Multi-line output
609                                                   614       
610     G4cout << "Step taken was " << step_len       615     G4cout << "Step taken was " << step_len  
611            << " out of PhysicalStep = " <<  re    616            << " out of PhysicalStep = " <<  requestStep << G4endl;
612     G4cout << "Final safety is: " << safety <<    617     G4cout << "Final safety is: " << safety << G4endl;
613     G4cout << "Chord length = " << (CurrentPos    618     G4cout << "Chord length = " << (CurrentPosition-StartPosition).mag()
614            << G4endl;                             619            << G4endl;
615     G4cout << G4endl;                             620     G4cout << G4endl; 
616   }                                               621   }
617 }                                                 622 }
618                                                   623 
619 // ------------------------------------------- << 624 ///////////////////////////////////////////////////////////////////////////
620 // Prints Step diagnostics                     << 
621 //                                                625 //
                                                   >> 626 // Prints Step diagnostics
                                                   >> 627 
622 void                                              628 void 
623 G4PropagatorInField::PrintStepLengthDiagnostic    629 G4PropagatorInField::PrintStepLengthDiagnostic(
624                           G4double CurrentProp    630                           G4double CurrentProposedStepLength,
625                           G4double decreaseFac    631                           G4double decreaseFactor,
626                           G4double stepTrial,     632                           G4double stepTrial,
627                     const G4FieldTrack& )         633                     const G4FieldTrack& )
628 {                                                 634 {
629   G4long iprec= G4cout.precision(8);           << 635   G4int  iprec= G4cout.precision(8); 
630   G4cout << " " << std::setw(12) << " PiF: NoZ    636   G4cout << " " << std::setw(12) << " PiF: NoZeroStep " 
631          << " " << std::setw(20) << " CurrentP    637          << " " << std::setw(20) << " CurrentProposed len " 
632          << " " << std::setw(18) << " Full_cur    638          << " " << std::setw(18) << " Full_curvelen_last" 
633          << " " << std::setw(18) << " last pro    639          << " " << std::setw(18) << " last proposed len " 
634          << " " << std::setw(18) << " decrease    640          << " " << std::setw(18) << " decrease factor   " 
635          << " " << std::setw(15) << " step tri    641          << " " << std::setw(15) << " step trial  " 
636          << G4endl;                               642          << G4endl;
637                                                   643 
638   G4cout << " " << std::setw(10) << fNoZeroSte    644   G4cout << " " << std::setw(10) << fNoZeroStep << "  "
639          << " " << std::setw(20) << CurrentPro    645          << " " << std::setw(20) << CurrentProposedStepLength
640          << " " << std::setw(18) << fFull_Curv    646          << " " << std::setw(18) << fFull_CurveLen_of_LastAttempt
641          << " " << std::setw(18) << fLast_Prop    647          << " " << std::setw(18) << fLast_ProposedStepLength 
642          << " " << std::setw(18) << decreaseFa    648          << " " << std::setw(18) << decreaseFactor
643          << " " << std::setw(15) << stepTrial     649          << " " << std::setw(15) << stepTrial
644          << G4endl;                               650          << G4endl;
645   G4cout.precision( iprec );                   << 651   G4cout.precision( iprec ); 
                                                   >> 652 
646 }                                                 653 }
647                                                   654 
648 // Access the points which have passed through    655 // Access the points which have passed through the filter. The
649 // points are stored as ThreeVectors for the i    656 // points are stored as ThreeVectors for the initial impelmentation
650 // only (jacek 30/10/2002)                        657 // only (jacek 30/10/2002)
651 // Responsibility for deleting the points lies    658 // Responsibility for deleting the points lies with
652 // SmoothTrajectoryPoint, which is the points'    659 // SmoothTrajectoryPoint, which is the points' final
653 // destination. The points pointer is set to N    660 // destination. The points pointer is set to NULL, to ensure that
654 // the points are not re-used in subsequent st    661 // the points are not re-used in subsequent steps, therefore THIS
655 // METHOD MUST BE CALLED EXACTLY ONCE PER STEP    662 // METHOD MUST BE CALLED EXACTLY ONCE PER STEP. (jacek 08/11/2002)
656                                                   663 
657 std::vector<G4ThreeVector>*                       664 std::vector<G4ThreeVector>*
658 G4PropagatorInField::GimmeTrajectoryVectorAndF    665 G4PropagatorInField::GimmeTrajectoryVectorAndForgetIt() const
659 {                                                 666 {
660   // NB, GimmeThePointsAndForgetThem really fo    667   // NB, GimmeThePointsAndForgetThem really forgets them, so it can
661   // only be called (exactly) once for each st    668   // only be called (exactly) once for each step.
