Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** >> 25 // >> 26 // >> 27 // $Id: G4PathFinder.cc,v 1.64 2010-07-13 15:59:42 gcosmo Exp $ >> 28 // GEANT4 tag $ Name: $ 25 // 29 // 26 // G4PathFinder Implementation << 30 // class G4PathFinder Implementation 27 // 31 // 28 // Original author: John Apostolakis, April 20 << 32 // Original author: John Apostolakis, April 2006 >> 33 // 29 // ------------------------------------------- 34 // -------------------------------------------------------------------- 30 35 31 #include <iomanip> << 32 << 33 #include "G4PathFinder.hh" 36 #include "G4PathFinder.hh" 34 37 35 #include "G4SystemOfUnits.hh" << 38 #include <iomanip> >> 39 36 #include "G4GeometryTolerance.hh" 40 #include "G4GeometryTolerance.hh" 37 #include "G4Navigator.hh" 41 #include "G4Navigator.hh" 38 #include "G4PropagatorInField.hh" 42 #include "G4PropagatorInField.hh" 39 #include "G4TransportationManager.hh" 43 #include "G4TransportationManager.hh" 40 #include "G4MultiNavigator.hh" 44 #include "G4MultiNavigator.hh" 41 #include "G4SafetyHelper.hh" 45 #include "G4SafetyHelper.hh" 42 46 43 // Initialise the static instance of the singl 47 // Initialise the static instance of the singleton 44 // 48 // 45 G4ThreadLocal G4PathFinder* G4PathFinder::fpPa << 49 G4PathFinder* G4PathFinder::fpPathFinder=0; 46 50 47 // ------------------------------------------- 51 // ---------------------------------------------------------------------------- 48 // GetInstance() 52 // GetInstance() 49 // 53 // 50 // Retrieve the static instance of the singlet << 54 // Retrieve the static instance of the singleton 51 // 55 // 52 G4PathFinder* G4PathFinder::GetInstance() 56 G4PathFinder* G4PathFinder::GetInstance() 53 { 57 { 54 if( fpPathFinder == nullptr ) << 58 static G4PathFinder theInstance; >> 59 if( ! fpPathFinder ) 55 { 60 { 56 fpPathFinder = new G4PathFinder; << 61 fpPathFinder = &theInstance; 57 } 62 } 58 return fpPathFinder; 63 return fpPathFinder; 59 } 64 } 60 65 61 // ------------------------------------------- 66 // ---------------------------------------------------------------------------- 62 // GetInstanceIfExist() << 63 // << 64 // Retrieve the static instance pointer of the << 65 // << 66 G4PathFinder* G4PathFinder::GetInstanceIfExist << 67 { << 68 return fpPathFinder; << 69 } << 70 << 71 // ------------------------------------------- << 72 // Constructor 67 // Constructor 73 // 68 // 74 G4PathFinder::G4PathFinder() 69 G4PathFinder::G4PathFinder() 75 : fEndState( G4ThreeVector(), G4ThreeVector( << 70 : fEndState( G4ThreeVector(), G4ThreeVector(), 0., 0., 0., 0., 0.), >> 71 fFieldExertedForce(false), >> 72 fRelocatedPoint(true), >> 73 fLastStepNo(-1), fCurrentStepNo(-1), >> 74 fVerboseLevel(0) 76 { 75 { 77 fpMultiNavigator = new G4MultiNavigator(); << 76 fpMultiNavigator= new G4MultiNavigator(); 78 77 79 fpTransportManager= G4TransportationManager 78 fpTransportManager= G4TransportationManager::GetTransportationManager(); 80 fpFieldPropagator = fpTransportManager->Get 79 fpFieldPropagator = fpTransportManager->GetPropagatorInField(); 81 80 82 kCarTolerance = G4GeometryTolerance::GetIns 81 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 83 82 >> 83 fNoActiveNavigators= 0; 84 G4ThreeVector Big3Vector( kInfinity, kInfi 84 G4ThreeVector Big3Vector( kInfinity, kInfinity, kInfinity ); 85 fLastLocatedPosition= Big3Vector; 85 fLastLocatedPosition= Big3Vector; 86 fSafetyLocation= Big3Vector; 86 fSafetyLocation= Big3Vector; 87 fPreSafetyLocation= Big3Vector; 87 fPreSafetyLocation= Big3Vector; 88 fPreStepLocation= Big3Vector; 88 fPreStepLocation= Big3Vector; 89 89 90 for( auto num=0; num<fMaxNav; ++num ) << 90 fPreSafetyMinValue= -1.0; >> 91 fMinSafety_PreStepPt= -1.0; >> 92 fMinSafety_atSafLocation= -1.0; >> 93 fMinStep= -1.0; >> 94 fTrueMinStep= -1.0; >> 95 fPreStepCenterRenewed= false; >> 96 fNewTrack= false; >> 97 fNoGeometriesLimiting= 0; >> 98 >> 99 for( register int num=0; num< fMaxNav; ++num ) 91 { 100 { 92 fpNavigator[num] = nullptr; << 101 fpNavigator[num] = 0; 93 fLimitTruth[num] = false; 102 fLimitTruth[num] = false; 94 fLimitedStep[num] = kUndefLimited; 103 fLimitedStep[num] = kUndefLimited; 95 fCurrentStepSize[num] = -1.0; 104 fCurrentStepSize[num] = -1.0; 96 fLocatedVolume[num] = nullptr; << 105 fLocatedVolume[num] = 0; 97 fPreSafetyValues[num]= -1.0; 106 fPreSafetyValues[num]= -1.0; 98 fCurrentPreStepSafety[num] = -1.0; 107 fCurrentPreStepSafety[num] = -1.0; 99 fNewSafetyComputed[num]= -1.0; 108 fNewSafetyComputed[num]= -1.0; 100 } 109 } 101 } 110 } 102 111 103 // ------------------------------------------- 112 // ---------------------------------------------------------------------------- 104 // Destructor 113 // Destructor 105 // 114 // 106 G4PathFinder::~G4PathFinder() 115 G4PathFinder::~G4PathFinder() 107 { 116 { 108 delete fpMultiNavigator; << 117 delete fpMultiNavigator; 109 fpPathFinder = nullptr; << 110 } 118 } 111 119 112 // ------------------------------------------- 120 // ---------------------------------------------------------------------------- 113 // 121 // 114 void 122 void 115 G4PathFinder::EnableParallelNavigation(G4bool 123 G4PathFinder::EnableParallelNavigation(G4bool enableChoice) 116 { 124 { 117 G4Navigator *navigatorForPropagation = null << 125 G4Navigator *navigatorForPropagation=0, *massNavigator=0; 118 126 119 massNavigator = fpTransportManager->GetNavi << 127 massNavigator= fpTransportManager->GetNavigatorForTracking(); 120 if( enableChoice ) 128 if( enableChoice ) 121 { 129 { 122 navigatorForPropagation = fpMultiNavigat << 130 navigatorForPropagation= fpMultiNavigator; 123 131 124 // Enable SafetyHelper to use PF 132 // Enable SafetyHelper to use PF 125 // 133 // 126 fpTransportManager->GetSafetyHelper()->E 134 fpTransportManager->GetSafetyHelper()->EnableParallelNavigation(true); 127 } 135 } 128 else 136 else 129 { 137 { 130 navigatorForPropagation = massNavigator; << 138 navigatorForPropagation= massNavigator; 131 139 132 // Disable SafetyHelper to use PF 140 // Disable SafetyHelper to use PF 133 // 141 // 134 fpTransportManager->GetSafetyHelper()->E 142 fpTransportManager->GetSafetyHelper()->EnableParallelNavigation(false); 135 } 143 } 136 fpFieldPropagator->SetNavigatorForPropagati 144 fpFieldPropagator->SetNavigatorForPropagating(navigatorForPropagation); 137 } 145 } 138 146 139 // ------------------------------------------- 147 // ---------------------------------------------------------------------------- 140 // 148 // 141 G4double 149 G4double 142 G4PathFinder::ComputeStep( const G4FieldTrack& << 150 G4PathFinder::ComputeStep( const G4FieldTrack &InitialFieldTrack, 143 G4double << 151 G4double proposedStepLength, 144 G4int << 152 G4int navigatorNo, 145 G4int << 153 G4int stepNo, // find next step 146 G4double& << 154 G4double &pNewSafety, // for this geom 147 ELimited& << 155 ELimited &limitedStep, 148 G4FieldTrack& << 156 G4FieldTrack &EndState, 149 G4VPhysicalVo 157 G4VPhysicalVolume* currentVolume) 150 { 158 { 151 G4double possibleStep = -1.0; << 159 G4double possibleStep= -1.0; 152 160 153 #ifdef G4DEBUG_PATHFINDER 161 #ifdef G4DEBUG_PATHFINDER 154 if( fVerboseLevel > 2 ) 162 if( fVerboseLevel > 2 ) 155 { 163 { 156 G4cout << " -------------------------" << 164 G4cout << " -------------------------" << G4endl; 157 G4cout << " G4PathFinder::ComputeStep - en 165 G4cout << " G4PathFinder::ComputeStep - entered " << G4endl; 158 G4cout << " - stepNo = " << std::setw(4 166 G4cout << " - stepNo = " << std::setw(4) << stepNo << " " 159 << " navigatorId = " << std::setw(2 167 << " navigatorId = " << std::setw(2) << navigatorNo << " " 160 << " proposed step len = " << propo 168 << " proposed step len = " << proposedStepLength << " " << G4endl; 161 G4cout << " PF::ComputeStep requested step 169 G4cout << " PF::ComputeStep requested step " 162 << " from " << InitialFieldTrack.Ge 170 << " from " << InitialFieldTrack.GetPosition() 163 << " dir " << InitialFieldTrack.Ge 171 << " dir " << InitialFieldTrack.GetMomentumDirection() << G4endl; 164 } 172 } 165 #endif 173 #endif 166 #ifdef G4VERBOSE 174 #ifdef G4VERBOSE 167 if( navigatorNo >= fNoActiveNavigators ) 175 if( navigatorNo >= fNoActiveNavigators ) 168 { 176 { 169 std::ostringstream message; 177 std::ostringstream message; 170 message << "Bad Navigator ID !" << G4endl 178 message << "Bad Navigator ID !" << G4endl 171 << " Requested Navigator ID 179 << " Requested Navigator ID = " << navigatorNo << G4endl 172 << " Number of active navig 180 << " Number of active navigators = " << fNoActiveNavigators; 173 G4Exception("G4PathFinder::ComputeStep()", 181 G4Exception("G4PathFinder::ComputeStep()", "GeomNav0002", 174 FatalException, message); 182 FatalException, message); 175 } 183 } 176 #endif 184 #endif 177 185 178 if( fNewTrack || (stepNo != fLastStepNo) ) 186 if( fNewTrack || (stepNo != fLastStepNo) ) 179 { 187 { 180 // This is a new track or a new step, so w 188 // This is a new track or a new step, so we must make the step 181 // ( else we can simply retrieve its resul 189 // ( else we can simply retrieve its results for this Navigator Id ) 182 190 183 G4FieldTrack currentState = InitialFieldTr << 191 G4FieldTrack currentState= InitialFieldTrack; 184 192 185 fCurrentStepNo = stepNo; 193 fCurrentStepNo = stepNo; 186 194 187 // Check whether a process shifted the pos 195 // Check whether a process shifted the position 188 // since the last step -- by physics proce 196 // since the last step -- by physics processes 189 // 197 // 190 G4ThreeVector newPosition = InitialFieldTr 198 G4ThreeVector newPosition = InitialFieldTrack.GetPosition(); 191 G4ThreeVector moveVector = newPosition - f << 199 G4ThreeVector moveVector= newPosition - fLastLocatedPosition; 192 G4double moveLenSq = moveVector.mag2(); << 200 G4double moveLenSq= moveVector.mag2(); 193 if( moveLenSq > sqr(kCarTolerance) ) << 201 if( moveLenSq > kCarTolerance * kCarTolerance ) 194 { 202 { 195 G4ThreeVector newDirection = InitialFie 203 G4ThreeVector newDirection = InitialFieldTrack.GetMomentumDirection(); 196 #ifdef G4DEBUG_PATHFINDER 204 #ifdef G4DEBUG_PATHFINDER 197 if( fVerboseLevel > 2 ) 205 if( fVerboseLevel > 2 ) 198 { 206 { 199 G4double moveLen= std::sqrt( moveLen 207 G4double moveLen= std::sqrt( moveLenSq ); 200 G4cout << " G4PathFinder::ComputeSte 208 G4cout << " G4PathFinder::ComputeStep : Point moved since last step " 201 << " -- at step # = " << step 209 << " -- at step # = " << stepNo << G4endl 202 << " by " << moveLen << " to 210 << " by " << moveLen << " to " << newPosition << G4endl; 203 } 211 } 204 #endif 212 #endif 205 MovePoint(); // Unintentional changed 213 MovePoint(); // Unintentional changed -- ???? 