Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4PropagatorInField.cc 99915 2016-10-11 09:24:43Z gcosmo $ >> 28 // GEANT4 tag $ Name: $ >> 29 // 26 // class G4PropagatorInField Implementation 30 // class G4PropagatorInField Implementation 27 // 31 // 28 // This class implements an algorithm to trac 32 // This class implements an algorithm to track a particle in a 29 // non-uniform magnetic field. It utilises an 33 // non-uniform magnetic field. It utilises an ODE solver (with 30 // the Runge - Kutta method) to evolve the pa 34 // the Runge - Kutta method) to evolve the particle, and drives it 31 // until the particle has traveled a set dist 35 // until the particle has traveled a set distance or it enters a new 32 // volume. 36 // volume. 33 // 37 // 34 // 14.10.96 John Apostolakis, design and imple << 38 // 14.10.96 John Apostolakis, design and implementation 35 // 17.03.97 John Apostolakis, renaming new set << 39 // 17.03.97 John Apostolakis, renaming new set functions being added >> 40 // 36 // ------------------------------------------- 41 // --------------------------------------------------------------------------- 37 42 38 #include <iomanip> 43 #include <iomanip> 39 44 40 #include "G4PropagatorInField.hh" 45 #include "G4PropagatorInField.hh" 41 #include "G4ios.hh" 46 #include "G4ios.hh" 42 #include "G4SystemOfUnits.hh" 47 #include "G4SystemOfUnits.hh" 43 #include "G4ThreeVector.hh" 48 #include "G4ThreeVector.hh" 44 #include "G4Material.hh" << 45 #include "G4VPhysicalVolume.hh" 49 #include "G4VPhysicalVolume.hh" 46 #include "G4Navigator.hh" 50 #include "G4Navigator.hh" 47 #include "G4GeometryTolerance.hh" 51 #include "G4GeometryTolerance.hh" 48 #include "G4VCurvedTrajectoryFilter.hh" 52 #include "G4VCurvedTrajectoryFilter.hh" 49 #include "G4ChordFinder.hh" 53 #include "G4ChordFinder.hh" 50 #include "G4MultiLevelLocator.hh" 54 #include "G4MultiLevelLocator.hh" 51 55 52 << 56 /////////////////////////////////////////////////////////////////////////// 53 // ------------------------------------------- << 54 // Constructors and destructor << 55 // 57 // 56 G4PropagatorInField::G4PropagatorInField( G4Na << 58 // Constructors and destructor 57 G4Fi << 59 58 G4VI << 60 G4PropagatorInField::G4PropagatorInField( G4Navigator *theNavigator, 59 : fDetectorFieldMgr(detectorFieldMgr), << 61 G4FieldManager *detectorFieldMgr, >> 62 G4VIntersectionLocator *vLocator ) >> 63 : >> 64 fMax_loop_count(1000), >> 65 fUseSafetyForOptimisation(true), // (false) is less sensitive to incorrect safety >> 66 fZeroStepThreshold( 0.0 ), // length of what is recognised as 'zero' step >> 67 fDetectorFieldMgr(detectorFieldMgr), >> 68 fpTrajectoryFilter( 0 ), 60 fNavigator(theNavigator), 69 fNavigator(theNavigator), 61 fCurrentFieldMgr(detectorFieldMgr), 70 fCurrentFieldMgr(detectorFieldMgr), >> 71 fSetFieldMgr(false), 62 End_PointAndTangent(G4ThreeVector(0.,0.,0. 72 End_PointAndTangent(G4ThreeVector(0.,0.,0.), 63 G4ThreeVector(0.,0.,0. << 73 G4ThreeVector(0.,0.,0.),0.0,0.0,0.0,0.0,0.0), 64 { << 74 fParticleIsLooping(false), 65 fEpsilonStep = (fDetectorFieldMgr != nullptr << 75 fNoZeroStep(0), 66 ? fDetectorFieldMgr->GetMaximum << 76 fVerboseLevel(0), 67 << 77 fVerbTracePiF(false), >> 78 fFirstStepInVolume(true), >> 79 fLastStepInVolume(true), >> 80 fNewTrack(true) >> 81 { >> 82 if(fDetectorFieldMgr) { fEpsilonStep = fDetectorFieldMgr->GetMaximumEpsilonStep();} >> 83 else { fEpsilonStep= 1.0e-5; } >> 84 fActionThreshold_NoZeroSteps = 2; >> 85 fSevereActionThreshold_NoZeroSteps = 10; >> 86 fAbandonThreshold_NoZeroSteps = 50; >> 87 fFull_CurveLen_of_LastAttempt = -1; >> 88 fLast_ProposedStepLength = -1; >> 89 fLargestAcceptableStep = 1000.0 * meter; 68 90 69 fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) << 91 fPreviousSftOrigin= G4ThreeVector(0.,0.,0.); >> 92 fPreviousSafety= 0.0; 70 kCarTolerance = G4GeometryTolerance::GetInst 93 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 71 fZeroStepThreshold = std::max( 1.0e5 * kCarT << 94 fZeroStepThreshold= std::max( 1.0e5 * kCarTolerance, 1.0e-1 * micrometer ); 72 95 73 fLargestAcceptableStep = 100.0 * meter; // << 74 fMaxStepSizeMultiplier= 0.1 ; // 0.1 in << 75 fMinBigDistance= 100. * CLHEP::mm; << 76 #ifdef G4DEBUG_FIELD 96 #ifdef G4DEBUG_FIELD 77 G4cout << " PiF: Zero Step Threshold set to 97 G4cout << " PiF: Zero Step Threshold set to " 78 << fZeroStepThreshold / millimeter 98 << fZeroStepThreshold / millimeter 79 << " mm." << G4endl; << 99 << " mm." << G4endl; 80 G4cout << " PiF: Value of kCarTolerance = 100 G4cout << " PiF: Value of kCarTolerance = " 81 << kCarTolerance / millimeter 101 << kCarTolerance / millimeter 82 << " mm. " << G4endl; << 102 << " mm. " << G4endl; 83 fVerboseLevel = 2; << 103 fVerboseLevel = 3; 84 fVerbTracePiF = true; 104 fVerbTracePiF = true; 85 #endif 105 #endif 86 106 87 // Defining Intersection Locator and his par 107 // Defining Intersection Locator and his parameters 88 if ( vLocator == nullptr ) << 108 if (vLocator==0) 89 { 109 { 90 fIntersectionLocator = new G4MultiLevelLoc << 110 fIntersectionLocator= new G4MultiLevelLocator(theNavigator); 91 fAllocatedLocator = true; << 111 fAllocatedLocator= true; 92 } 112 } 93 else 113 else 94 { 114 { 95 fIntersectionLocator = vLocator; << 115 fIntersectionLocator= vLocator; 96 fAllocatedLocator = false; << 116 fAllocatedLocator= false; 97 } 117 } 98 RefreshIntersectionLocator(); // Copy all 118 RefreshIntersectionLocator(); // Copy all relevant parameters 99 } 119 } 100 120 101 // ------------------------------------------- << 121 /////////////////////////////////////////////////////////////////////////// 102 // 122 // 103 G4PropagatorInField::~G4PropagatorInField() 123 G4PropagatorInField::~G4PropagatorInField() 104 { 124 { 105 if(fAllocatedLocator) { delete fIntersecti 125 if(fAllocatedLocator) { delete fIntersectionLocator; } 106 } 126 } 107 127 108 // ------------------------------------------- << 128 /////////////////////////////////////////////////////////////////////////// 109 // Update the IntersectionLocator with current << 110 // 129 // 111 void G4PropagatorInField::RefreshIntersectionL << 130 // Update the IntersectionLocator with current parameters >> 131 void >> 132 G4PropagatorInField::RefreshIntersectionLocator() 112 { 133 { 113 fIntersectionLocator->SetEpsilonStepFor(fEps 134 fIntersectionLocator->SetEpsilonStepFor(fEpsilonStep); 114 fIntersectionLocator->SetDeltaIntersectionFo 135 fIntersectionLocator->SetDeltaIntersectionFor(fCurrentFieldMgr->GetDeltaIntersection()); 115 fIntersectionLocator->SetChordFinderFor(GetC 136 fIntersectionLocator->SetChordFinderFor(GetChordFinder()); 116 fIntersectionLocator->SetSafetyParametersFor 137 fIntersectionLocator->SetSafetyParametersFor( fUseSafetyForOptimisation); 117 } 138 } 118 139 119 // ------------------------------------------- << 140 /////////////////////////////////////////////////////////////////////////// 120 // Compute the next geometric Step << 121 // 141 // 122 G4double G4PropagatorInField::ComputeStep( << 142 // Compute the next geometric Step >> 143 >> 144 G4double >> 145 G4PropagatorInField::ComputeStep( 123 G4FieldTrack& pFieldTrack 146 G4FieldTrack& pFieldTrack, 124 G4double CurrentProp 147 G4double CurrentProposedStepLength, 125 G4double& currentSafe 148 G4double& currentSafety, // IN/OUT 126 G4VPhysicalVolume* pPhysVol, << 149 G4VPhysicalVolume* pPhysVol) 127 G4bool canRelaxDel << 128 { 150 { 129 GetChordFinder()->OnComputeStep(&pFieldTrack << 130 const G4double deltaChord = GetChordFinder() << 131 << 132 // If CurrentProposedStepLength is too small 151 // If CurrentProposedStepLength is too small for finding Chords 133 // then return with no action (for now - TOD 152 // then return with no action (for now - TODO: some action) 134 // 153 // 135 const char* methodName = "G4PropagatorInFiel << 154 if(CurrentProposedStepLength<kCarTolerance) 136 if (CurrentProposedStepLength<kCarTolerance) << 137 { 155 { 138 return kInfinity; 156 return kInfinity; 139 } 157 } 140 158 141 // Introducing smooth trajectory display (ja 159 // Introducing smooth trajectory display (jacek 01/11/2002) 142 // 160 // 143 if (fpTrajectoryFilter != nullptr) << 161 if (fpTrajectoryFilter) 144 { 162 { 145 fpTrajectoryFilter->CreateNewTrajectorySeg 163 fpTrajectoryFilter->CreateNewTrajectorySegment(); 146 } 164 } 147 165 148 fFirstStepInVolume = fNewTrack ? true : fLas 166 fFirstStepInVolume = fNewTrack ? true : fLastStepInVolume; 149 fLastStepInVolume = false; << 167 fLastStepInVolume= false; 150 fNewTrack = false; << 168 fNewTrack= false; 151 169 152 if( fVerboseLevel > 2 ) 170 if( fVerboseLevel > 2 ) 153 { 171 { 154 G4cout << methodName << " called" << G4end << 172 G4cout << "G4PropagatorInField::ComputeStep() called" << G4endl; 155 G4cout << " Starting FT: " << pFieldTrac 173 G4cout << " Starting FT: " << pFieldTrack; 156 G4cout << " Requested length = " << Curr 174 G4cout << " Requested length = " << CurrentProposedStepLength << G4endl; 157 G4cout << " PhysVol = "; 175 G4cout << " PhysVol = "; 158 if( pPhysVol != nullptr ) << 176 if( pPhysVol ) 159 { << 160 G4cout << pPhysVol->GetName() << G4endl 177 G4cout << pPhysVol->GetName() << G4endl; 161 } << 162 else 178 else 163 { << 164 G4cout << " N/A "; 179 G4cout << " N/A "; 165 } << 166 G4cout << G4endl; 180 G4cout << G4endl; 167 } 181 } 168 182 169 // Parameters for adaptive Runge-Kutta integ 183 // Parameters for adaptive Runge-Kutta integration 170 184 171 G4double h_TrialStepSize; // 1st Step << 185 G4double h_TrialStepSize; // 1st Step Size 172 G4double TruePathLength = CurrentProposedSte << 186 G4double TruePathLength = CurrentProposedStepLength; 173 G4double StepTaken = 0.0; << 187 G4double StepTaken = 0.0; 174 G4double s_length_taken, epsilon; << 188 G4double s_length_taken, epsilon ; 175 G4bool intersects; << 189 G4bool intersects; 176 G4bool first_substep = true; << 190 G4bool first_substep = true; 177 191 178 G4double NewSafety; << 192 G4double NewSafety; 179 fParticleIsLooping = false; 193 fParticleIsLooping = false; 180 194 181 // If not yet done, 195 // If not yet done, 182 // Set the field manager to the local one 196 // Set the field manager to the local one if the volume has one, 183 // or to the global one 197 // or to the global one if not 184 // 198 // 185 if( !fSetFieldMgr ) << 199 if( !fSetFieldMgr ) fCurrentFieldMgr= FindAndSetFieldManager( pPhysVol ); 186 { << 200 // For the next call, the field manager must again be set 187 fCurrentFieldMgr = FindAndSetFieldManager( << 201 fSetFieldMgr= false; 188 } << 189 fSetFieldMgr = false; // For next call, the << 190 202 191 G4FieldTrack CurrentState(pFieldTrack); << 203 G4FieldTrack CurrentState(pFieldTrack); 192 G4FieldTrack OriginalState = CurrentState; << 204 G4FieldTrack OriginalState = CurrentState; 193 205 194 // If the Step length is "infinite", then an 206 // If the Step length is "infinite", then an approximate-maximum Step 195 // length (used to calculate the relative ac << 207 // length (used to calculate the relative accuracy) must be guessed. 196 // 208 // 197 if( CurrentProposedStepLength >= fLargestAcc 209 if( CurrentProposedStepLength >= fLargestAcceptableStep ) 198 { 210 { 199 G4ThreeVector StartPointA, VelocityUnit; 211 G4ThreeVector StartPointA, VelocityUnit; 200 StartPointA = pFieldTrack.GetPosition(); 212 StartPointA = pFieldTrack.GetPosition(); 201 VelocityUnit = pFieldTrack.GetMomentumDir( 213 VelocityUnit = pFieldTrack.GetMomentumDir(); 202 214 203 G4double trialProposedStep = fMaxStepSizeM << 215 G4double trialProposedStep = 1.e2 * ( 10.0 * cm + 204 fNavigator->GetWorldVolume()->GetLogical 216 fNavigator->GetWorldVolume()->GetLogicalVolume()-> 205 GetSolid()->DistanceToOut(St 217 GetSolid()->DistanceToOut(StartPointA, VelocityUnit) ); 206 CurrentProposedStepLength = std::min( tria << 218 CurrentProposedStepLength= std::min( trialProposedStep, 207 fLar << 219 fLargestAcceptableStep ); 208 } 220 } 209 epsilon = fCurrentFieldMgr->GetDeltaOneStep( 221 epsilon = fCurrentFieldMgr->GetDeltaOneStep() / CurrentProposedStepLength; >> 222 // G4double raw_epsilon= epsilon; 210 G4double