662                                                   669 
663   if (fpTrajectoryFilter != nullptr)           << 670   if (fpTrajectoryFilter)
664   {                                               671   {
665     return fpTrajectoryFilter->GimmeThePointsA    672     return fpTrajectoryFilter->GimmeThePointsAndForgetThem();
666   }                                               673   }
667   return nullptr;                              << 674   else
                                                   >> 675   {
                                                   >> 676     return 0;
                                                   >> 677   }
668 }                                                 678 }
669                                                   679 
670 // ------------------------------------------- << 680 ///////////////////////////////////////////////////////////////////////////
671 //                                                681 //
672 void                                              682 void 
673 G4PropagatorInField::SetTrajectoryFilter(G4VCu    683 G4PropagatorInField::SetTrajectoryFilter(G4VCurvedTrajectoryFilter* filter)
674 {                                                 684 {
675   fpTrajectoryFilter = filter;                    685   fpTrajectoryFilter = filter;
676 }                                                 686 }
677                                                   687 
678 // ------------------------------------------- << 
679 //                                             << 
680 void G4PropagatorInField::ClearPropagatorState    688 void G4PropagatorInField::ClearPropagatorState()
681 {                                                 689 {
682   // Goal: Clear all memory of previous steps,    690   // Goal: Clear all memory of previous steps,  cached information
683                                                   691 
684   fParticleIsLooping = false;                  << 692   fParticleIsLooping= false;
685   fNoZeroStep = 0;                             << 693   fNoZeroStep= 0;
686                                                   694 
687   fSetFieldMgr = false;  // Has field-manager  << 
688   fEpsilonStep= 1.0e-5;  // Relative accuracy  << 
689                                                << 
690   End_PointAndTangent= G4FieldTrack( G4ThreeVe    695   End_PointAndTangent= G4FieldTrack( G4ThreeVector(0.,0.,0.),
691                                      G4ThreeVe    696                                      G4ThreeVector(0.,0.,0.),
692                                      0.0,0.0,0    697                                      0.0,0.0,0.0,0.0,0.0); 
693   fFull_CurveLen_of_LastAttempt = -1;             698   fFull_CurveLen_of_LastAttempt = -1; 
694   fLast_ProposedStepLength = -1;                  699   fLast_ProposedStepLength = -1;
695                                                   700 
696   fPreviousSftOrigin= G4ThreeVector(0.,0.,0.);    701   fPreviousSftOrigin= G4ThreeVector(0.,0.,0.);
697   fPreviousSafety= 0.0;                           702   fPreviousSafety= 0.0;
698                                                << 
699   fNewTrack = true;                            << 
700 }                                                 703 }
701                                                   704 
702 // ------------------------------------------- << 
703 //                                             << 
704 G4FieldManager* G4PropagatorInField::             705 G4FieldManager* G4PropagatorInField::
705 FindAndSetFieldManager( G4VPhysicalVolume* pCu << 706 FindAndSetFieldManager( G4VPhysicalVolume* pCurrentPhysicalVolume)
706 {                                                 707 {
707   G4FieldManager* currentFieldMgr;                708   G4FieldManager* currentFieldMgr;
708                                                   709 
709   currentFieldMgr = fDetectorFieldMgr;            710   currentFieldMgr = fDetectorFieldMgr;
710   if( pCurrentPhysicalVolume != nullptr )      << 711   if( pCurrentPhysicalVolume)
711   {                                               712   {
712      G4FieldManager *pRegionFieldMgr = nullptr << 713      G4FieldManager *pRegionFieldMgr= 0, *localFieldMgr = 0;
713      G4LogicalVolume* pLogicalVol = pCurrentPh << 714      G4LogicalVolume* pLogicalVol= pCurrentPhysicalVolume->GetLogicalVolume();
714                                                   715 
715      if( pLogicalVol != nullptr )              << 716      if( pLogicalVol ) { 
716      {                                         << 717   // Value for Region, if any, Overrides 
717         // Value for Region, if any, overrides << 718   G4Region*  pRegion= pLogicalVol->GetRegion();
718         //                                     << 719   if( pRegion ) { 
719         G4Region*  pRegion = pLogicalVol->GetR << 720      pRegionFieldMgr= pRegion->GetFieldManager();
720         if( pRegion != nullptr )               << 721      if( pRegionFieldMgr ) 
721         {                                      << 722        currentFieldMgr= pRegionFieldMgr;
722            pRegionFieldMgr = pRegion->GetField << 723   }
723            if( pRegionFieldMgr != nullptr )    << 724 
724            {                                   << 725   // 'Local' Value from logical volume, if any, Overrides 
725               currentFieldMgr= pRegionFieldMgr << 726   localFieldMgr= pLogicalVol->GetFieldManager();
726            }                                   << 727   if ( localFieldMgr ) 
727         }                                      << 728      currentFieldMgr = localFieldMgr;
728                                                << 
729         // 'Local' Value from logical volume,  << 
730         //                                     << 
731         localFieldMgr = pLogicalVol->GetFieldM << 
732         if ( localFieldMgr != nullptr )        << 
733         {                                      << 