206 214 207 // Relocate to cope with this move -- e 215 // Relocate to cope with this move -- else could abort !? 208 // 216 // 209 Locate( newPosition, newDirection ); 217 Locate( newPosition, newDirection ); 210 } 218 } 211 219 212 // Check whether the particle have an (EM) 220 // Check whether the particle have an (EM) field force exerting upon it 213 // 221 // 214 G4double particleCharge = currentState.Get << 222 G4double particleCharge= currentState.GetCharge(); 215 223 216 G4FieldManager* fieldMgr = nullptr; << 224 G4FieldManager* fieldMgr=0; 217 G4bool fieldExertsForce = false ; 225 G4bool fieldExertsForce = false ; 218 if( particleCharge != 0.0 ) << 226 if( (particleCharge != 0.0) ) 219 { 227 { 220 fieldMgr = fpFieldPropagator->FindAndS << 228 fieldMgr= fpFieldPropagator->FindAndSetFieldManager( currentVolume ); 221 229 222 // Protect for case where field manage 230 // Protect for case where field manager has no field (= field is zero) 223 // 231 // 224 fieldExertsForce = (fieldMgr != nullpt << 232 fieldExertsForce = (fieldMgr != 0) 225 && (fieldMgr->GetDetec << 233 && (fieldMgr->GetDetectorField() != 0); 226 } 234 } 227 fFieldExertedForce = fieldExertsForce; // 235 fFieldExertedForce = fieldExertsForce; // Store for use in later calls 228 // 236 // referring to this 'step'. 229 237 230 fNoGeometriesLimiting = -1; // At start o << 238 fNoGeometriesLimiting= -1; // At start of track, no process limited step 231 if( fieldExertsForce ) 239 if( fieldExertsForce ) 232 { 240 { 233 DoNextCurvedStep( currentState, propose 241 DoNextCurvedStep( currentState, proposedStepLength, currentVolume ); 234 //-------------- 242 //-------------- 235 }else{ 243 }else{ 236 DoNextLinearStep( currentState, propose 244 DoNextLinearStep( currentState, proposedStepLength ); 237 //-------------- 245 //-------------- 238 } 246 } 239 fLastStepNo = stepNo; << 247 fLastStepNo= stepNo; 240 fRelocatedPoint = false; << 241 248 242 #ifdef G4DEBUG_PATHFINDER << 243 if ( (fNoGeometriesLimiting < 0) 249 if ( (fNoGeometriesLimiting < 0) 244 || (fNoGeometriesLimiting > fNoActiveNav 250 || (fNoGeometriesLimiting > fNoActiveNavigators) ) 245 { 251 { 246 std::ostringstream message; 252 std::ostringstream message; 247 message << "Number of geometries limitin 253 message << "Number of geometries limiting the step not set." << G4endl 248 << " Number of geometries 254 << " Number of geometries limiting step = " 249 << fNoGeometriesLimiting; 255 << fNoGeometriesLimiting; 250 G4Exception("G4PathFinder::ComputeStep() 256 G4Exception("G4PathFinder::ComputeStep()", 251 "GeomNav0002", FatalExceptio 257 "GeomNav0002", FatalException, message); 252 } 258 } 253 #endif << 254 } 259 } 255 #ifdef G4DEBUG_PATHFINDER 260 #ifdef G4DEBUG_PATHFINDER 256 else 261 else 257 { 262 { 258 const G4double checkTolerance = 1.0e-9; << 263 if( proposedStepLength < fTrueMinStep ) // For 2nd+ geometry 259 if( proposedStepLength < fTrueMinStep * ( << 264 { 260 { << 261 std::ostringstream message; 265 std::ostringstream message; 262 message.precision( 12 ); << 263 message << "Problem in step size reques 266 message << "Problem in step size request." << G4endl >> 267 << " Error can be caused by incorrect process ordering." 264 << " Being requested to 268 << " Being requested to make a step which is shorter" 265 << " than the minimum Step " << 269 << " than the minimum Step " << G4endl 266 << " already computed fo 270 << " already computed for any Navigator/geometry during" 267 << " this tracking-step: " << G 271 << " this tracking-step: " << G4endl 268 << " This could happen d << 272 << " This can happen due to an error in process ordering." 269 << G4endl 273 << G4endl 270 << " Check that all phys 274 << " Check that all physics processes are registered" >> 275 << G4endl 271 << " before all processe 276 << " before all processes with a navigator/geometry." 272 << G4endl 277 << G4endl 273 << " If using pre-packag 278 << " If using pre-packaged physics list and/or" >> 279 << G4endl 274 << " functionality, plea 280 << " functionality, please report this error." 275 << G4endl << G4endl 281 << G4endl << G4endl 276 << " Additional informat 282 << " Additional information for problem: " << G4endl 277 << " Steps request/propo 283 << " Steps request/proposed = " << proposedStepLength 278 << G4endl 284 << G4endl 279 << " MinimumStep (true) 285 << " MinimumStep (true) = " << fTrueMinStep 280 << G4endl 286 << G4endl 281 << " MinimumStep (navraw 287 << " MinimumStep (navraw) = " << fMinStep 282 << G4endl 288 << G4endl 283 << " Navigator raw retur 289 << " Navigator raw return value" << G4endl 284 << " Requested step now 290 << " Requested step now = " << proposedStepLength 285 << G4endl 291 << G4endl 286 << " Difference min-req << 292 << " Difference min-req = " 287 << fTrueMinStep-proposedStepLen 293 << fTrueMinStep-proposedStepLength << G4endl 288 << " Relative (to max of << 289 << (fTrueMinStep-proposedStepLe << 290 / std::max(proposedStepLengt << 291 << " -- Step info> stepNo= 294 << " -- Step info> stepNo= " << stepNo 292 << " last= " << fLastStepNo 295 << " last= " << fLastStepNo 293 << " newTr= " << fNewTrack << G 296 << " newTr= " << fNewTrack << G4endl; 294 G4Exception("G4PathFinder::ComputeStep 297 G4Exception("G4PathFinder::ComputeStep()", 295 "GeomNav0003", FatalExcept 298 "GeomNav0003", FatalException, message); 296 } 299 } 297 else 300 else 298 { 301 { 299 // This is neither a new track nor a n 302 // This is neither a new track nor a new step -- just another 300 // client accessing information for th 303 // client accessing information for the current track, step 301 // We will simply retrieve the results 304 // We will simply retrieve the results of the synchronous 302 // stepping for this Navigator Id belo 305 // stepping for this Navigator Id below. 303 // 306 // 304 if( fVerboseLevel > 1 ) 307 if( fVerboseLevel > 1 ) 305 { 308 { 306 G4cout << " G4P::CS -> Not calling 309 G4cout << " G4P::CS -> Not calling DoNextLinearStep: " 307 << " stepNo= " << stepNo << 310 << " stepNo= " << stepNo << " last= " << fLastStepNo 308 << " new= " << fNewTrack << 311 << " new= " << fNewTrack << " Step already done" << G4endl; 309 } 312 } 310 } 313 } 311 } 314 } 312 #endif 315 #endif 313 316 314 fNewTrack = false; << 317 fNewTrack= false; 315 318 316 // Prepare the information to return 319 // Prepare the information to return 317 320 318 pNewSafety = fCurrentPreStepSafety[ navigat 321 pNewSafety = fCurrentPreStepSafety[ navigatorNo ]; 319 limitedStep = fLimitedStep[ navigatorNo ]; 322 limitedStep = fLimitedStep[ navigatorNo ]; >> 323 fRelocatedPoint= false; 320 324 321 possibleStep = std::min(proposedStepLength, << 325 possibleStep= std::min(proposedStepLength, fCurrentStepSize[ navigatorNo ]); 322 EndState = fEndState; // now corrected for 326 EndState = fEndState; // now corrected for smaller step, if needed 323 327 324 #ifdef G4DEBUG_PATHFINDER 328 #ifdef G4DEBUG_PATHFINDER 325 if( fVerboseLevel > 0 ) 329 if( fVerboseLevel > 0 ) 326 { 330 { 327 G4cout << " G4PathFinder::ComputeStep retu 331 G4cout << " G4PathFinder::ComputeStep returns " 328 << fCurrentStepSize[ navigatorNo ] 332 << fCurrentStepSize[ navigatorNo ] 329 << " for Navigator " << navigatorNo 333 << " for Navigator " << navigatorNo 330 << " Limited step = " << limitedSte 334 << " Limited step = " << limitedStep 331 << " Safety(mm) = " << pNewSafety / 335 << " Safety(mm) = " << pNewSafety / mm 332 << G4endl; 336 << G4endl; 333 } 337 } 334 #endif 338 #endif 335 339 336 return possibleStep; 340 return possibleStep; 337 } 341 } 338 342 339 // ------------------------------------------- 343 // ---------------------------------------------------------------------- 340 344 341 void 345 void 342 G4PathFinder::PrepareNewTrack( const G4ThreeVe 346 G4PathFinder::PrepareNewTrack( const G4ThreeVector& position, 343 const G4ThreeVe 347 const G4ThreeVector& direction, 344 G4VPhysicalVolu << 348 G4VPhysicalVolume* massStartVol) 345 { 349 { 346 // Key purposes: 350 // Key purposes: 347 // - Check and cache set of active navigat 351 // - Check and cache set of active navigators 348 // - Reset state for new track 352 // - Reset state for new track 349 353 350 G4int num=0; 354 G4int num=0; 351 355 352 EnableParallelNavigation(true); 356 EnableParallelNavigation(true); 353 // Switch PropagatorInField to use MultiNa 357 // Switch PropagatorInField to use MultiNavigator 354 358 355 fpTransportManager->GetSafetyHelper()->Initi 359 fpTransportManager->GetSafetyHelper()->InitialiseHelper(); 356 // Reinitialise state of safety helper -- 360 // Reinitialise state of safety helper -- avoid problems with overlaps 357 361 358 fNewTrack = true; << 362 fNewTrack= true; 359 this->MovePoint(); // Signal further that 363 this->MovePoint(); // Signal further that the last status is wiped 360 364 361 fpFieldPropagator->PrepareNewTrack(); // Inf << 362 << 363 // Message the G4NavigatorPanel / Dispatcher 365 // Message the G4NavigatorPanel / Dispatcher