epsilonMin= fCurrentFieldMgr->GetMi 223 G4double epsilonMin= fCurrentFieldMgr->GetMinimumEpsilonStep(); 211 G4double epsilonMax= fCurrentFieldMgr->GetMa 224 G4double epsilonMax= fCurrentFieldMgr->GetMaximumEpsilonStep(); 212 if( epsilon < epsilonMin ) { epsilon = epsi << 225 if( epsilon < epsilonMin ) epsilon = epsilonMin; 213 if( epsilon > epsilonMax ) { epsilon = epsi << 226 if( epsilon > epsilonMax ) epsilon = epsilonMax; 214 SetEpsilonStep( epsilon ); 227 SetEpsilonStep( epsilon ); 215 228 >> 229 216 // Values for Intersection Locator has to be 230 // Values for Intersection Locator has to be updated on each call for the 217 // case that CurrentFieldManager has changed 231 // case that CurrentFieldManager has changed from the one of previous step 218 // << 219 RefreshIntersectionLocator(); 232 RefreshIntersectionLocator(); 220 233 221 // Shorten the proposed step in case of earl << 234 // G4cout << "G4PiF: Epsilon of current step - raw= " << raw_epsilon >> 235 // << " final= " << epsilon << G4endl; >> 236 >> 237 // Shorten the proposed step in case of earlier problems (zero steps) 222 // 238 // 223 if( fNoZeroStep > fActionThreshold_NoZeroSte 239 if( fNoZeroStep > fActionThreshold_NoZeroSteps ) 224 { 240 { 225 G4double stepTrial; 241 G4double stepTrial; 226 242 227 stepTrial = fFull_CurveLen_of_LastAttempt; << 243 stepTrial= fFull_CurveLen_of_LastAttempt; 228 if( (stepTrial <= 0.0) && (fLast_ProposedS << 244 if( (stepTrial <= 0.0) && (fLast_ProposedStepLength > 0.0) ) 229 { << 245 stepTrial= fLast_ProposedStepLength; 230 stepTrial = fLast_ProposedStepLength; << 231 } << 232 246 233 G4double decreaseFactor = 0.9; // Unused d 247 G4double decreaseFactor = 0.9; // Unused default 234 if( (fNoZeroStep < fSevereActionThreshol 248 if( (fNoZeroStep < fSevereActionThreshold_NoZeroSteps) 235 && (stepTrial > 100.0*fZeroStepThreshol 249 && (stepTrial > 100.0*fZeroStepThreshold) ) 236 { 250 { 237 // Attempt quick convergence 251 // Attempt quick convergence 238 // 252 // 239 decreaseFactor= 0.25; 253 decreaseFactor= 0.25; 240 } 254 } 241 else 255 else 242 { 256 { 243 // We are in significant difficulties, p 257 // We are in significant difficulties, probably at a boundary that 244 // is either geometrically sharp or betw 258 // is either geometrically sharp or between very different materials. 245 // Careful decreases to cope with tolera << 259 // Careful decreases to cope with tolerance are required. 246 // 260 // 247 if( stepTrial > 100.0*fZeroStepThreshold << 261 if( stepTrial > 100.0*fZeroStepThreshold ) 248 decreaseFactor = 0.35; // Try decr 262 decreaseFactor = 0.35; // Try decreasing slower 249 } else if( stepTrial > 30.0*fZeroStepThr << 263 else if( stepTrial > 30.0*fZeroStepThreshold ) 250 decreaseFactor= 0.5; // Try yet 264 decreaseFactor= 0.5; // Try yet slower decrease 251 } else if( stepTrial > 10.0*fZeroStepThr << 265 else if( stepTrial > 10.0*fZeroStepThreshold ) 252 decreaseFactor= 0.75; // Try even 266 decreaseFactor= 0.75; // Try even slower decreases 253 } else { << 267 else 254 decreaseFactor= 0.9; // Try very 268 decreaseFactor= 0.9; // Try very slow decreases 255 } << 256 } 269 } 257 stepTrial *= decreaseFactor; 270 stepTrial *= decreaseFactor; 258 271 259 #ifdef G4DEBUG_FIELD 272 #ifdef G4DEBUG_FIELD 260 if( fVerboseLevel > 2 << 273 G4cerr << " G4PropagatorInField::ComputeStep(): " << G4endl 261 || (fNoZeroStep >= fSevereActionThreshol << 274 << " Decreasing step - in volume " << pPhysVol; 262 { << 275 if( pPhysVol ) 263 G4cerr << " " << methodName << 276 G4cerr << " with name " << pPhysVol->GetName(); 264 << " Decreasing step after " < << 277 G4cerr << G4endl; 265 << " - in volume " << pPhysVol; << 278 PrintStepLengthDiagnostic(CurrentProposedStepLength, decreaseFactor, 266 if( pPhysVol ) << 279 stepTrial, pFieldTrack); 267 G4cerr << " with name " << pPhysVol << 268 else << 269 G4cerr << " i.e. *unknown* volume." << 270 G4cerr << G4endl; << 271 PrintStepLengthDiagnostic(CurrentPropo << 272 stepTrial, p << 273 } << 274 #endif 280 #endif 275 if( stepTrial == 0.0 ) // Change to mak 281 if( stepTrial == 0.0 ) // Change to make it < 0.1 * kCarTolerance ?? 276 { 282 { 277 std::ostringstream message; 283 std::ostringstream message; 278 message << "Particle abandoned due to l 284 message << "Particle abandoned due to lack of progress in field." 279 << G4endl 285 << G4endl 280 << " Properties : " << pFieldT 286 << " Properties : " << pFieldTrack << G4endl 281 << " Attempting a zero step = 287 << " Attempting a zero step = " << stepTrial << G4endl 282 << " while attempting to progr 288 << " while attempting to progress after " << fNoZeroStep 283 << " trial steps. Will abandon 289 << " trial steps. Will abandon step."; 284 G4Exception(methodName, "GeomNav1002", << 290 G4Exception("G4PropagatorInField::ComputeStep()", "GeomNav1002", 285 fParticleIsLooping = true; << 291 JustWarning, message); >> 292 fParticleIsLooping= true; 286 return 0; // = stepTrial; 293 return 0; // = stepTrial; 287 } 294 } 288 if( stepTrial < CurrentProposedStepLength 295 if( stepTrial < CurrentProposedStepLength ) 289 { << 290 CurrentProposedStepLength = stepTrial; 296 CurrentProposedStepLength = stepTrial; 291 } << 292 } 297 } 293 fLast_ProposedStepLength = CurrentProposedSt 298 fLast_ProposedStepLength = CurrentProposedStepLength; 294 299 295 G4int do_loop_count = 0; 300 G4int do_loop_count = 0; 296 do // Loop checking, 07.10.2016, JA << 301 do // Loop checking, 07.10.2016, J.Apostolakis 297 { 302 { 298 G4FieldTrack SubStepStartState = CurrentSt 303 G4FieldTrack SubStepStartState = CurrentState; 299 G4ThreeVector SubStartPoint = CurrentState 304 G4ThreeVector SubStartPoint = CurrentState.GetPosition(); 300 305 301 if(!first_substep) 306 if(!first_substep) 302 { 307 { 303 if( fVerboseLevel > 4 ) 308 if( fVerboseLevel > 4 ) 304 { 309 { 305 G4cout << " PiF: Calling Nav/Locate Gl 310 G4cout << " PiF: Calling Nav/Locate Global Point within-Volume " 306 << G4endl; 311 << G4endl; 307 } 312 } 308 fNavigator->LocateGlobalPointWithinVolum 313 fNavigator->LocateGlobalPointWithinVolume( SubStartPoint ); 309 } 314 } 310 315 311 // How far to attempt to move the particle 316 // How far to attempt to move the particle ! 