734            currentFieldMgr = localFieldMgr;    << 
735         }                                      << 
736      }                                            729      }
737   }                                               730   }
738   fCurrentFieldMgr = currentFieldMgr;          << 731   fCurrentFieldMgr= currentFieldMgr;
739                                                   732 
740   // Flag that field manager has been set         733   // Flag that field manager has been set
741   //                                              734   //
742   fSetFieldMgr = true;                         << 735   fSetFieldMgr= true;
743                                                   736 
744   return currentFieldMgr;                         737   return currentFieldMgr;
745 }                                                 738 }
746                                                   739 
747 // ------------------------------------------- << 
748 //                                             << 
749 G4int G4PropagatorInField::SetVerboseLevel( G4    740 G4int G4PropagatorInField::SetVerboseLevel( G4int level )
750 {                                                 741 {
751   G4int oldval = fVerboseLevel;                << 742   G4int oldval= fVerboseLevel;
752   fVerboseLevel = level;                       << 743   fVerboseLevel= level;
753                                                   744 
754   // Forward the verbose level 'reduced' to Ch    745   // Forward the verbose level 'reduced' to ChordFinder,
755   // MagIntegratorDriver ... ?                    746   // MagIntegratorDriver ... ? 
756   //                                              747   //
757   auto integrDriver = GetChordFinder()->GetInt << 748   auto integrDriver= GetChordFinder()->GetIntegrationDriver(); 
758   integrDriver->SetVerboseLevel( fVerboseLevel    749   integrDriver->SetVerboseLevel( fVerboseLevel - 2 );
759   G4cout << "Set Driver verbosity to " << fVer    750   G4cout << "Set Driver verbosity to " << fVerboseLevel - 2 << G4endl;
760                                                   751 
761   return oldval;                                  752   return oldval;
762 }                                                 753 }
763                                                   754 
764 // ------------------------------------------- << 755 #include "G4Material.hh"
765 //                                             << 756 
766 void G4PropagatorInField::ReportLoopingParticl << 757 void G4PropagatorInField::ReportLoopingParticle( G4int              count,
767                                                << 758                                                  G4double           StepTaken,
768                                                << 759                                                  G4double           StepRequested,
769                                                << 760                                                  const char*        methodName,
770                                                << 761                                                  G4ThreeVector      momentumVec,
771                                                << 762                                                  G4VPhysicalVolume* pPhysVol)
772 {                                                 763 {
773    std::ostringstream message;                    764    std::ostringstream message;
774    G4double fraction = StepTaken / StepRequest    765    G4double fraction = StepTaken / StepRequested;
775    message << " Unfinished integration of trac    766    message << " Unfinished integration of track (likely looping particle)  "
776            << " of momentum " << momentumVec < << 767            << " of momentum " << momentumVec << " ( magnitude = " << momentumVec.mag() << " ) "
777            << momentumVec.mag() << " ) " << G4 << 768            << G4endl
778            << " after " << count << " field su    769            << " after " << count << " field substeps "
779            << " totaling " << std::setprecisio    770            << " totaling " << std::setprecision(12) << StepTaken / mm << " mm "
780            << " out of requested step " << std << 771            << " out of requested step " << std::setprecision(12) << StepRequested / mm << " mm ";
781            << StepRequested / mm << " mm ";    << 
782    message << " a fraction of ";                  772    message << " a fraction of ";
783    G4int prec = 4;                             << 773    int prec= 4;
784    if( fraction > 0.99 )                       << 774    if( fraction > 0.99 ) 
785    {                                           << 775      prec= 7;
786      prec = 7;                                 << 
787    }                                           << 
788    else                                           776    else
789    {                                           << 777      if (fraction > 0.97 )
790      if (fraction > 0.97 )  { prec = 5; }      << 778        prec= 5;
791    }                                           << 
792    message << std::setprecision(prec)             779    message << std::setprecision(prec) 
793            << 100. * StepTaken / StepRequested    780            << 100. * StepTaken / StepRequested << " % " << G4endl ;
794    if( pPhysVol != nullptr )                   << 781    if( pPhysVol )
795    {                                              782    {
796      message << " in volume " << pPhysVol->Get << 783       message << " in volume " << pPhysVol->GetName() ;
797      auto material = pPhysVol->GetLogicalVolum << 784       auto material= pPhysVol->GetLogicalVolume()->GetMaterial();
798      if( material != nullptr )                 << 785       if( material )
799      {                                         << 786          message << " with material " << material->GetName()
800        message << " with material " << materia << 787                  << " ( density = "