to find active navigators 364 // 366 // 365 std::vector<G4Navigator*>::iterator pNavigat 367 std::vector<G4Navigator*>::iterator pNavigatorIter; 366 368 367 fNoActiveNavigators = (G4int)fpTransportMana << 369 fNoActiveNavigators= fpTransportManager-> GetNoActiveNavigators(); 368 if( fNoActiveNavigators > fMaxNav ) 370 if( fNoActiveNavigators > fMaxNav ) 369 { 371 { 370 std::ostringstream message; 372 std::ostringstream message; 371 message << "Too many active Navigators / w 373 message << "Too many active Navigators / worlds." << G4endl 372 << " Transportation Manager 374 << " Transportation Manager has " 373 << fNoActiveNavigators << " active 375 << fNoActiveNavigators << " active navigators." << G4endl 374 << " This is more than the 376 << " This is more than the number allowed = " 375 << fMaxNav << " !"; 377 << fMaxNav << " !"; 376 G4Exception("G4PathFinder::PrepareNewTrack 378 G4Exception("G4PathFinder::PrepareNewTrack()", "GeomNav0002", 377 FatalException, message); 379 FatalException, message); 378 } 380 } 379 381 380 fpMultiNavigator->PrepareNavigators(); 382 fpMultiNavigator->PrepareNavigators(); 381 //------------------------------------ 383 //------------------------------------ 382 384 383 pNavigatorIter = fpTransportManager->GetActi << 385 pNavigatorIter= fpTransportManager->GetActiveNavigatorsIterator(); 384 for( num=0; num< fNoActiveNavigators; ++pNav 386 for( num=0; num< fNoActiveNavigators; ++pNavigatorIter,++num ) 385 { 387 { 386 // Keep information in C-array ... for cr 388 // Keep information in C-array ... for creating touchables - at least 387 // << 389 388 fpNavigator[num] = *pNavigatorIter; << 390 fpNavigator[num] = *pNavigatorIter; 389 fLimitTruth[num] = false; 391 fLimitTruth[num] = false; 390 fLimitedStep[num] = kDoNot; 392 fLimitedStep[num] = kDoNot; 391 fCurrentStepSize[num] = 0.0; 393 fCurrentStepSize[num] = 0.0; 392 fLocatedVolume[num] = nullptr; << 394 fLocatedVolume[num] = 0; 393 } 395 } 394 fNoGeometriesLimiting = 0; // At start of t << 396 fNoGeometriesLimiting= 0; // At start of track, no process limited step 395 397 396 // In case of one geometry, the tracking wil 398 // In case of one geometry, the tracking will have done the locating!! 397 399 398 if( fNoActiveNavigators > 1 ) 400 if( fNoActiveNavigators > 1 ) 399 { 401 { 400 Locate( position, direction, false ); 402 Locate( position, direction, false ); 401 } 403 } 402 else 404 else 403 { 405 { 404 // Update state -- depending on the track 406 // Update state -- depending on the tracking's call to Mass Navigator 405 407 406 fLastLocatedPosition = position; << 408 fLastLocatedPosition= position; 407 fLocatedVolume[0] = massStartVol; // This << 409 fLocatedVolume[0]= massStartVol; // This information must be given 408 // by t << 410 // by transportation 409 fLimitedStep[0] = kDoNot; << 411 fLimitedStep[0] = kDoNot; 410 fCurrentStepSize[0] = 0.0; 412 fCurrentStepSize[0] = 0.0; 411 } 413 } 412 414 413 // Reset Safety Information -- as in case of 415 // Reset Safety Information -- as in case of overlaps this can cause 414 // inconsistencies ... 416 // inconsistencies ... 415 // 417 // 416 fMinSafety_PreStepPt = fPreSafetyMinValue = << 418 fMinSafety_PreStepPt= fPreSafetyMinValue= fMinSafety_atSafLocation= 0.0; 417 419 418 for( num=0; num<fNoActiveNavigators; ++num ) << 420 for( num=0; num< fNoActiveNavigators; ++num ) 419 { 421 { 420 fPreSafetyValues[num] = 0.0; << 422 fPreSafetyValues[num]= 0.0; 421 fNewSafetyComputed[num] = 0.0; << 423 fNewSafetyComputed[num]= 0.0; 422 fCurrentPreStepSafety[num] = 0.0; 424 fCurrentPreStepSafety[num] = 0.0; 423 } 425 } 424 426 425 // The first location for each Navigator mus 427 // The first location for each Navigator must be non-relative 426 // or else call ResetStackAndState() for eac 428 // or else call ResetStackAndState() for each Navigator 427 429 428 fRelocatedPoint = false; << 430 fRelocatedPoint= false; 429 } << 430 << 431 << 432 void G4PathFinder::EndTrack() << 433 // Signal end of tracking of current track. << 434 // Reset TransportationManager to use 'ordin << 435 // Reset internal state, if needed << 436 { << 437 EnableParallelNavigation(false); // Else it << 438 } 431 } 439 432 440 void G4PathFinder::ReportMove( const G4ThreeVe 433 void G4PathFinder::ReportMove( const G4ThreeVector& OldVector, 441 const G4ThreeVe 434 const G4ThreeVector& NewVector, 442 const G4String& 435 const G4String& Quantity ) const 443 { 436 { 444 G4ThreeVector moveVec = ( NewVector - OldV 437 G4ThreeVector moveVec = ( NewVector - OldVector ); 445 438 >> 439 G4int prc= G4cerr.precision(12); 446 std::ostringstream message; 440 std::ostringstream message; 447 message.precision(16); << 448 message << "Endpoint moved between value r 441 message << "Endpoint moved between value returned by ComputeStep()" 449 << " and call to Locate(). " << G4 442 << " and call to Locate(). " << G4endl 450 << " Change of " << Quant 443 << " Change of " << Quantity << " is " 451 << moveVec.mag() / mm << " mm long 444 << moveVec.mag() / mm << " mm long" << G4endl 452 << " and its vector is " 445 << " and its vector is " 453 << (1.0/mm) * moveVec << " mm " << 446 << (1.0/mm) * moveVec << " mm " << G4endl 454 << " Endpoint of ComputeS << 447 << " Endpoint of ComputeStep() was " << OldVector << G4endl 455 << G4endl << 456 << " and current position 448 << " and current position to locate is " << NewVector; 457 G4Exception("G4PathFinder::ReportMove()", 449 G4Exception("G4PathFinder::ReportMove()", "GeomNav1002", 458 JustWarning, message); 450 JustWarning, message); >> 451 G4cerr.precision(prc); 459 } 452 } 460 453 461 void G4PathFinder::Locate( const G4ThreeVector << 454 void 462 const G4ThreeVector << 455 G4PathFinder::Locate( const G4ThreeVector& position, 463 G4bool relati << 456 const G4ThreeVector& direction, >> 457 G4bool relative) 464 { 458 { 465 // Locate the point in each geometry 459 // Locate the point in each geometry 466 460 467 auto pNavIter = fpTransportManager->GetActiv << 461 std::vector<G4Navigator*>::iterator pNavIter= 468 << 462 fpTransportManager->GetActiveNavigatorsIterator(); 469 G4ThreeVector lastEndPosition = fRelocatedPo << 470 ? fLastLocated << 471 : fEndState.Ge << 472 fLastLocatedPosition = position; << 473 463 474 #ifdef G4DEBUG_PATHFINDER << 464 G4ThreeVector lastEndPosition= fEndState.GetPosition(); 475 static const G4double movLenTol = 10*sqr(kCa << 465 G4ThreeVector moveVec = (position - lastEndPosition ); 476 << 466 G4double moveLenSq= moveVec.mag2(); 477 G4ThreeVector moveVec = ( position - lastEnd << 467 if( (!fNewTrack) && (!fRelocatedPoint) 478 G4double moveLenSq = moveVec.mag2(); << 468 && ( moveLenSq> kCarTolerance*kCarTolerance ) ) 479 if( (!fNewTrack) && ( moveLenSq > movLenTol << 480 { 469 { 481 ReportMove( lastEndPosition, position, << 470 ReportMove( position, lastEndPosition, "Position" ); 482 " (End) Position / G4PathFind << 483 } 471 } >> 472 fLastLocatedPosition= position; 484 473 >> 474 #ifdef G4DEBUG_PATHFINDER 485 if( fVerboseLevel > 2 ) 475 if( fVerboseLevel > 2 ) 486 { 476 { 487 G4cout << G4endl; 477 G4cout << G4endl; 488 G4cout << " G4PathFinder::Locate : entered 478 G4cout << " G4PathFinder::Locate : entered " << G4endl; 489 G4cout << " -------------------- ------- 479 G4cout << " -------------------- -------" << G4endl; 490 G4cout << " Locating at position " << po 480 G4cout << " Locating at position " << position 491 << " with direction " << direction 481 << " with direction " << direction 492 << " relative= " << relative << G4 482 << " relative= " << relative << G4endl; 493 if ( (fVerboseLevel > 1) || ( moveLenSq > 483 if ( (fVerboseLevel > 1) || ( moveLenSq > 0.0) ) 494 { 484 { 495 G4cout << " lastEndPosition = " << las 485 G4cout << " lastEndPosition = " << lastEndPosition 496 << " moveVec = " << moveVec 486 << " moveVec = " << moveVec 497 << " newTr = " << fNewTrack 487 << " newTr = " << fNewTrack 498 << " relocated = " << fRelocate 488 << " relocated = " << fRelocatedPoint << G4endl; 499 } 489 } 500 490 501 G4cout << " Located at " << position ; 491 G4cout << " Located at " << position ; 502 if( fNoActiveNavigators > 1 ) { G4cout << 492 if( fNoActiveNavigators > 1 ) { G4cout << G4endl; } 503 } 493 } 504 #endif 494 #endif 505 495 506 for ( auto num=0; num<fNoActiveNavigators ; << 496 for ( register G4int num=0; num< fNoActiveNavigators ; ++pNavIter,++num ) 507 { 497 { 508 // ... who limited the step .... 498 // ... who limited the step .... 509 499 510 if( fLimitTruth[num] ) { (*pNavIter)->Set 500 if( fLimitTruth[num] ) { (*pNavIter)->SetGeometricallyLimitedStep(); } 511 501 512 G4VPhysicalVolume *pLocated= 502 G4VPhysicalVolume *pLocated= 513 (*pNavIter)->LocateGlobalPointAndSetup( p 503 (*pNavIter)->LocateGlobalPointAndSetup( position, &direction, 514 r 504 relative, 515 f 505 false); 516 // Set the state related to the location 506 // Set the state related to the location 517 // 507 // 518 fLocatedVolume[num] = pLocated; 508 fLocatedVolume[num] = pLocated; 519 509 520 // Clear state related to the step 510 // Clear state related to the step 521 // 511 // 522 fLimitedStep[num] = kDoNot; << 512 fLimitedStep[num] = kDoNot; 523 fCurrentStepSize[num] = 0.0; 513 fCurrentStepSize[num] = 0.0; 524 514 525 #ifdef G4DEBUG_PATHFINDER 515 #ifdef G4DEBUG_PATHFINDER 526 if( fVerboseLevel > 2 ) 516 if( fVerboseLevel > 2 ) 527 { 517 { 528 G4cout << " - In world " << num << " ge 518 G4cout << " - In world " << num << " geomLimStep= " << fLimitTruth[num] 529 << " gives volume= " << pLocate 519 << " gives volume= " << pLocated ; 530 if( pLocated ) 520 if( pLocated ) 531 { 521 { 532 G4cout << " name = '" << pLocated->G 522 G4cout << " name = '" << pLocated->GetName() << "'"; 533 G4cout << " - CopyNo= " << pLocated-> 523 G4cout << " - CopyNo= " << pLocated->GetCopyNo(); 534 } 524 } 535 G4cout << G4endl; 525 G4cout << G4endl; 536 } 526 } 537 #endif 527 #endif 538 } 528 } 539 529 540 fRelocatedPoint = false; << 530 fRelocatedPoint= false; 541 } 531 } 542 532 543 void G4PathFinder::ReLocate( const G4ThreeVect 533 void G4PathFinder::ReLocate( const G4ThreeVector& position ) 544 { 534 { 545 // Locate the point in each geometry 535 // Locate the point in each geometry 546 536 547 auto pNavIter = fpTransportManager->GetActiv << 537 std::vector<G4Navigator*>::iterator pNavIter= >> 538 fpTransportManager->GetActiveNavigatorsIterator(); 548 539 549 #ifdef G4DEBUG_PATHFINDER 540 #ifdef G4DEBUG_PATHFINDER 550 541 551 // Check that this relocation does not viola 542 // Check that this relocation does not violate safety 552 // - at endpoint (computed from start poin 543 // - at endpoint (computed from start point) AND 553 // - at last safety location (likely just 544 // - at last safety location (likely just called) 554 545 555 G4ThreeVector lastEndPosition = fEndState.Ge << 546 G4ThreeVector lastEndPosition= fEndState.GetPosition(); 556 547 557 // Calculate end-point safety ... 