312 // 317 // 313 h_TrialStepSize = CurrentProposedStepLengt 318 h_TrialStepSize = CurrentProposedStepLength - StepTaken; 314 319 315 if (canRelaxDeltaChord && << 316 fIncreaseChordDistanceThreshold > 0 & << 317 do_loop_count > fIncreaseChordDistance << 318 do_loop_count % fIncreaseChordDistance << 319 { << 320 GetChordFinder()->SetDeltaChord( << 321 GetChordFinder()->GetDeltaChord() * << 322 ); << 323 } << 324 << 325 // Integrate as far as "chord miss" rule a 320 // Integrate as far as "chord miss" rule allows. 326 // 321 // 327 s_length_taken = GetChordFinder()->Advance 322 s_length_taken = GetChordFinder()->AdvanceChordLimited( 328 CurrentState, 323 CurrentState, // Position & velocity 329 h_TrialStepSize, 324 h_TrialStepSize, 330 fEpsilonStep, 325 fEpsilonStep, 331 fPreviousSftOrigi 326 fPreviousSftOrigin, 332 fPreviousSafety ) << 327 fPreviousSafety 333 // CurrentState is now updated with the << 328 ); >> 329 // CurrentState is now updated with the final position and velocity. 334 330 335 fFull_CurveLen_of_LastAttempt = s_length_t 331 fFull_CurveLen_of_LastAttempt = s_length_taken; 336 332 337 G4ThreeVector EndPointB = CurrentState.Get << 333 G4ThreeVector EndPointB = CurrentState.GetPosition(); 338 G4ThreeVector InterSectionPointE; << 334 G4ThreeVector InterSectionPointE; 339 G4double LinearStepLength; << 335 G4double LinearStepLength; 340 336 341 // Intersect chord AB with geometry 337 // Intersect chord AB with geometry 342 // << 343 intersects= IntersectChord( SubStartPoint, 338 intersects= IntersectChord( SubStartPoint, EndPointB, 344 NewSafety, Lin << 339 NewSafety, LinearStepLength, 345 InterSectionPo 340 InterSectionPointE ); 346 // E <- Intersection Point of chord AB a << 341 // E <- Intersection Point of chord AB and either volume A's surface 347 // or a << 342 // or a daughter volume's surface .. 348 343 349 if( first_substep ) 344 if( first_substep ) 350 { 345 { 351 currentSafety = NewSafety; 346 currentSafety = NewSafety; 352 } // Updating safety in other steps is pot 347 } // Updating safety in other steps is potential future extention 353 348 354 if( intersects ) 349 if( intersects ) 355 { 350 { 356 G4FieldTrack IntersectPointVelct_G(Curr 351 G4FieldTrack IntersectPointVelct_G(CurrentState); // FT-Def-Construct 357 352 358 // Find the intersection point of AB tr 353 // Find the intersection point of AB true path with the surface 359 // of vol(A), if it exists. Start wit 354 // of vol(A), if it exists. Start with point E as first "estimate". 360 G4bool recalculatedEndPt = false; << 355 G4bool recalculatedEndPt= false; 361 356 362 G4bool found_intersection = fIntersecti 357 G4bool found_intersection = fIntersectionLocator-> 363 EstimateIntersectionPoint( SubStepSta 358 EstimateIntersectionPoint( SubStepStartState, CurrentState, 364 InterSecti 359 InterSectionPointE, IntersectPointVelct_G, 365 recalculat 360 recalculatedEndPt, fPreviousSafety, 366 fPreviousS 361 fPreviousSftOrigin); 367 intersects = found_intersection; 362 intersects = found_intersection; 368 if( found_intersection ) 363 if( found_intersection ) 369 { 364 { 370 End_PointAndTangent= IntersectPointV 365 End_PointAndTangent= IntersectPointVelct_G; // G is our EndPoint ... 371 StepTaken = TruePathLength = Interse 366 StepTaken = TruePathLength = IntersectPointVelct_G.GetCurveLength() 372 - Origina << 367 - OriginalState.GetCurveLength(); 373 } 368 } 374 else 369 else 375 { 370 { 376 // Either "minor" chords do not inte 371 // Either "minor" chords do not intersect 377 // or else stopped (due to too many 372 // or else stopped (due to too many steps) 378 // 373 // 379 if( recalculatedEndPt ) 374 if( recalculatedEndPt ) 380 { 375 { 381 G4double endAchieved = IntersectP 376 G4double endAchieved = IntersectPointVelct_G.GetCurveLength(); 382 G4double endExpected = CurrentSta 377 G4double endExpected = CurrentState.GetCurveLength(); 383 378 384 // Detect failure - due to too ma 379 // Detect failure - due to too many steps 385 G4bool shortEnd = endAchieved 380 G4bool shortEnd = endAchieved 386 < (endExpected*(1 381 < (endExpected*(1.0-CLHEP::perMillion)); 387 382 388 G4double stepAchieved = endAchiev 383 G4double stepAchieved = endAchieved 389 - SubStepSt 384 - SubStepStartState.GetCurveLength(); 390 385 391 // Update remaining state - must 386 // Update remaining state - must work for 'full' step or 392 // abandonned intersection 387 // abandonned intersection 393 // 388 // 394 CurrentState = IntersectPointVelc << 389 CurrentState= IntersectPointVelct_G; 395 s_length_taken = stepAchieved; 390 s_length_taken = stepAchieved; 396 if( shortEnd ) 391 if( shortEnd ) 397 { 392 { 398 fParticleIsLooping = true; 393 fParticleIsLooping = true; 399 } 394 } 400 } 395 } 401 } 396 } 402 } 397 } 403 if( !intersects ) 398 if( !intersects ) 404 { 399 { 405 StepTaken += s_length_taken; << 400 StepTaken += s_length_taken; 406 << 401 // For smooth trajectory display (jacek 01/11/2002) 407 if (fpTrajectoryFilter != nullptr) // Fo << 402 if (fpTrajectoryFilter) { 408 { << 409 fpTrajectoryFilter->TakeIntermediatePo 403 fpTrajectoryFilter->TakeIntermediatePoint(CurrentState.GetPosition()); 410 } 404 } 411 } 405 } 412 first_substep = false; 406 first_substep = false; 413 407 414 #ifdef G4DEBUG_FIELD 408 #ifdef G4DEBUG_FIELD 415 if( fNoZeroStep > fActionThreshold_NoZeroS 409 if( fNoZeroStep > fActionThreshold_NoZeroSteps ) 416 { 410 { 417 if( fNoZeroStep > fSevereActionThreshold << 418 G4cout << " Above 'Severe Action' thre << 419 else << 420 G4cout << " Above 'action' threshold - << 421 G4cout << " Number of zero steps = " << << 422 printStatus( SubStepStartState, // or O 411 printStatus( SubStepStartState, // or OriginalState, 423 CurrentState, CurrentPropos << 412 CurrentState, CurrentProposedStepLength, 424 NewSafety, do_loop_count, p << 413 NewSafety, do_loop_count, pPhysVol ); 425 } 414 } 426 if( (fVerboseLevel > 1) && (do_loop_count 