801                << " ( density = "              << 788                  << material->GetDensity() / ( gram / ( centimeter * centimeter * centimeter ) )
802                << material->GetDensity() / ( g << 789                  << " g / cm^3 ) "; 
803      }                                         << 
804    }                                              790    }
805    else                                           791    else
806    {                                              792    {
807      message << " in unknown (null) volume. "  << 793       message << " in unknown (null) volume. " ;
808    }                                              794    }
809    G4Exception(methodName, "GeomNav1002", Just    795    G4Exception(methodName, "GeomNav1002", JustWarning, message);   
810 }                                                 796 }
811                                                   797 
812 // ------------------------------------------- << 798 void G4PropagatorInField::ReportStuckParticle( G4int      noZeroSteps,
813 //                                             << 799                                                G4double   proposedStep,
814 void G4PropagatorInField::ReportStuckParticle( << 800                                                G4double   lastTriedStep,
815                                                << 
816                                                << 
817                                                   801                                                G4VPhysicalVolume* physVol )
818 {                                                 802 {
819    std::ostringstream message;                    803    std::ostringstream message;
820    message << "Particle is stuck; it will be k    804    message << "Particle is stuck; it will be killed." << G4endl
821            << "  Zero progress for " << noZero << 805            << "  Zero progress for "  << noZeroSteps << " attempted steps." 
822            << G4endl                              806            << G4endl
823            << "  Proposed Step is " << propose    807            << "  Proposed Step is " << proposedStep
824            << " but Step Taken is "<< lastTrie    808            << " but Step Taken is "<< lastTriedStep << G4endl;
825    if( physVol != nullptr )                    << 809    if( physVol )
826    {                                           << 
827       message << " in volume " << physVol->Get    810       message << " in volume " << physVol->GetName() ; 
828    }                                           << 
829    else                                           811    else
830    {                                           << 
831       message << " in unknown or null volume.     812       message << " in unknown or null volume. " ; 
832    }                                           << 
833    G4Exception("G4PropagatorInField::ComputeSt    813    G4Exception("G4PropagatorInField::ComputeStep()",
834                "GeomNav1002", JustWarning, mes    814                "GeomNav1002", JustWarning, message);
835 }                                              << 
836                                                << 
837 // ------------------------------------------- << 
838                                                << 
839 // ------------------------------------------- << 
840 // Methods to alter Parameters                 << 
841 // ------------------------------------------- << 
842                                                << 
843 // Was a data member (of an object) -- now mov << 
844 G4double  G4PropagatorInField::GetLargestAccep << 
845 {                                              << 
846   return fLargestAcceptableStep;               << 
847 }                                              << 
848                                                << 
849 // ------------------------------------------- << 
850 //                                             << 
851 void G4PropagatorInField::SetLargestAcceptable << 
852 {                                              << 
853   if( fLargestAcceptableStep>0.0 )             << 
854   {                                            << 
855     fLargestAcceptableStep = newBigDist;       << 
856   }                                            << 
857 }                                              << 
858                                                << 
859 // ------------------------------------------- << 
860                                                << 
861 G4double G4PropagatorInField::GetMaxStepSizeMu << 
862 {                                              << 
863   return fMaxStepSizeMultiplier;               << 
864 }                                              << 
865                                                << 
866 // ------------------------------------------- << 
867                                                << 
868 void     G4PropagatorInField::SetMaxStepSizeMu << 
869 {                                              << 
870   fMaxStepSizeMultiplier=vm;                   << 
871 }                                              << 
872                                                << 
873 // ------------------------------------------- << 
874                                                << 
875 G4double G4PropagatorInField::GetMinBigDistanc << 
876 {                                              << 
877   return fMinBigDistance;                      << 
878 }                                              << 
879                                                << 
880 // ------------------------------------------- << 
881                                                << 
882 void     G4PropagatorInField::SetMinBigDistanc << 
883 {                                              << 
884   fMinBigDistance= val;                        << 
885 }                                                 815 }
886                                                   816