548 // Calculate end-point safety ... 558 // 549 // 559 G4double DistanceStartEnd = (lastEndPosition << 550 G4double DistanceStartEnd= (lastEndPosition - fPreStepLocation).mag(); 560 G4double endPointSafety_raw = fMinSafety_Pre << 551 G4double endPointSafety_raw = fMinSafety_PreStepPt - DistanceStartEnd; 561 G4double endPointSafety_Est1 = std::max( 0.0 << 552 G4double endPointSafety_Est1 = std::max( 0.0, endPointSafety_raw ); 562 553 563 // ... and check move from endpoint against 554 // ... and check move from endpoint against this endpoint safety 564 // 555 // 565 G4ThreeVector moveVecEndPos = position - la 556 G4ThreeVector moveVecEndPos = position - lastEndPosition; 566 G4double moveLenEndPosSq = moveVecEndPo 557 G4double moveLenEndPosSq = moveVecEndPos.mag2(); 567 558 568 // Check that move from endpoint of last ste 559 // Check that move from endpoint of last step is within safety 569 // -- or check against last location or relo 560 // -- or check against last location or relocation ?? 570 // 561 // 571 G4ThreeVector moveVecSafety = position - fSa << 562 G4ThreeVector moveVecSafety= position - fSafetyLocation; 572 G4double moveLenSafSq = moveVecSafety.m << 563 G4double moveLenSafSq= moveVecSafety.mag2(); 573 564 574 G4double distCheckEnd_sq = ( moveLenEndPosSq << 565 G4double distCheckEnd_sq= ( moveLenEndPosSq - endPointSafety_Est1 575 << 566 *endPointSafety_Est1 ); 576 G4double distCheckSaf_sq = ( moveLenSafSq - << 567 G4double distCheckSaf_sq= ( moveLenSafSq - fMinSafety_atSafLocation 577 * << 568 *fMinSafety_atSafLocation ); 578 569 579 G4bool longMoveEnd = distCheckEnd_sq > 0.0; 570 G4bool longMoveEnd = distCheckEnd_sq > 0.0; 580 G4bool longMoveSaf = distCheckSaf_sq > 0.0; 571 G4bool longMoveSaf = distCheckSaf_sq > 0.0; 581 572 582 G4double revisedSafety = 0.0; << 573 G4double revisedSafety= 0.0; 583 574 584 if( (!fNewTrack) && ( longMoveEnd && longMov 575 if( (!fNewTrack) && ( longMoveEnd && longMoveSaf ) ) 585 { 576 { 586 // Recompute ComputeSafety for end positi 577 // Recompute ComputeSafety for end position 587 // 578 // 588 revisedSafety = ComputeSafety(lastEndPosi << 579 revisedSafety= ComputeSafety(lastEndPosition); 589 580 590 const G4double kRadTolerance = 581 const G4double kRadTolerance = 591 G4GeometryTolerance::GetInstance()- << 582 G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 592 const G4double cErrorTolerance = 1e-12; << 583 const G4double cErrorTolerance=1e-12; 593 // Maximum relative error from roundoff 584 // Maximum relative error from roundoff of arithmetic 594 585 595 G4double distCheckRevisedEnd = moveLenEnd << 586 G4double distCheckRevisedEnd= moveLenEndPosSq-revisedSafety*revisedSafety; 596 587 597 G4bool longMoveRevisedEnd = ( distCheckR << 588 G4bool longMoveRevisedEnd= ( distCheckRevisedEnd > 0. ) ; 598 589 599 G4double moveMinusSafety = 0.0; << 590 G4double moveMinusSafety= 0.0; 600 G4double moveLenEndPosition = std::sqrt( << 591 G4double moveLenEndPosition= std::sqrt( moveLenEndPosSq ); 601 moveMinusSafety = moveLenEndPosition - re 592 moveMinusSafety = moveLenEndPosition - revisedSafety; 602 593 603 if ( longMoveRevisedEnd && ( moveMinusSaf << 594 if ( longMoveRevisedEnd && (moveMinusSafety > 0.0 ) 604 && ( revisedSafet << 595 && ( revisedSafety > 0.0 ) ) 605 { 596 { 606 // Take into account possibility of ro 597 // Take into account possibility of roundoff error causing 607 // this apparent move further than saf 598 // this apparent move further than safety 608 599 609 if( fVerboseLevel > 0 ) 600 if( fVerboseLevel > 0 ) 610 { 601 { 611 G4cout << " G4PF:Relocate> Ratio to 602 G4cout << " G4PF:Relocate> Ratio to revised safety is " 612 << std::fabs(moveMinusSafety 603 << std::fabs(moveMinusSafety)/revisedSafety << G4endl; 613 } 604 } 614 605 615 G4double absMoveMinusSafety = std::fab << 606 G4double absMoveMinusSafety= std::fabs(moveMinusSafety); 616 G4bool smallRatio = absMoveMinusSafety << 607 G4bool smallRatio= absMoveMinusSafety < kRadTolerance * revisedSafety ; 617 G4double maxCoordPos = std::max( 608 G4double maxCoordPos = std::max( 618 std::max 609 std::max( std::fabs(position.x()), 619 610 std::fabs(position.y())), 620 std::fab 611 std::fabs(position.z()) ); 621 G4bool smallValue= absMoveMinusSafety 612 G4bool smallValue= absMoveMinusSafety < cErrorTolerance * maxCoordPos; 622 if( !(smallRatio || smallValue) ) << 613 if( ! (smallRatio || smallValue) ) 623 { 614 { 624 G4cout << " G4PF:Relocate> Ratio to 615 G4cout << " G4PF:Relocate> Ratio to revised safety is " 625 << std::fabs(moveMinusSafety 616 << std::fabs(moveMinusSafety)/revisedSafety << G4endl; 626 G4cout << " Difference of move and 617 G4cout << " Difference of move and safety is not very small." 627 << G4endl; 618 << G4endl; 628 } 619 } 629 else 620 else 630 { 621 { 631 moveMinusSafety = 0.0; 622 moveMinusSafety = 0.0; 632 longMoveRevisedEnd = false; // Num 623 longMoveRevisedEnd = false; // Numerical issue -- not too long! 633 624 634 G4cout << " Difference of move & saf 625 G4cout << " Difference of move & safety is very small in magnitude, " 635 << absMoveMinusSafety << G4en 626 << absMoveMinusSafety << G4endl; 636 if( smallRatio ) 627 if( smallRatio ) 637 { 628 { 638 G4cout << " ratio to safety " << r 629 G4cout << " ratio to safety " << revisedSafety 639 << " is " << absMoveMinusS 630 << " is " << absMoveMinusSafety / revisedSafety 640 << "smaller than " << kRadT 631 << "smaller than " << kRadTolerance << " of safety "; 641 } 632 } 642 else 633 else 643 { 634 { 644 G4cout << " as fraction " << absMo 635 G4cout << " as fraction " << absMoveMinusSafety / maxCoordPos 645 << " of position vector max 636 << " of position vector max-coord " << maxCoordPos 646 << " smaller than " << cErr 637 << " smaller than " << cErrorTolerance ; 647 } 638 } 648 G4cout << " -- reset moveMinusSafety 639 G4cout << " -- reset moveMinusSafety to " 649 << moveMinusSafety << G4endl; 640 << moveMinusSafety << G4endl; 650 } 641 } 651 } 642 } 652 643 653 if ( longMoveEnd && longMoveSaf 644 if ( longMoveEnd && longMoveSaf 654 && longMoveRevisedEnd && (moveMinusSafe 645 && longMoveRevisedEnd && (moveMinusSafety>0.0) ) 655 { 646 { >> 647 G4int oldPrec= G4cout.precision(9); 656 std::ostringstream message; 648 std::ostringstream message; 657 message.precision(9); << 658 message << "ReLocation is further than 649 message << "ReLocation is further than end-safety value." << G4endl 659 << " Moved from last endpoint 650 << " Moved from last endpoint by " << moveLenEndPosition 660 << " compared to end safety (f 651 << " compared to end safety (from preStep point) = " 661 << endPointSafety_Est1 << G4en 652 << endPointSafety_Est1 << G4endl 662 << " --> last PreSafety Locat 653 << " --> last PreSafety Location was " << fPreSafetyLocation 663 << G4endl 654 << G4endl 664 << " safety value = " < 655 << " safety value = " << fPreSafetyMinValue << G4endl 665 << " --> last PreStep Locatio 656 << " --> last PreStep Location was " << fPreStepLocation 666 << G4endl 657 << G4endl 667 << " safety value = " < 658 << " safety value = " << fMinSafety_PreStepPt << G4endl 668 << " --> last EndStep Locatio 659 << " --> last EndStep Location was " << lastEndPosition 669 << G4endl 660 << G4endl 670 << " safety value = " < 661 << " safety value = " << endPointSafety_Est1 671 << " raw-value = " << endPoint 662 << " raw-value = " << endPointSafety_raw << G4endl 672 << " --> Calling again at thi 663 << " --> Calling again at this endpoint, we get " 673 << revisedSafety << " as safe 664 << revisedSafety << " as safety value." << G4endl 674 << " --> last position for sa 665 << " --> last position for safety " << fSafetyLocation 675 << G4endl 666 << G4endl 676 << " its safety value = 667 << " its safety value = " << fMinSafety_atSafLocation 677 << G4endl 668 << G4endl 678 << " move from safety lo 669 << " move from safety location = " 679 << std::sqrt(moveLenSafSq) << 670 << std::sqrt(moveLenSafSq) << G4endl 680 << " again= " << moveV 671 << " again= " << moveVecSafety.mag() << G4endl 681 << " safety - Move-from- 672 << " safety - Move-from-end= " 682 << revisedSafety - moveLenEndP 673 << revisedSafety - moveLenEndPosition 683 << " (negative is Bad.)" << G4 674 << " (negative is Bad.)" << G4endl 684 << " Debug: distCheckRevisedE 675 << " Debug: distCheckRevisedEnd = " 685 << distCheckRevisedEnd; 676 << distCheckRevisedEnd; 686 ReportMove( lastEndPosition, position, 677 ReportMove( lastEndPosition, position, "Position" ); 687 G4Exception("G4PathFinder::ReLocate", 678 G4Exception("G4PathFinder::ReLocate", "GeomNav0003", 688 FatalException, message); 679 FatalException, message); >> 680 G4cout.precision(oldPrec); 689 } 681 } 690 } 682 } 691 683 692 if( fVerboseLevel > 2 ) 684 if( fVerboseLevel > 2 ) 693 { 685 { 