415 if( (fVerboseLevel > 1) && (do_loop_count > fMax_loop_count-10 )) 427 { 416 { 428 if( do_loop_count == fMax_loop_count-9 ) 417 if( do_loop_count == fMax_loop_count-9 ) 429 { 418 { 430 G4cout << " G4PropagatorInField::Compu 419 G4cout << " G4PropagatorInField::ComputeStep(): " << G4endl 431 << " Difficult track - taking 420 << " Difficult track - taking many sub steps." << G4endl; 432 printStatus( SubStepStartState, SubSte << 433 NewSafety, 0, pPhysVol ); << 434 } 421 } 435 printStatus( SubStepStartState, CurrentS 422 printStatus( SubStepStartState, CurrentState, CurrentProposedStepLength, 436 NewSafety, do_loop_count, p 423 NewSafety, do_loop_count, pPhysVol ); 437 } 424 } 438 #endif 425 #endif 439 426 440 ++do_loop_count; << 427 do_loop_count++; 441 428 442 } while( (!intersects ) 429 } while( (!intersects ) 443 && (!fParticleIsLooping) 430 && (!fParticleIsLooping) 444 && (StepTaken + kCarTolerance < Curren 431 && (StepTaken + kCarTolerance < CurrentProposedStepLength) 445 && ( do_loop_count < fMax_loop_count ) 432 && ( do_loop_count < fMax_loop_count ) ); 446 433 447 if( do_loop_count >= fMax_loop_count << 434 if( do_loop_count >= fMax_loop_count ) 448 && (StepTaken + kCarTolerance < CurrentPro << 449 { 435 { 450 fParticleIsLooping = true; 436 fParticleIsLooping = true; 451 } 437 } 452 if ( ( fParticleIsLooping ) && (fVerboseLeve << 438 if ( fParticleIsLooping && (fVerboseLevel > 0) ) 453 { 439 { 454 ReportLoopingParticle( do_loop_count, Step << 440 ReportLoopingParticle( do_loop_count, StepTaken, pPhysVol ); 455 CurrentProposedStep << 456 CurrentState.GetMom << 457 } 441 } 458 442 459 if( !intersects ) 443 if( !intersects ) 460 { 444 { 461 // Chord AB or "minor chords" do not inter 445 // Chord AB or "minor chords" do not intersect 462 // B is the endpoint Step of the current S 446 // B is the endpoint Step of the current Step. 463 // 447 // 464 End_PointAndTangent = CurrentState; 448 End_PointAndTangent = CurrentState; 465 TruePathLength = StepTaken; // Original 449 TruePathLength = StepTaken; // Original code 466 << 467 // Tried the following to avoid potential 450 // Tried the following to avoid potential issue with round-off error 468 // - but has issues... Suppressing this ch 451 // - but has issues... Suppressing this change JA 2015/05/02 469 // TruePathLength = CurrentProposedStepLen 452 // TruePathLength = CurrentProposedStepLength; 470 } 453 } 471 fLastStepInVolume = intersects; 454 fLastStepInVolume = intersects; 472 455 473 // Set pFieldTrack to the return value 456 // Set pFieldTrack to the return value 474 // 457 // 475 pFieldTrack = End_PointAndTangent; 458 pFieldTrack = End_PointAndTangent; 476 459 477 #ifdef G4VERBOSE 460 #ifdef G4VERBOSE 478 // Check that "s" is correct 461 // Check that "s" is correct 479 // 462 // 480 if( std::fabs(OriginalState.GetCurveLength() 463 if( std::fabs(OriginalState.GetCurveLength() + TruePathLength 481 - End_PointAndTangent.GetCurveLength()) 464 - End_PointAndTangent.GetCurveLength()) > 3.e-4 * TruePathLength ) 482 { 465 { 483 std::ostringstream message; 466 std::ostringstream message; 484 message << "Curve length mis-match between 467 message << "Curve length mis-match between original state " 485 << "and proposed endpoint of propa 468 << "and proposed endpoint of propagation." << G4endl 486 << " The curve length of the endp 469 << " The curve length of the endpoint should be: " 487 << OriginalState.GetCurveLength() 470 << OriginalState.GetCurveLength() + TruePathLength << G4endl 488 << " and it is instead: " 471 << " and it is instead: " 489 << End_PointAndTangent.GetCurveLen 472 << End_PointAndTangent.GetCurveLength() << "." << G4endl 490 << " A difference of: " 473 << " A difference of: " 491 << OriginalState.GetCurveLength() 474 << OriginalState.GetCurveLength() + TruePathLength 492 - End_PointAndTangent.GetCurveL 475 - End_PointAndTangent.GetCurveLength() << G4endl 493 << " Original state = " << Origin 476 << " Original state = " << OriginalState << G4endl 494 << " Proposed state = " << End_Po 477 << " Proposed state = " << End_PointAndTangent; 495 G4Exception(methodName, "GeomNav0003", Fat << 478 G4Exception("G4PropagatorInField::ComputeStep()", >> 479 "GeomNav0003", FatalException, message); 496 } 480 } 497 #endif 481 #endif 498 482 499 if( TruePathLength+kCarTolerance >= CurrentP 483 if( TruePathLength+kCarTolerance >= CurrentProposedStepLength ) 500 { 484 { 501 fNoZeroStep = 0; 485 fNoZeroStep = 0; 502 } 486 } 503 else 487 else 504 { 488 { 505 // In particular anomalous cases, we can 489 // In particular anomalous cases, we can get repeated zero steps 506 // We identify these cases and take corre 490 // We identify these cases and take corrective action when they occur. 507 // 491 // 508 if( TruePathLength < std::max( fZeroStepT 492 if( TruePathLength < std::max( fZeroStepThreshold, 0.5*kCarTolerance ) ) 509 { 493 { 510 ++fNoZeroStep; << 494 fNoZeroStep++; 511 } 495 } 512 else << 496 else{ 513 { << 514 fNoZeroStep = 0; 497 fNoZeroStep = 0; 515 } 498 } 516 } 499 } 517 if( fNoZeroStep > fAbandonThreshold_NoZeroSt 500 if( fNoZeroStep > fAbandonThreshold_NoZeroSteps ) 518 { 501 { 519 fParticleIsLooping = true; 502 fParticleIsLooping = true; 520 ReportStuckParticle( fNoZeroStep, Current << 503 ReportStuckParticle( fNoZeroStep, CurrentProposedStepLength, fFull_CurveLen_of_LastAttempt, 521 fFull_CurveLen_of_La << 504 pPhysVol ); 522 fNoZeroStep = 0; 505 fNoZeroStep = 0; 523 } 506 } 524 507 525 GetChordFinder()->SetDeltaChord(deltaChord); << 526 return TruePathLength; 508 return TruePathLength; 527 } 509 } 528 510 529 // ------------------------------------------- << 511 /////////////////////////////////////////////////////////////////////////// 530 // Dumps status of propagator << 531 // 512 // >> 513 // Dumps status of propagator. >> 514 532 void 515 void 533 G4PropagatorInField::printStatus( const G4Fiel << 516 G4PropagatorInField::printStatus( const G4FieldTrack& StartFT, 534 const G4Fiel << 517 const G4FieldTrack& CurrentFT, 535 G4doub << 518 G4double requestStep, 536 G4doub << 519 G4double safety, 537 G4int << 520 G4int stepNo, 538 G4VPhy << 521 G4VPhysicalVolume* startVolume) 539 { 522 { 540 const G4int verboseLevel = fVerboseLevel; << 523 const G4int verboseLevel=fVerboseLevel; 541 const G4ThreeVector StartPosition = St 524 const G4ThreeVector StartPosition = StartFT.GetPosition(); 542 const G4ThreeVector StartUnitVelocity = St 525 const G4ThreeVector StartUnitVelocity = StartFT.GetMomentumDir(); 543 const G4ThreeVector CurrentPosition = Cu 526 const G4ThreeVector CurrentPosition = CurrentFT.GetPosition(); 544 const G4ThreeVector CurrentUnitVelocity = Cu 527 const G4ThreeVector CurrentUnitVelocity = CurrentFT.GetMomentumDir(); 545 528 546 G4double step_len = CurrentFT.GetCurveLength 529 G4double step_len = CurrentFT.GetCurveLength() - StartFT.GetCurveLength(); 547 530 548 G4long oldprec; // cout/cerr precision set << 531 G4int oldprec; // cout/cerr precision settings 549 532 550 if( ((stepNo == 0) && (verboseLevel <3)) || 533 if( ((stepNo == 0) && (verboseLevel <3)) || (verboseLevel >= 3) ) 551 { 534 { 552 oldprec = G4cout.precision(4); 535 oldprec = G4cout.precision(4); >> 536 G4cout << std::setw( 6) << " " >> 537 << std::setw( 25) << " Current Position and Direction" << " " >> 538 << G4endl; 553 G4cout << std::setw( 5) << "Step#" 539 G4cout << std::setw( 5) << "Step#" 554 << std::setw(10) << " s " << " " 540 << std::setw(10) << " s " << " " 555 << std::setw(10) << "X(mm)" << " " 541 << std::setw(10) << "X(mm)" << " " 556 << std::setw(10) << "Y(mm)" << " " 542 << std::setw(10) << "Y(mm)" << " " 557 << std::setw(10) << "Z(mm)" << " " 543 << std::setw(10) << "Z(mm)" << " " 558 << std::setw( 7) << " N_x " << " " 544 << std::setw( 7) << " N_x " << " " 559 << std::setw( 7) << " N_y " << " " 545 << std::setw( 7) << " N_y " << " " 560 << std::setw( 7) << " N_z " << " " 546 << std::setw( 7) << " N_z " << " " ; 561 G4cout << std::setw( 7) << " Delta|N|" << 547 G4cout << std::setw( 7) << " Delta|N|" << " " 562 << std::setw( 9) << "StepLen" << " 548 << std::setw( 9) << "StepLen" << " " 563 << std::setw(12) << "StartSafety" < 549 << std::setw(12) << "StartSafety" << " " 564 << std::setw( 9) << "PhsStep" << " 550 << std::setw( 9) << "PhsStep" << " "; 565 if( startVolume != nullptr ) << 551 if( startVolume ) 566 { G4cout << std::setw(18) << "NextVolume 552 { G4cout << std::setw(18) << "NextVolume" << " "; } 567 G4cout.precision(oldprec); 553 G4cout.precision(oldprec); 568 G4cout << G4endl; 554 G4cout << G4endl; 569 } 555 } 570 if((stepNo == 0) && (verboseLevel <=3)) 556 if((stepNo == 0) && (verboseLevel <=3)) 571 { 557 { 572 // Recurse to print the start values 558 // Recurse to print the start values 573 // 559 // 574 printStatus( StartFT, StartFT, -1.0, safet 560 printStatus( StartFT, StartFT, -1.0, safety, -1, startVolume); 575 } 561 } 576 if( verboseLevel <= 3 ) 562 if( verboseLevel <= 3 ) 577 { 563 { 578 if( stepNo >= 0) 564 if( stepNo >= 0) 579 { G4cout << std::setw( 4) << stepNo << " 565 { G4cout << std::setw( 4) << stepNo << " "; } 580 else 566 else 581 { G4cout << std::setw( 5) << "Start" ; } 567 { G4cout << std::setw( 5) << "Start" ; } 582 oldprec = G4cout.precision(8); 568 oldprec = G4cout.precision(8); 583 G4cout << std::setw(10) << CurrentFT.GetCu 569 G4cout << std::setw(10) << CurrentFT.GetCurveLength() << " "; 584 G4cout.precision(8); 570 G4cout.precision(8); 585 G4cout << std::setw(10) << CurrentPosition 571 G4cout << std::setw(10) << CurrentPosition.x() << " " 586 << std::setw(10) << CurrentPosition 572 << std::setw(10) << CurrentPosition.y() << " " 587 << std::setw(10) << CurrentPosition 573 << std::setw(10) << CurrentPosition.z() << " "; 588 G4cout.precision(4); 574 G4cout.precision(4); 589 G4cout << std::setw( 7) << CurrentUnitVelo 575 G4cout << std::setw( 7) << CurrentUnitVelocity.x() << " " 590 << std::setw( 7) << CurrentUnitVelo 576 << std::setw( 7) << CurrentUnitVelocity.y() << " " 591 << std::setw( 7) << CurrentUnitVelo 577 << std::setw( 7) << CurrentUnitVelocity.z() << " "; 592 G4cout.precision(3); 578 G4cout.precision(3); 593 G4cout << std::setw( 7) 579 G4cout << std::setw( 7) 594 << CurrentFT.GetMomentum().mag()-St 580 << CurrentFT.GetMomentum().mag()-StartFT.GetMomentum().mag() << " "; 595 G4cout << std::setw( 9) << step_len << " " 581 G4cout << std::setw( 9) << step_len << " "; 596 G4cout << std::setw(12) << safety << " "; 582 G4cout << std::setw(12) << safety << " "; 597 if( requestStep != -1.0 ) 583 if( requestStep != -1.0 ) 598 { G4cout << std::setw( 9) << requestStep 584 { G4cout << std::setw( 9) << requestStep << " "; } 599 else 585 else 600 { G4cout << std::setw( 9) << "Init/NotKn 586 { G4cout << std::setw( 9) << "Init/NotKnown" << " "; } 601 if( startVolume != nullptr) << 587 if( startVolume != 0) 602 { G4cout << std::setw(12) << startVolume 588 { G4cout << std::setw(12) << startVolume->GetName() << " "; } 603 G4cout.precision(oldprec); 589 G4cout.precision(oldprec); 604 G4cout << G4endl; 590 G4cout << G4endl; 605 } 591 } 606 else // if( verboseLevel > 3 ) 592 else // if( verboseLevel > 3 ) 607 { 593 { 608 // Multi-line output 594 // Multi-line output 609 595 610 G4cout << "Step taken was " << step_len 596 G4cout << "Step taken was " << step_len 611 << " out of PhysicalStep = " << re 597 << " out of PhysicalStep = " << requestStep << G4endl; 612 G4cout << "Final safety is: " << safety << 598 G4cout << "Final safety is: " << safety << G4endl; 613 G4cout << "Chord length = " << (CurrentPos 599 G4cout << "Chord length = " << (CurrentPosition-StartPosition).mag() 614 << G4endl; 600 << G4endl; 615 G4cout << G4endl; 601 G4cout << G4endl; 616 } 602 } 617 } 603 } 618 604 619 // ------------------------------------------- << 605 /////////////////////////////////////////////////////////////////////////// 620 // Prints Step diagnostics << 621 // 606 // >> 607 // Prints Step diagnostics >> 608 622 void 609 void 623 G4PropagatorInField::PrintStepLengthDiagnostic 610 G4PropagatorInField::PrintStepLengthDiagnostic( 624 G4double CurrentProp 611 G4double CurrentProposedStepLength, 625 G4double