694 G4cout << G4endl; 686 G4cout << G4endl; 695 G4cout << " G4PathFinder::ReLocate : enter 687 G4cout << " G4PathFinder::ReLocate : entered " << G4endl; 696 G4cout << " ---------------------- ----- 688 G4cout << " ---------------------- -------" << G4endl; 697 G4cout << " *Re*Locating at position " << 689 G4cout << " *Re*Locating at position " << position << G4endl; >> 690 // << " with direction " << direction >> 691 // << " relative= " << relative << G4endl; 698 if ( (fVerboseLevel > -1) || ( moveLenEndP 692 if ( (fVerboseLevel > -1) || ( moveLenEndPosSq > 0.0) ) 699 { 693 { 700 G4cout << " lastEndPosition = " << las 694 G4cout << " lastEndPosition = " << lastEndPosition 701 << " moveVec from step-end = " 695 << " moveVec from step-end = " << moveVecEndPos 702 << " is new Track = " << fNewTr 696 << " is new Track = " << fNewTrack 703 << " relocated = " << fRelocate 697 << " relocated = " << fRelocatedPoint << G4endl; 704 } 698 } 705 } 699 } 706 #endif // G4DEBUG_PATHFINDER 700 #endif // G4DEBUG_PATHFINDER 707 701 708 for ( auto num=0; num< fNoActiveNavigators ; << 702 for ( register G4int num=0; num< fNoActiveNavigators ; ++pNavIter,++num ) 709 { 703 { 710 // ... none limited the step 704 // ... none limited the step 711 705 712 (*pNavIter)->LocateGlobalPointWithinVolum 706 (*pNavIter)->LocateGlobalPointWithinVolume( position ); 713 707 714 // Clear state related to the step 708 // Clear state related to the step 715 // 709 // 716 fLimitedStep[num] = kDoNot; << 710 fLimitedStep[num] = kDoNot; 717 fCurrentStepSize[num] = 0.0; 711 fCurrentStepSize[num] = 0.0; 718 fLimitTruth[num] = false; 712 fLimitTruth[num] = false; 719 } 713 } 720 714 721 fLastLocatedPosition = position; << 715 fLastLocatedPosition= position; 722 fRelocatedPoint = true; << 716 fRelocatedPoint= false; 723 717 724 #ifdef G4DEBUG_PATHFINDER 718 #ifdef G4DEBUG_PATHFINDER 725 if( fVerboseLevel > 2 ) 719 if( fVerboseLevel > 2 ) 726 { 720 { 727 G4cout << " G4PathFinder::ReLocate : exiti 721 G4cout << " G4PathFinder::ReLocate : exiting " 728 << " at position " << fLastLocated 722 << " at position " << fLastLocatedPosition << G4endl << G4endl; 729 } 723 } 730 #endif 724 #endif 731 } 725 } 732 726 733 // ------------------------------------------- 727 // ----------------------------------------------------------------------------- 734 728 735 G4double G4PathFinder::ComputeSafety( const G 729 G4double G4PathFinder::ComputeSafety( const G4ThreeVector& position ) 736 { 730 { 737 // Recompute safety for the relevant point 731 // Recompute safety for the relevant point 738 732 739 G4double minSafety = kInfinity; << 733 G4double minSafety= kInfinity; 740 734 741 std::vector<G4Navigator*>::iterator pNaviga 735 std::vector<G4Navigator*>::iterator pNavigatorIter; 742 pNavigatorIter = fpTransportManager->GetAct << 736 pNavigatorIter= fpTransportManager->GetActiveNavigatorsIterator(); 743 737 744 for( auto num=0; num<fNoActiveNavigators; + << 738 for( register G4int num=0; num<fNoActiveNavigators; ++pNavigatorIter,++num ) 745 { 739 { 746 G4double safety = (*pNavigatorIter)->Com << 740 G4double safety = (*pNavigatorIter)->ComputeSafety( position,true ); 747 if( safety < minSafety ) { minSafety = s 741 if( safety < minSafety ) { minSafety = safety; } 748 fNewSafetyComputed[num] = safety; << 742 fNewSafetyComputed[num]= safety; 749 } 743 } 750 744 751 fSafetyLocation = position; << 745 fSafetyLocation= position; 752 fMinSafety_atSafLocation = minSafety; 746 fMinSafety_atSafLocation = minSafety; 753 747 754 #ifdef G4DEBUG_PATHFINDER 748 #ifdef G4DEBUG_PATHFINDER 755 if( fVerboseLevel > 1 ) 749 if( fVerboseLevel > 1 ) 756 { 750 { 757 G4cout << " G4PathFinder::ComputeSafety - 751 G4cout << " G4PathFinder::ComputeSafety - returns " 758 << minSafety << " at location " << 752 << minSafety << " at location " << position << G4endl; 759 } 753 } 760 #endif 754 #endif 761 return minSafety; 755 return minSafety; 762 } 756 } 763 757 764 758 765 // ------------------------------------------- 759 // ----------------------------------------------------------------------------- 766 760 767 G4TouchableHandle 761 G4TouchableHandle 768 G4PathFinder::CreateTouchableHandle( G4int nav 762 G4PathFinder::CreateTouchableHandle( G4int navId ) const 769 { 763 { 770 #ifdef G4DEBUG_PATHFINDER 764 #ifdef G4DEBUG_PATHFINDER 771 if( fVerboseLevel > 2 ) 765 if( fVerboseLevel > 2 ) 772 { 766 { 773 G4cout << "G4PathFinder::CreateTouchableHa 767 G4cout << "G4PathFinder::CreateTouchableHandle : navId = " 774 << navId << " -- " << GetNavigator( 768 << navId << " -- " << GetNavigator(navId) << G4endl; 775 } 769 } 776 #endif 770 #endif 777 771 778 G4TouchableHistory* touchHist; 772 G4TouchableHistory* touchHist; 779 touchHist = GetNavigator(navId)->CreateTouch << 773 touchHist= GetNavigator(navId) -> CreateTouchableHistory(); 780 774 781 G4VPhysicalVolume* locatedVolume = fLocatedV << 775 G4VPhysicalVolume* locatedVolume= fLocatedVolume[navId]; 782 if( locatedVolume == nullptr ) << 776 if( locatedVolume == 0 ) 783 { 777 { 784 // Workaround to ensure that the touchabl 778 // Workaround to ensure that the touchable is fixed !! // TODO: fix 785 779 786 touchHist->UpdateYourself( locatedVolume, 780 touchHist->UpdateYourself( locatedVolume, touchHist->GetHistory() ); 787 } 781 } 788 782 789 #ifdef G4DEBUG_PATHFINDER 783 #ifdef G4DEBUG_PATHFINDER 790 if( fVerboseLevel > 2 ) 784 if( fVerboseLevel > 2 ) 791 { 785 { 792 G4String VolumeName("None"); 786 G4String VolumeName("None"); 793 if( locatedVolume ) { VolumeName = located << 787 if( locatedVolume ) { VolumeName= locatedVolume->GetName(); } 794 G4cout << " Touchable History created at a 788 G4cout << " Touchable History created at address " << touchHist 795 << "; volume = " << locatedVolume < << 789 << " volume = " << locatedVolume << " name= " << VolumeName 796 << G4endl; 790 << G4endl; 797 } 791 } 798 #endif 792 #endif 799 793 800 return {touchHist}; << 794 return G4TouchableHandle(touchHist); 801 } 795 } 802 796 803 G4double 797 G4double 804 G4PathFinder::DoNextLinearStep( const G4FieldT << 798 G4PathFinder::DoNextLinearStep( const G4FieldTrack &initialState, 805 G4double 799 G4double proposedStepLength ) 806 { 800 { 807 std::vector<G4Navigator*>::iterator pNavigat 801 std::vector<G4Navigator*>::iterator pNavigatorIter; 808 G4double safety = 0.0, step =0.0; << 802 G4double safety= 0.0, step=0.0; 809 G4double minSafety = kInfinity, minStep = kI << 803 G4double minSafety= kInfinity, minStep; 810 << 804 811 const G4int IdTransport = 0; // Id of Mass << 805 const G4int IdTransport= 0; // Id of Mass Navigator !! 812 G4int num = 0; << 806 register G4int num=0; 813 807 814 #ifdef G4DEBUG_PATHFINDER 808 #ifdef G4DEBUG_PATHFINDER 815 if( fVerboseLevel > 2 ) 809 if( fVerboseLevel > 2 ) 816 { 810 { 817 G4cout << " G4PathFinder::DoNextLinearStep 811 G4cout << " G4PathFinder::DoNextLinearStep : entered " << G4endl; 818 G4cout << " Input field track= " << init 812 G4cout << " Input field track= " << initialState << G4endl; 819 G4cout << " Requested step= " << propose 813 G4cout << " Requested step= " << proposedStepLength << G4endl; 820 } 814 } 821 #endif 815 #endif 822 816 823 G4ThreeVector initialPosition = initialState << 817 G4ThreeVector initialPosition= initialState.GetPosition(); 824 G4ThreeVector initialDirection = initialStat << 818 G4ThreeVector initialDirection= initialState.GetMomentumDirection(); 825 819 826 G4ThreeVector OriginShift = initialPosition 820 G4ThreeVector OriginShift = initialPosition - fPreSafetyLocation; 827 G4double MagSqShift = OriginShift.mag2 821 G4double MagSqShift = OriginShift.mag2() ; 828 G4double MagShift; // Only given value 822 G4double MagShift; // Only given value if it larger than minimum safety 829 823 830 // Potential optimisation using Maximum Valu 824 // Potential optimisation using Maximum Value of safety! 831 // if( MagSqShift >= sqr(fPreSafetyMaxValue 825 // if( MagSqShift >= sqr(fPreSafetyMaxValue ) ){ 832 // MagShift= kInfinity; // Not a useful 826 // MagShift= kInfinity; // Not a useful value -- all will not use/ignore 833 // else 827 // else 834 // MagShift= std::sqrt(MagSqShift) ; 828 // MagShift= std::sqrt(MagSqShift) ; 835 829 836 MagShift= std::sqrt(MagSqShift) ; 830 MagShift= std::sqrt(MagSqShift) ; 837 831 838 #ifdef G4PATHFINDER_OPTIMISATION 832 #ifdef G4PATHFINDER_OPTIMISATION 839 833 840 G4double fullSafety; // For all geometries, 834 G4double fullSafety; // For all geometries, for prestep point 841 835 842 if( MagSqShift >= sqr(fPreSafetyMinValue) ) << 836 if( MagSqShift >= sqr(fPreSafetyMinValue ) ) 843 { 837 { 844 fullSafety = 0.0 ; 838 fullSafety = 0.0 ; 845 } 839 } 846 else 840 else 847 { 841 { 848 fullSafety = fPreSafetyMinValue - MagShif 842 fullSafety = fPreSafetyMinValue - MagShift; 849 } 843 } 850 if( proposedStepLength < fullSafety ) 844 if( proposedStepLength < fullSafety ) 851 { 845 { 852 // Move is smaller than all safeties 846 // Move is smaller than all safeties 853 // -> so we do not have to move the safe 847 // -> so we do not have to move the safety center 854 848 855 fPreStepCenterRenewed = false; << 849 fPreStepCenterRenewed= false; 856 850 857 for( num=0; num< fNoActiveNavigators; ++n 851 for( num=0; num< fNoActiveNavigators; ++num ) 858 { 852 { 859 fCurrentStepSize[num] = kInfinity; << 853 fCurrentStepSize[num]= kInfinity; 860 safety = std::max( 0.0, fPreSafetyVal 854 safety = std::max( 0.0, fPreSafetyValues[num] - MagShift); 861 minSafety= std::min( safety, minSafety 855 minSafety= std::min( safety, minSafety ); 862 fCurrentPreStepSafety[num] = safety; << 856 fCurrentPreStepSafety[num]= safety; 863 } 857 } 864 minStep = kInfinity; << 858 minStep= kInfinity; 865 859 866 #ifdef G4DEBUG_PATHFINDER 860 #ifdef G4DEBUG_PATHFINDER 867 if( fVerboseLevel > 2 ) 861 if( fVerboseLevel > 2 ) 868 { 862 { 869 G4cout << "G4PathFinder::DoNextLinearSt 863 G4cout << "G4PathFinder::DoNextLinearStep : Quick Stepping. " << G4endl 870 << " proposedStepLength " << p 864 << " proposedStepLength " << proposedStepLength 871 << " < (full) safety = " << ful 865 << " < (full) safety = " << fullSafety 872 << " at " << initialPosition 866 << " at " << initialPosition 873 << G4endl; 867 << G4endl; 874 } 868 } 875 #endif 869 #endif 876 } 870 } 877 else 871 else 878 #endif // End of G4PATHFINDER_OPTIMISATION 1 872 #endif // End of G4PATHFINDER_OPTIMISATION 1 879 { 873 { 880 // Move is larger than at least one of th 874 // Move is larger than at least one of the safeties 881 // -> so we must move the safety center! 