decreaseFac 612 G4double decreaseFactor, 626 G4double stepTrial, 613 G4double stepTrial, 627 const G4FieldTrack& ) 614 const G4FieldTrack& ) 628 { 615 { 629 G4long iprec= G4cout.precision(8); << 616 G4int iprec= G4cout.precision(8); 630 G4cout << " " << std::setw(12) << " PiF: NoZ 617 G4cout << " " << std::setw(12) << " PiF: NoZeroStep " 631 << " " << std::setw(20) << " CurrentP 618 << " " << std::setw(20) << " CurrentProposed len " 632 << " " << std::setw(18) << " Full_cur 619 << " " << std::setw(18) << " Full_curvelen_last" 633 << " " << std::setw(18) << " last pro 620 << " " << std::setw(18) << " last proposed len " 634 << " " << std::setw(18) << " decrease 621 << " " << std::setw(18) << " decrease factor " 635 << " " << std::setw(15) << " step tri 622 << " " << std::setw(15) << " step trial " 636 << G4endl; 623 << G4endl; 637 624 638 G4cout << " " << std::setw(10) << fNoZeroSte 625 G4cout << " " << std::setw(10) << fNoZeroStep << " " 639 << " " << std::setw(20) << CurrentPro 626 << " " << std::setw(20) << CurrentProposedStepLength 640 << " " << std::setw(18) << fFull_Curv 627 << " " << std::setw(18) << fFull_CurveLen_of_LastAttempt 641 << " " << std::setw(18) << fLast_Prop 628 << " " << std::setw(18) << fLast_ProposedStepLength 642 << " " << std::setw(18) << decreaseFa 629 << " " << std::setw(18) << decreaseFactor 643 << " " << std::setw(15) << stepTrial 630 << " " << std::setw(15) << stepTrial 644 << G4endl; 631 << G4endl; 645 G4cout.precision( iprec ); << 632 G4cout.precision( iprec ); >> 633 646 } 634 } 647 635 648 // Access the points which have passed through 636 // Access the points which have passed through the filter. The 649 // points are stored as ThreeVectors for the i 637 // points are stored as ThreeVectors for the initial impelmentation 650 // only (jacek 30/10/2002) 638 // only (jacek 30/10/2002) 651 // Responsibility for deleting the points lies 639 // Responsibility for deleting the points lies with 652 // SmoothTrajectoryPoint, which is the points' 640 // SmoothTrajectoryPoint, which is the points' final 653 // destination. The points pointer is set to N 641 // destination. The points pointer is set to NULL, to ensure that 654 // the points are not re-used in subsequent st 642 // the points are not re-used in subsequent steps, therefore THIS 655 // METHOD MUST BE CALLED EXACTLY ONCE PER STEP 643 // METHOD MUST BE CALLED EXACTLY ONCE PER STEP. (jacek 08/11/2002) 656 644 657 std::vector<G4ThreeVector>* 645 std::vector<G4ThreeVector>* 658 G4PropagatorInField::GimmeTrajectoryVectorAndF 646 G4PropagatorInField::GimmeTrajectoryVectorAndForgetIt() const 659 { 647 { 660 // NB, GimmeThePointsAndForgetThem really fo 648 // NB, GimmeThePointsAndForgetThem really forgets them, so it can 661 // only be called (exactly) once for each st 649 // only be called (exactly) once for each step. 662 650 663 if (fpTrajectoryFilter != nullptr) << 651 if (fpTrajectoryFilter) 664 { 652 { 665 return fpTrajectoryFilter->GimmeThePointsA 653 return fpTrajectoryFilter->GimmeThePointsAndForgetThem(); 666 } 654 } 667 return nullptr; << 655 else >> 656 { >> 657 return 0; >> 658 } 668 } 659 } 669 660 670 // ------------------------------------------- << 661 /////////////////////////////////////////////////////////////////////////// 671 // 662 // 672 void 663 void 673 G4PropagatorInField::SetTrajectoryFilter(G4VCu 664 G4PropagatorInField::SetTrajectoryFilter(G4VCurvedTrajectoryFilter* filter) 674 { 665 { 675 fpTrajectoryFilter = filter; 666 fpTrajectoryFilter = filter; 676 } 667 } 677 668 678 // ------------------------------------------- << 679 // << 680 void G4PropagatorInField::ClearPropagatorState 669 void G4PropagatorInField::ClearPropagatorState() 681 { 670 { 682 // Goal: Clear all memory of previous steps, 671 // Goal: Clear all memory of previous steps, cached information 683 672 684 fParticleIsLooping = false; << 673 fParticleIsLooping= false; 685 fNoZeroStep = 0; << 674 fNoZeroStep= 0; 686 675 687 fSetFieldMgr = false; // Has field-manager << 688 fEpsilonStep= 1.0e-5; // Relative accuracy << 689 << 690 End_PointAndTangent= G4FieldTrack( G4ThreeVe 676 End_PointAndTangent= G4FieldTrack( G4ThreeVector(0.,0.,0.), 691 G4ThreeVe 677 G4ThreeVector(0.,0.,0.), 692 0.0,0.0,0 678 0.0,0.0,0.0,0.0,0.0); 693 fFull_CurveLen_of_LastAttempt = -1; 679 fFull_CurveLen_of_LastAttempt = -1; 694 fLast_ProposedStepLength = -1; 680 fLast_ProposedStepLength = -1; 695 681 696 fPreviousSftOrigin= G4ThreeVector(0.,0.,0.); 682 fPreviousSftOrigin= G4ThreeVector(0.,0.,0.); 697 fPreviousSafety= 0.0; 683 fPreviousSafety= 0.0; 698 << 699 fNewTrack = true; << 700 } 684 } 701 685 702 // ------------------------------------------- << 703 // << 704 G4FieldManager* G4PropagatorInField:: 686 G4FieldManager* G4PropagatorInField:: 705 FindAndSetFieldManager( G4VPhysicalVolume* pCu << 687 FindAndSetFieldManager( G4VPhysicalVolume* pCurrentPhysicalVolume) 706 { 688 { 707 G4FieldManager* currentFieldMgr; 689 G4FieldManager* currentFieldMgr; 708 690 709 currentFieldMgr = fDetectorFieldMgr; 691 currentFieldMgr = fDetectorFieldMgr; 710 if( pCurrentPhysicalVolume != nullptr ) << 692 if( pCurrentPhysicalVolume) 711 { 693 { 712 G4FieldManager *pRegionFieldMgr = nullptr << 694 G4FieldManager *pRegionFieldMgr= 0, *localFieldMgr = 0; 713 G4LogicalVolume* pLogicalVol = pCurrentPh << 695 G4LogicalVolume* pLogicalVol= pCurrentPhysicalVolume->GetLogicalVolume(); 714 696 715 if( pLogicalVol != nullptr ) << 697 if( pLogicalVol ) { 716 { << 698 // Value for Region, if any, Overrides 717 // Value for Region, if any, overrides << 699 G4Region* pRegion= pLogicalVol->GetRegion(); 718 // << 700 if( pRegion ) { 719 G4Region* pRegion = pLogicalVol->GetR << 701 pRegionFieldMgr= pRegion->GetFieldManager(); 720 if( pRegion != nullptr ) << 702 if( pRegionFieldMgr ) 721 { << 703 currentFieldMgr= pRegionFieldMgr; 722 pRegionFieldMgr = pRegion->GetField << 704 } 723 if( pRegionFieldMgr != nullptr ) << 705 724 { << 706 // 'Local' Value from logical volume, if any, Overrides 725 currentFieldMgr= pRegionFieldMgr << 707 