875 // -> so we must move the safety center! 882 876 883 fPreStepCenterRenewed = true; << 877 fPreStepCenterRenewed= true; 884 pNavigatorIter = fpTransportManager-> Get << 878 pNavigatorIter= fpTransportManager-> GetActiveNavigatorsIterator(); 885 879 886 minStep = kInfinity; // Not proposedStep << 880 minStep= kInfinity; // Not proposedStepLength; 887 881 888 for( num=0; num< fNoActiveNavigators; ++p 882 for( num=0; num< fNoActiveNavigators; ++pNavigatorIter,++num ) 889 { 883 { 890 safety = std::max( 0.0, fPreSafetyVal 884 safety = std::max( 0.0, fPreSafetyValues[num] - MagShift); 891 885 892 #ifdef G4PATHFINDER_OPTIMISATION 886 #ifdef G4PATHFINDER_OPTIMISATION 893 if( proposedStepLength <= safety ) // 887 if( proposedStepLength <= safety ) // Should be just < safety ? 894 { 888 { 895 // The Step is guaranteed to be tak 889 // The Step is guaranteed to be taken 896 890 897 step = kInfinity; // ComputeSte << 891 step= kInfinity; // ComputeStep Would return this 898 892 899 #ifdef G4DEBUG_PATHFINDER 893 #ifdef G4DEBUG_PATHFINDER 900 G4cout.precision(8); 894 G4cout.precision(8); 901 G4cout << "PathFinder::ComputeStep> 895 G4cout << "PathFinder::ComputeStep> small proposed step = " 902 << proposedStepLength 896 << proposedStepLength 903 << " <= safety = " << safet 897 << " <= safety = " << safety << " for nav " << num 904 << " Step fully taken. " << 898 << " Step fully taken. " << G4endl; 905 #endif 899 #endif 906 } 900 } 907 else 901 else 908 #endif // End of G4PATHFINDER_OPTIMISATION 2 902 #endif // End of G4PATHFINDER_OPTIMISATION 2 909 { 903 { 910 #ifdef G4DEBUG_PATHFINDER 904 #ifdef G4DEBUG_PATHFINDER 911 G4double previousSafety = safety; << 905 G4double previousSafety= safety; 912 #endif 906 #endif 913 step = (*pNavigatorIter)->ComputeSt << 907 step= (*pNavigatorIter)->ComputeStep( initialPosition, 914 << 908 initialDirection, 915 << 909 proposedStepLength, 916 << 910 safety ); 917 minStep = std::min(step, minStep); << 911 minStep = std::min( step, minStep); 918 << 912 919 << 913 // TODO: consider whether/how to reduce the proposed step >> 914 // to the latest minStep value - to reduce calculations >> 915 920 #ifdef G4DEBUG_PATHFINDER 916 #ifdef G4DEBUG_PATHFINDER 921 if( fVerboseLevel > 0) 917 if( fVerboseLevel > 0) 922 { 918 { 923 G4cout.precision(8); 919 G4cout.precision(8); 924 G4cout << "PathFinder::ComputeSte 920 G4cout << "PathFinder::ComputeStep> long proposed step = " 925 << proposedStepLength 921 << proposedStepLength 926 << " > safety = " << pre 922 << " > safety = " << previousSafety 927 << " for nav " << num 923 << " for nav " << num 928 << " . New safety = " << 924 << " . New safety = " << safety << " step= " << step 929 << G4endl; 925 << G4endl; 930 } 926 } 931 #endif 927 #endif 932 } 928 } 933 fCurrentStepSize[num] = step; // Raw << 929 fCurrentStepSize[num] = step; 934 930 935 // TODO: consider whether/how to r << 936 // to the latest minStep val << 937 // ( If so, much change 1st << 938 << 939 // Save safety value, must be done for 931 // Save safety value, must be done for all geometries "together" 940 // (even if not recomputed using call 932 // (even if not recomputed using call to ComputeStep) 941 // since they share the fPreSafetyLoca 933 // since they share the fPreSafetyLocation 942 934 943 fPreSafetyValues[num] = safety; << 935 fPreSafetyValues[num]= safety; 944 fCurrentPreStepSafety[num] = safety; << 936 fCurrentPreStepSafety[num]= safety; 945 937 946 minSafety = std::min( safety, minSafet << 938 minSafety= std::min( safety, minSafety ); 947 939 948 #ifdef G4DEBUG_PATHFINDER 940 #ifdef G4DEBUG_PATHFINDER 949 if( fVerboseLevel > 2 ) 941 if( fVerboseLevel > 2 ) 950 { 942 { 951 G4cout << "G4PathFinder::DoNextLinea 943 G4cout << "G4PathFinder::DoNextLinearStep : Navigator [" 952 << num << "] -- step size " < 944 << num << "] -- step size " << step << G4endl; 953 } 945 } 954 #endif 946 #endif 955 } 947 } 956 948 957 // Only change these when safety is recal 949 // Only change these when safety is recalculated 958 // it is good/relevant only for safety ca 950 // it is good/relevant only for safety calculations 959 951 960 fPreSafetyLocation = initialPosition; << 952 fPreSafetyLocation= initialPosition; 961 fPreSafetyMinValue = minSafety; << 953 fPreSafetyMinValue= minSafety; 962 } // end of else for if( proposedStepLength 954 } // end of else for if( proposedStepLength <= fullSafety) 963 955 964 // For use in Relocation, need PreStep point 956 // For use in Relocation, need PreStep point location, min-safety 965 // 957 // 966 fPreStepLocation = initialPosition; << 958 fPreStepLocation= initialPosition; 967 fMinSafety_PreStepPt = minSafety; << 959 fMinSafety_PreStepPt= minSafety; 968 960 969 fMinStep = minStep; << 961 fMinStep= minStep; 970 962 971 if( fMinStep == kInfinity ) 963 if( fMinStep == kInfinity ) 972 { 964 { 973 minStep = proposedStepLength; // Use t 965 minStep = proposedStepLength; // Use this below for endpoint !! 974 } 966 } 975 fTrueMinStep = minStep; 967 fTrueMinStep = minStep; 976 968 977 // Set the EndState 969 // Set the EndState 978 970 979 G4ThreeVector endPosition; 971 G4ThreeVector endPosition; 980 972 981 fEndState = initialState; << 973 fEndState= initialState; 982 endPosition = initialPosition + minStep * in << 974 endPosition= initialPosition + minStep * initialDirection ; 983 975 984 #ifdef G4DEBUG_PATHFINDER 976 #ifdef G4DEBUG_PATHFINDER 985 if( fVerboseLevel > 1 ) 977 if( fVerboseLevel > 1 ) 986 { 978 { 987 G4int oldPrec= G4cout.precision(14); << 988 G4cout << "G4PathFinder::DoNextLinearStep 979 G4cout << "G4PathFinder::DoNextLinearStep : " 989 << " initialPosition = " << initial 980 << " initialPosition = " << initialPosition 990 << " and endPosition = " << endPosi 981 << " and endPosition = " << endPosition<< G4endl; 991 G4cout.precision(oldPrec); << 992 } 982 } 993 #endif 983 #endif 994 984 995 fEndState.SetPosition( endPosition ); 985 fEndState.SetPosition( endPosition ); 996 fEndState.SetProperTimeOfFlight( -1.000 ); 986 fEndState.SetProperTimeOfFlight( -1.000 ); // Not defined YET 997 987 998 if( fNoActiveNavigators == 1 ) 988 if( fNoActiveNavigators == 1 ) 999 { 989 { 1000 G4bool transportLimited = (fMinStep!= kI 990 G4bool transportLimited = (fMinStep!= kInfinity); 1001 fLimitTruth[IdTransport] = transportLimi 991 fLimitTruth[IdTransport] = transportLimited; 1002 fLimitedStep[IdTransport] = transportLim 992 fLimitedStep[IdTransport] = transportLimited ? kUnique : kDoNot; 1003 993 1004 // Set fNoGeometriesLimiting - as WhichL 994 // Set fNoGeometriesLimiting - as WhichLimited does 1005 fNoGeometriesLimiting = transportLimited 995 fNoGeometriesLimiting = transportLimited ? 1 : 0; 1006 } 996 } 1007 else 997 else 1008 { 998 { 1009 WhichLimited(); 999 WhichLimited(); 1010 } 1000 } 1011 1001 1012 #ifdef G4DEBUG_PATHFINDER 1002 #ifdef G4DEBUG_PATHFINDER 1013 if( fVerboseLevel > 2 ) 1003 if( fVerboseLevel > 2 ) 1014 { 1004 { 1015 G4cout << " G4PathFinder::DoNextLinearSte 1005 G4cout << " G4PathFinder::DoNextLinearStep : exits returning " 1016 << minStep << G4endl; 1006 << minStep << G4endl; 1017 G4cout << " - Endpoint values = " << fEnd << 1007 G4cout << " Endpoint values = " << fEndState << G4endl; 1018 G4cout << G4endl; 1008 G4cout << G4endl; 1019 } 1009 } 1020 #endif 1010 #endif 1021 1011 1022 return minStep; 1012 return minStep; 1023 } 1013 } 1024 1014 1025 void G4PathFinder::WhichLimited() 1015 void G4PathFinder::WhichLimited() 1026 { 1016 { 1027 // Flag which processes limited the step 1017 // Flag which processes limited the step 1028 1018 1029 G4int num = -1, last = -1; << 1019 G4int num=-1, last=-1; 1030 G4int noLimited = 0; << 1020 G4int noLimited=0; 1031 ELimited shared = kSharedOther; << 1021 ELimited shared= kSharedOther; 1032 1022 1033 const G4int IdTransport = 0; // Id of Mass << 1023 const G4int IdTransport= 0; // Id of Mass Navigator !! 1034 1024 1035 // Assume that [IdTransport] is Mass / Tran 1025 // Assume that [IdTransport] is Mass / Transport 1036 // 1026 // 1037 G4bool transportLimited = (fCurrentStepSize 1027 G4bool transportLimited = (fCurrentStepSize[IdTransport] == fMinStep) 1038 && (fMinStep != kInf << 1028 && ( fMinStep!