localFieldMgr= pLogicalVol->GetFieldManager(); 726 } << 708 if ( localFieldMgr ) 727 } << 709 currentFieldMgr = localFieldMgr; 728 << 729 // 'Local' Value from logical volume, << 730 // << 731 localFieldMgr = pLogicalVol->GetFieldM << 732 if ( localFieldMgr != nullptr ) << 733 { << 734 currentFieldMgr = localFieldMgr; << 735 } << 736 } 710 } 737 } 711 } 738 fCurrentFieldMgr = currentFieldMgr; << 712 fCurrentFieldMgr= currentFieldMgr; 739 713 740 // Flag that field manager has been set 714 // Flag that field manager has been set 741 // 715 // 742 fSetFieldMgr = true; << 716 fSetFieldMgr= true; 743 717 744 return currentFieldMgr; 718 return currentFieldMgr; 745 } 719 } 746 720 747 // ------------------------------------------- << 748 // << 749 G4int G4PropagatorInField::SetVerboseLevel( G4 721 G4int G4PropagatorInField::SetVerboseLevel( G4int level ) 750 { 722 { 751 G4int oldval = fVerboseLevel; << 723 G4int oldval= fVerboseLevel; 752 fVerboseLevel = level; << 724 fVerboseLevel= level; 753 725 754 // Forward the verbose level 'reduced' to Ch 726 // Forward the verbose level 'reduced' to ChordFinder, 755 // MagIntegratorDriver ... ? 727 // MagIntegratorDriver ... ? 756 // 728 // 757 auto integrDriver = GetChordFinder()->GetInt << 729 G4MagInt_Driver* integrDriver= GetChordFinder()->GetIntegrationDriver(); 758 integrDriver->SetVerboseLevel( fVerboseLevel 730 integrDriver->SetVerboseLevel( fVerboseLevel - 2 ); 759 G4cout << "Set Driver verbosity to " << fVer 731 G4cout << "Set Driver verbosity to " << fVerboseLevel - 2 << G4endl; 760 732 761 return oldval; 733 return oldval; 762 } 734 } 763 735 764 // ------------------------------------------- << 736 void G4PropagatorInField::ReportLoopingParticle( G4int count, 765 // << 737 G4double StepTaken, 766 void G4PropagatorInField::ReportLoopingParticl << 738 G4VPhysicalVolume* pPhysVol) 767 << 768 << 769 << 770 << 771 << 772 { 739 { 773 std::ostringstream message; 740 std::ostringstream message; 774 G4double fraction = StepTaken / StepRequest << 741 message << " Killing looping particle " 775 message << " Unfinished integration of trac << 776 << " of momentum " << momentumVec < << 777 << momentumVec.mag() << " ) " << G4 << 778 << " after " << count << " field su 742 << " after " << count << " field substeps " 779 << " totaling " << std::setprecisio << 743 << " totaling " << StepTaken / mm << " mm " ; 780 << " out of requested step " << std << 744 if( pPhysVol ) 781 << StepRequested / mm << " mm "; << 782 message << " a fraction of "; << 783 G4int prec = 4; << 784 if( fraction > 0.99 ) << 785 { 745 { 786 prec = 7; << 746 message << " in *volume* " << pPhysVol->GetName() ; 787 } 747 } 788 else 748 else 789 { 749 { 790 if (fraction > 0.97 ) { prec = 5; } << 750 message << " in unknown or null volume. " ; 791 } 751 } 792 message << std::setprecision(prec) << 752 G4Exception("G4PropagatorInField::ComputeStep()", "GeomNav1002", 793 << 100. * StepTaken / StepRequested << 753 JustWarning, message); 794 if( pPhysVol != nullptr ) << 795 { << 796 message << " in volume " << pPhysVol->Get << 797 auto material = pPhysVol->GetLogicalVolum << 798 if( material != nullptr ) << 799 { << 800 message << " with material " << materia << 801 << " ( density = " << 802 << material->GetDensity() / ( g << 803 } << 804 } << 805 else << 806 { << 807 message << " in unknown (null) volume. " << 808 } << 809 G4Exception(methodName, "GeomNav1002", Just << 810 } 754 } 811 755 812 // ------------------------------------------- << 756 void G4PropagatorInField::ReportStuckParticle( G4int noZeroSteps, 813 // << 757 G4double proposedStep, 814 void G4PropagatorInField::ReportStuckParticle( << 758 G4double lastTriedStep, 815 << 816 << 817 759 G4VPhysicalVolume* physVol ) 818 { 760 { 819 std::ostringstream message; 761 std::ostringstream message; 820 message << "Particle is stuck; it will be k 762 message << "Particle is stuck; it will be killed." << G4endl 821 << " Zero progress for " << noZero << 763 << " Zero progress for " << noZeroSteps << " attempted steps." 822 << G4endl 764 << G4endl 823 << " Proposed Step is " << propose 765 << " Proposed Step is " << proposedStep 824 << " but Step Taken is "<< lastTrie 766 << " but Step Taken is "<< lastTriedStep << G4endl; 825 if( physVol != nullptr ) << 767 if( physVol ) 826 { << 827 message << " in volume " << physVol->Get 768 message << " in volume " << physVol->GetName() ; 828 } << 829 else 769 else 830 { << 831 message << " in unknown or null volume. 770 message << " in unknown or null volume. " ; 832 } << 833 G4Exception("G4PropagatorInField::ComputeSt 771 G4Exception("G4PropagatorInField::ComputeStep()", 834 "GeomNav1002", JustWarning, mes 772 "GeomNav1002", JustWarning, message); 835 } << 836 << 837 // ------------------------------------------- << 838 << 839 // ------------------------------------------- << 840 // Methods to alter Parameters << 841 // ------------------------------------------- << 842 << 843 // Was a data member (of an object) -- now mov << 844 G4double G4PropagatorInField::GetLargestAccep << 845 { << 846 return fLargestAcceptableStep; << 847 } << 848 << 849 // ------------------------------------------- << 850 // << 851 void G4PropagatorInField::SetLargestAcceptable << 852 { << 853 if( fLargestAcceptableStep>0.0 ) << 854 { << 855 fLargestAcceptableStep = newBigDist; << 856 } << 857 } << 858 << 859 // ------------------------------------------- << 860 << 861 G4double G4PropagatorInField::GetMaxStepSizeMu << 862 { << 863 return fMaxStepSizeMultiplier; << 864 } << 865 << 866 // ------------------------------------------- << 867 << 868 void G4PropagatorInField::SetMaxStepSizeMu << 869 { << 870 fMaxStepSizeMultiplier=vm; << 871 } << 872 << 873 // ------------------------------------------- << 874 << 875 G4double G4PropagatorInField::GetMinBigDistanc << 876 { << 877 return fMinBigDistance; << 878 } << 879 << 880 // ------------------------------------------- << 881 << 882 void G4PropagatorInField::SetMinBigDistanc << 883 { << 884 fMinBigDistance= val; << 885 } 773 } 886 774