= kInfinity) ; 1039 1029 1040 if( transportLimited ) << 1030 if( transportLimited ) { 1041 { << 1042 shared= kSharedTransport; 1031 shared= kSharedTransport; 1043 } 1032 } 1044 1033 1045 for ( num = 0; num < fNoActiveNavigators; + << 1034 for ( num= 0; num < fNoActiveNavigators; num++ ) 1046 { 1035 { 1047 G4bool limitedStep; 1036 G4bool limitedStep; 1048 1037 1049 G4double step = fCurrentStepSize[num]; << 1038 G4double step= fCurrentStepSize[num]; 1050 1039 1051 limitedStep = ( std::fabs(step - fMinStep 1040 limitedStep = ( std::fabs(step - fMinStep) < kCarTolerance ) 1052 && ( step != kInfinity); << 1041 && ( step != kInfinity); 1053 1042 1054 fLimitTruth[ num ] = limitedStep; 1043 fLimitTruth[ num ] = limitedStep; 1055 if( limitedStep ) 1044 if( limitedStep ) 1056 { 1045 { 1057 ++noLimited; << 1046 noLimited++; 1058 fLimitedStep[num] = shared; 1047 fLimitedStep[num] = shared; 1059 last= num; 1048 last= num; 1060 } 1049 } 1061 else 1050 else 1062 { 1051 { 1063 fLimitedStep[num] = kDoNot; 1052 fLimitedStep[num] = kDoNot; 1064 } 1053 } 1065 } 1054 } 1066 fNoGeometriesLimiting= noLimited; // Save 1055 fNoGeometriesLimiting= noLimited; // Save # processes limiting step 1067 1056 1068 if( (last > -1) && (noLimited == 1 ) ) 1057 if( (last > -1) && (noLimited == 1 ) ) 1069 { 1058 { 1070 fLimitedStep[ last ] = kUnique; 1059 fLimitedStep[ last ] = kUnique; 1071 } 1060 } 1072 1061 1073 #ifdef G4DEBUG_PATHFINDER 1062 #ifdef G4DEBUG_PATHFINDER 1074 if( fVerboseLevel > 1 ) 1063 if( fVerboseLevel > 1 ) 1075 { 1064 { 1076 PrintLimited(); // --> for tracing 1065 PrintLimited(); // --> for tracing 1077 if( fVerboseLevel > 4 ) << 1066 if( fVerboseLevel > 4 ) { 1078 { << 1079 G4cout << " G4PathFinder::WhichLimited 1067 G4cout << " G4PathFinder::WhichLimited - exiting. " << G4endl; 1080 } 1068 } 1081 } 1069 } 1082 #endif 1070 #endif 1083 } 1071 } 1084 1072 1085 void G4PathFinder::PrintLimited() 1073 void G4PathFinder::PrintLimited() 1086 { 1074 { 1087 // Report results -- for checking 1075 // Report results -- for checking 1088 1076 1089 G4cout << "G4PathFinder::PrintLimited repor 1077 G4cout << "G4PathFinder::PrintLimited reports: " ; 1090 G4cout << " Minimum step (true)= " << fTru 1078 G4cout << " Minimum step (true)= " << fTrueMinStep 1091 << " reported min = " << fMinStep 1079 << " reported min = " << fMinStep 1092 << G4endl; 1080 << G4endl; 1093 if( (fCurrentStepNo <= 2) || (fVerboseLeve 1081 if( (fCurrentStepNo <= 2) || (fVerboseLevel>=2) ) 1094 { 1082 { 1095 G4cout << std::setw(5) << " Step#" << " 1083 G4cout << std::setw(5) << " Step#" << " " 1096 << std::setw(5) << " NavId" << " 1084 << std::setw(5) << " NavId" << " " 1097 << std::setw(12) << " step-size " 1085 << std::setw(12) << " step-size " << " " 1098 << std::setw(12) << " raw-size " 1086 << std::setw(12) << " raw-size " << " " 1099 << std::setw(12) << " pre-safety " 1087 << std::setw(12) << " pre-safety " << " " 1100 << std::setw(15) << " Limited / fl 1088 << std::setw(15) << " Limited / flag" << " " 1101 << std::setw(15) << " World " << 1089 << std::setw(15) << " World " << " " 1102 << G4endl; 1090 << G4endl; 1103 } 1091 } 1104 for ( auto num = 0; num < fNoActiveNavigato << 1092 G4int num; >> 1093 for ( num= 0; num < fNoActiveNavigators; num++ ) 1105 { 1094 { 1106 G4double rawStep = fCurrentStepSize[num]; 1095 G4double rawStep = fCurrentStepSize[num]; 1107 G4double stepLen = fCurrentStepSize[num]; 1096 G4double stepLen = fCurrentStepSize[num]; 1108 if( stepLen > fTrueMinStep ) 1097 if( stepLen > fTrueMinStep ) 1109 { 1098 { 1110 stepLen = fTrueMinStep; // did not 1099 stepLen = fTrueMinStep; // did not limit (went as far as asked) 1111 } 1100 } 1112 G4long oldPrec = G4cout.precision(9); << 1101 G4int oldPrec= G4cout.precision(9); 1113 1102 1114 G4cout << std::setw(5) << fCurrentStepNo 1103 G4cout << std::setw(5) << fCurrentStepNo << " " 1115 << std::setw(5) << num << " " 1104 << std::setw(5) << num << " " 1116 << std::setw(12) << stepLen << " " 1105 << std::setw(12) << stepLen << " " 1117 << std::setw(12) << rawStep << " " 1106 << std::setw(12) << rawStep << " " 1118 << std::setw(12) << fCurrentPreSte 1107 << std::setw(12) << fCurrentPreStepSafety[num] << " " 1119 << std::setw(5) << (fLimitTruth[nu 1108 << std::setw(5) << (fLimitTruth[num] ? "YES" : " NO") << " "; 1120 G4String limitedStr= LimitedString(fLimit 1109 G4String limitedStr= LimitedString(fLimitedStep[num]); 1121 G4cout << " " << std::setw(15) << limited 1110 G4cout << " " << std::setw(15) << limitedStr << " "; 1122 G4cout.precision(oldPrec); 1111 G4cout.precision(oldPrec); 1123 1112 1124 G4Navigator* pNav = GetNavigator( num ); << 1113 G4Navigator *pNav= GetNavigator( num ); 1125 G4String WorldName( "Not-Set" ); 1114 G4String WorldName( "Not-Set" ); 1126 if (pNav != nullptr) << 1115 if (pNav) 1127 { 1116 { 1128 G4VPhysicalVolume *pWorld = pNav->GetW << 1117 G4VPhysicalVolume *pWorld= pNav->GetWorldVolume(); 1129 if( pWorld != nullptr ) << 1118 if( pWorld ) 1130 { 1119 { 1131 WorldName = pWorld->GetName(); << 1120 WorldName = pWorld->GetName(); 1132 } 1121 } 1133 } 1122 } 1134 G4cout << " " << WorldName ; 1123 G4cout << " " << WorldName ; 1135 G4cout << G4endl; 1124 G4cout << G4endl; 1136 } 1125 } 1137 1126 1138 if( fVerboseLevel > 4 ) 1127 if( fVerboseLevel > 4 ) 1139 { 1128 { 1140 G4cout << " G4PathFinder::PrintLimited - 1129 G4cout << " G4PathFinder::PrintLimited - exiting. " << G4endl; 1141 } 1130 } 1142 } 1131 } 1143 1132 1144 G4double 1133 G4double 1145 G4PathFinder::DoNextCurvedStep( const G4Field 1134 G4PathFinder::DoNextCurvedStep( const G4FieldTrack &initialState, 1146 G4doubl << 1135 G4double proposedStepLength, 1147 G4VPhysicalVo 1136 G4VPhysicalVolume* pCurrentPhysicalVolume ) 1148 { 1137 { 1149 const G4double toleratedRelativeError = 1.0 << 1138 const G4double toleratedRelativeError= 1.0e-10; 1150 G4double minStep= kInfinity, newSafety = 0. << 1139 G4double minStep= kInfinity, newSafety=0.0; 1151 G4int numNav; 1140 G4int numNav; 1152 G4FieldTrack fieldTrack = initialState; << 1141 G4FieldTrack fieldTrack= initialState; 1153 G4ThreeVector startPoint = initialState.Get << 1142 G4ThreeVector startPoint= initialState.GetPosition(); 1154 << 1155 << 1156 G4EquationOfMotion* equationOfMotion = << 1157 fpFieldPropagator->GetCurrentEquationOfM << 1158 1143 1159 equationOfMotion->SetChargeMomentumMass( *( << 1160 in << 1161 in << 1162 << 1163 #ifdef G4DEBUG_PATHFINDER 1144 #ifdef G4DEBUG_PATHFINDER 1164 G4int prc = G4cout.precision(9); << 1145 G4int prc= G4cout.precision(9); 1165 if( fVerboseLevel > 2 ) 1146 if( fVerboseLevel > 2 ) 1166 { 1147 { 1167 G4cout << " G4PathFinder::DoNextCurvedSte 1148 G4cout << " G4PathFinder::DoNextCurvedStep ****** " << G4endl; 1168 G4cout << " Initial value of field track 1149 G4cout << " Initial value of field track is " << fieldTrack 1169 << " and proposed step= " << propo 1150 << " and proposed step= " << proposedStepLength << G4endl; 1170 } 1151 } 1171 #endif 1152 #endif 1172 1153 1173 fPreStepCenterRenewed = true; // Always upd << 1154 fPreStepCenterRenewed= true; // Always update PreSafety with PreStep point 1174 1155 1175 if( fNoActiveNavigators > 1 ) 1156 if( fNoActiveNavigators > 1 ) 1176 { 1157 { 1177 // Calculate the safety values before ma 1158 // Calculate the safety values before making the step 1178 1159 1179 G4double minSafety= kInfinity, safety; 1160 G4double minSafety= kInfinity, safety; 1180 for( numNav=0; numNav < fNoActiveNavigat 1161 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1181 { 1162 { 1182 safety= fpNavigator[numNav]->ComputeS << 1163 safety= fpNavigator[numNav]->ComputeSafety( startPoint, false ); 1183 fPreSafetyValues[numNav] = safety; << 1164 fPreSafetyValues[numNav]= safety; 1184 fCurrentPreStepSafety[numNav] = safet << 1165 fCurrentPreStepSafety[numNav]= safety; 1185 minSafety = std::min( safety, minSafe 1166 minSafety = std::min( safety, minSafety ); 1186 } 1167 } 1187 1168 1188 // Save safety value, related position 1169 // Save safety value, related position 1189 1170 1190 fPreSafetyLocation = startPoint; << 1171 fPreSafetyLocation= startPoint; 1191 fPreSafetyMinValue = minSafety; << 1172 fPreSafetyMinValue= minSafety; 1192 fPreStepLocation = startPoint; << 1173 fPreStepLocation= startPoint; 1193 fMinSafety_PreStepPt = minSafety; << 1174 fMinSafety_PreStepPt= minSafety; 1194 } 1175 } 1195 1176 1196 // Allow Propagator In Field to do the hard 1177 // Allow Propagator In Field to do the hard work, calling G4MultiNavigator 1197 // 1178 // 1198 minStep = fpFieldPropagator->ComputeStep( f << 1179 minStep= fpFieldPropagator->ComputeStep( fieldTrack, 1199 p 1180 proposedStepLength, 1200 n 1181 newSafety, 1201 p << 1182 pCurrentPhysicalVolume ); 1202 f << 1203 1183 1204 // fieldTrack now contains the endpoint inf 1184 // fieldTrack now contains the endpoint information 1205 // 1185 // 1206 fEndState = fieldTrack; << 1186 fEndState= fieldTrack; 1207 fMinStep = minStep; << 1187 fMinStep= minStep; 1208 fTrueMinStep = std::min( minStep, proposedS 1188 fTrueMinStep = std::min( minStep, proposedStepLength ); 1209 1189 1210 if( fNoActiveNavigators == 1 ) << 1190 if( fNoActiveNavigators== 1 ) 1211 { 1191 { 1212 // Update the 'PreSafety' sphere - as an 1192 // Update the 'PreSafety' sphere - as any ComputeStep was called 1213 // (must be done anyway in field) 1193 // (must be done anyway in field) 1214 1194 1215 fPreSafetyValues[0] = newSafety; << 1195 fPreSafetyValues[0]= newSafety; 1216 fPreSafetyLocation = startPoint; << 1196 fPreSafetyLocation= startPoint; 1217 fPreSafetyMinValue = newSafety; << 1197 fPreSafetyMinValue= newSafety; 1218 1198 1219 // Update the current 'PreStep' point's 1199 // Update the current 'PreStep' point's values - mandatory 1220 // 1200 // 1221 fCurrentPreStepSafety[0] = newSafety; << 1201 fCurrentPreStepSafety[0]= newSafety; 1222 fPreStepLocation = startPoint; << 1202 fPreStepLocation= startPoint; 1223 fMinSafety_PreStepPt= newSafety; 1203 fMinSafety_PreStepPt= newSafety; 1224 } 1204 } 1225 1205 1226 #ifdef G4DEBUG_PATHFINDER 1206 #ifdef G4DEBUG_PATHFINDER 1227 if( fVerboseLevel > 2 ) 1207 if( fVerboseLevel > 2 ) 1228 { 1208 { 1229 G4cout << "G4PathFinder::DoNextCurvedStep 1209 G4cout << "G4PathFinder::DoNextCurvedStep : " << G4endl 1230 << " initialState = " << initialSt 1210 << " initialState = " << initialState << G4endl 1231 << " and endState = " << fEndState 1211 << " and endState = " << fEndState << G4endl; 1232 G4cout << "G4PathFinder::DoNextCurvedStep 1212 G4cout << "G4PathFinder::DoNextCurvedStep : " 1233 << " minStep = " << minStep 1213 << " minStep = " << minStep 1234 << " proposedStepLength " << propo 1214 << " proposedStepLength " << proposedStepLength 1235 << " safety = " << newSafety << G4 1215 << " safety = " << newSafety << G4endl; 1236 } 1216 } 1237 #endif 1217 #endif 1238 G4double currentStepSize; // = 0.0; 1218 G4double currentStepSize; // = 0.0; 1239 if( minStep < proposedStepLength ) // if == 1219 if( minStep < proposedStepLength ) // if == , then a boundary found at end ?? 1240 { 1220 { 1241 // Recover the remaining information from 1221 // Recover the remaining information from MultiNavigator 1242 // especially regarding which Navigator l 1222 // especially regarding which Navigator limited the step 1243 1223 1244 G4int noLimited = 0; // No geometries << 1224 G4int noLimited= 0; // No geometries limiting step 1245 for( numNav=0; numNav < fNoActiveNavigato 1225 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1246 { 1226 { 1247 G4double finalStep, lastPreSafety = 0.0 << 1227 G4double finalStep, lastPreSafety=0.0, minStepLast; 1248 ELimited didLimit; 1228 ELimited didLimit; 1249 G4bool limited; 1229 G4bool limited; 1250 1230 1251 finalStep= fpMultiNavigator->ObtainFin 1231 finalStep= fpMultiNavigator->ObtainFinalStep( numNav, lastPreSafety, 1252 1232 minStepLast, didLimit ); 1253 1233 1254 // Calculate the step for this geometry 1234 // Calculate the step for this geometry, using the 1255 // final step (the only one which can d 1235 // final step (the only one which can differ.) 1256 1236 1257 currentStepSize = fTrueMinStep; 1237 currentStepSize = fTrueMinStep; 1258 G4double diffStep = 0.0; << 1238 G4double diffStep= 0.0; 1259 if( (minStepLast != kInfinity) ) 1239 if( (minStepLast != kInfinity) ) 1260 { 1240 { 1261 diffStep = (finalStep-minStepLast); 1241 diffStep = (finalStep-minStepLast); 1262 if ( std::abs(diffStep) <= toleratedR 1242 if ( std::abs(diffStep) <= toleratedRelativeError * finalStep ) 1263 { 1243 { 1264 diffStep = 0.0; 1244 diffStep = 0.0; 1265 } 1245 } 1266 currentStepSize += diffStep; 1246 currentStepSize += diffStep; 1267 } 1247 } 1268 fCurrentStepSize[numNav] = currentStepS 1248 fCurrentStepSize[numNav] = currentStepSize; 1269 1249 1270 // TODO: could refine the way to obtain 1250 // TODO: could refine the way to obtain safeties for > 1 geometries 1271 // - for pre step safety 1251 // - for pre step safety 1272 // notify MultiNavigator about n 1252 // notify MultiNavigator about new set of sub-steps 1273 // allow it to return this value 1253 // allow it to return this value in ObtainFinalStep 1274 // instead of lastPreSafety (or 1254 // instead of lastPreSafety (or as well?) 1275 // - for final step start (availabl 1255 // - for final step start (available) 1276 // get final Step start from Mul 1256 // get final Step start from MultiNavigator 1277 // and corresponding safety valu 1257 // and corresponding safety values 1278 // and/or ALSO calculate ComputeSafety 1258 // and/or ALSO calculate ComputeSafety at endpoint 1279 // endSafety= fpNavigator[numNav]-> 1259 // endSafety= fpNavigator[numNav]->ComputeSafety( endPoint ); 1280 1260 1281 fLimitedStep[numNav] = didLimit; 1261 fLimitedStep[numNav] = didLimit; 1282 fLimitTruth[numNav] = limited = (didLim 1262 fLimitTruth[numNav] = limited = (didLimit != kDoNot ); 1283 if( limited ) { ++noLimited; } << 1263 if( limited ) { noLimited++; } 1284 1264 1285 #ifdef G4DEBUG_PATHFINDER 1265 #ifdef G4DEBUG_PATHFINDER 1286 G4bool StepError = (currentStepSize < 0 << 1266 G4bool StepError= (currentStepSize < 0) 1287 || ( (minStepLast != kI << 1267 || ( (minStepLast != kInfinity) && (diffStep < 0) ) ; 1288 if( StepError || (fVerboseLevel > 2) ) 1268 if( StepError || (fVerboseLevel > 2) ) 1289 { 1269 { 1290 G4String limitedString = LimitedStr << 1270 G4String limitedString= LimitedString( fLimitedStep[numNav] ); 1291 1271 1292 G4cout << " G4PathFinder::ComputeStep 1272 G4cout << " G4PathFinder::ComputeStep. Geometry " << numNav 1293 << " step= " << fCurrentStepS 1273 << " step= " << fCurrentStepSize[numNav] 1294 << " from final-step= " << fin 1274 << " from final-step= " << finalStep 1295 << " fTrueMinStep= " << fTrueM 1275 << " fTrueMinStep= " << fTrueMinStep 1296 << " minStepLast= " << minSte 1276 << " minStepLast= " << minStepLast 1297 << " limited = " << (fLimitTr 1277 << " limited = " << (fLimitTruth[numNav] ? "YES" : " NO") 1298 << " "; 1278 << " "; 1299 G4cout << " status = " << limitedStr 1279 G4cout << " status = " << limitedString << " #= " << didLimit 1300 << G4endl; 1280 << G4endl; 1301 1281 1302 if( StepError ) 1282 if( StepError ) 1303 { 1283 { 1304 std::ostringstream message; 1284 std::ostringstream message; 1305 message << "Incorrect calculation o 1285 message << "Incorrect calculation of step size for one navigator" 1306 << G4endl 1286 << G4endl 1307 << " currentStepSize 1287 << " currentStepSize = " << currentStepSize 1308 << ", diffStep= " << diffSt 1288 << ", diffStep= " << diffStep << G4endl 1309 << "ERROR in computing step 1289 << "ERROR in computing step size for this navigator."; 1310 G4Exception("G4PathFinder::DoNextCu 1290 G4Exception("G4PathFinder::DoNextCurvedStep", 1311 "GeomNav0003", FatalExc 1291 "GeomNav0003", FatalException, message); 1312 } 1292 } 1313 } 1293 } 1314 #endif 1294 #endif 1315 } // for num Navigators 1295 } // for num Navigators 1316 1296 1317 fNoGeometriesLimiting = noLimited; // Sa << 1297 fNoGeometriesLimiting= noLimited; // Save # processes limiting step 1318 } 1298 } 1319 else if ( (minStep == proposedStepLength) 1299 else if ( (minStep == proposedStepLength) 1320 || (minStep == kInfinity) 1300 || (minStep == kInfinity) 1321 || ( std::abs(minStep-proposedSte 1301 || ( std::abs(minStep-proposedStepLength) 1322 < toleratedRelativeError * pro 1302 < toleratedRelativeError * proposedStepLength ) ) 1323 { 1303 { 1324 // In case the step was not limited, use 1304 // In case the step was not limited, use default responses 1325 // --> all Navigators 1305 // --> all Navigators 1326 // Also avoid problems in case of PathFin 1306 // Also avoid problems in case of PathFinder using safety to optimise 1327 // - it is possible that the Navigators 1307 // - it is possible that the Navigators were not called 1328 // if the safety was already satisfact 1308 // if the safety was already satisfactory. 1329 // (In that case calling ObtainFinalSt 1309 // (In that case calling ObtainFinalStep gives invalid results.) 1330 1310 1331 currentStepSize = minStep; << 1311 currentStepSize= minStep; 1332 for( numNav=0; numNav < fNoActiveNavigato 1312 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1333 { 1313 { 1334 fCurrentStepSize[numNav] = minStep; 1314 fCurrentStepSize[numNav] = minStep; 1335 // Safety for endpoint ?? // Can event 1315 // Safety for endpoint ?? // Can eventuall improve it -- see TODO above 1336 fLimitedStep[numNav] = kDoNot; 1316 fLimitedStep[numNav] = kDoNot; 1337 fLimitTruth[numNav] = false; 1317 fLimitTruth[numNav] = false; 1338 } 1318 } 1339 fNoGeometriesLimiting = 0; // Save # pro << 1319 fNoGeometriesLimiting= 0; // Save # processes limiting step 1340 } 1320 } 1341 else // (minStep > proposedStepLength) 1321 else // (minStep > proposedStepLength) and not (minStep == kInfinity) 1342 { 1322 { 1343 std::ostringstream message; 1323 std::ostringstream message; 1344 message << "Incorrect calculation of step 1324 message << "Incorrect calculation of step size for one navigator." << G4endl 1345 << " currentStepSize = " < 1325 << " currentStepSize = " << minStep << " is larger than " 1346 << " proposed StepSize = " << pro 1326 << " proposed StepSize = " << proposedStepLength << "."; 1347 G4Exception("G4PathFinder::DoNextCurvedSt 1327 G4Exception("G4PathFinder::DoNextCurvedStep()", 1348 "GeomNav0003", FatalException 1328 "GeomNav0003", FatalException, message); 1349 } 1329 } 1350 1330 1351 #ifdef G4DEBUG_PATHFINDER 1331 #ifdef G4DEBUG_PATHFINDER 1352 if( fVerboseLevel > 2 ) 1332 if( fVerboseLevel > 2 ) 1353 { 1333 { 1354 G4cout << " Exiting G4PathFinder::DoNextC 1334 G4cout << " Exiting G4PathFinder::DoNextCurvedStep " << G4endl; 1355 PrintLimited(); 1335 PrintLimited(); 1356 } 1336 } 1357 G4cout.precision(prc); 1337 G4cout.precision(prc); 1358 #endif 1338 #endif 1359 1339 1360 return minStep; 1340 return minStep; 1361 } 1341 } 1362 1342 1363 G4String& G4PathFinder::LimitedString( ELimit 1343 G4String& G4PathFinder::LimitedString( ELimited lim ) 1364 { 1344 { 1365 static G4String StrDoNot("DoNot"), 1345 static G4String StrDoNot("DoNot"), 1366 StrUnique("Unique"), 1346 StrUnique("Unique"), 1367 StrUndefined("Undefined"), 1347 StrUndefined("Undefined"), 1368 StrSharedTransport("SharedT 1348 StrSharedTransport("SharedTransport"), 1369 StrSharedOther("SharedOther 1349 StrSharedOther("SharedOther"); 1370 1350 1371 G4String* limitedStr; 1351 G4String* limitedStr; 1372 switch ( lim ) 1352 switch ( lim ) 1373 { 1353 { 1374 case kDoNot: limitedStr = &StrDoNot; br << 1354 case kDoNot: limitedStr= &StrDoNot; break; 1375 case kUnique: limitedStr = &StrUnique; b 1355 case kUnique: limitedStr = &StrUnique; break; 1376 case kSharedTransport: limitedStr = &St << 1356 case kSharedTransport: limitedStr= &StrSharedTransport; break; 1377 case kSharedOther: limitedStr = &StrShar 1357 case kSharedOther: limitedStr = &StrSharedOther; break; 1378 default: limitedStr = &StrUndefined; bre 1358 default: limitedStr = &StrUndefined; break; 1379 } 1359 } 1380 return *limitedStr; 1360 return *limitedStr; 1381 } 1361 } 1382 1362 1383 void G4PathFinder::PushPostSafetyToPreSafety( 1363 void G4PathFinder::PushPostSafetyToPreSafety() 1384 { 1364 { 1385 fPreSafetyLocation = fSafetyLocation; << 1365 fPreSafetyLocation= fSafetyLocation; 1386 fPreSafetyMinValue = fMinSafety_atSafLocati << 1366 fPreSafetyMinValue= fMinSafety_atSafLocation; 1387 for( auto nav=0; nav < fNoActiveNavigators; << 1367 for( register G4int nav=0; nav < fNoActiveNavigators; ++nav ) 1388 { 1368 { 1389 fPreSafetyValues[nav] = fNewSafetyComput << 1369 fPreSafetyValues[nav]= fNewSafetyComputed[nav]; 1390 } 1370 } 1391 } 1371 } 1392 1372