Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4PathFinder Implementation 26 // G4PathFinder Implementation 27 // 27 // 28 // Original author: John Apostolakis, April 20 28 // Original author: John Apostolakis, April 2006 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include <iomanip> 31 #include <iomanip> 32 32 33 #include "G4PathFinder.hh" 33 #include "G4PathFinder.hh" 34 34 35 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 36 #include "G4GeometryTolerance.hh" 36 #include "G4GeometryTolerance.hh" 37 #include "G4Navigator.hh" 37 #include "G4Navigator.hh" 38 #include "G4PropagatorInField.hh" 38 #include "G4PropagatorInField.hh" 39 #include "G4TransportationManager.hh" 39 #include "G4TransportationManager.hh" 40 #include "G4MultiNavigator.hh" 40 #include "G4MultiNavigator.hh" 41 #include "G4SafetyHelper.hh" 41 #include "G4SafetyHelper.hh" 42 42 43 // Initialise the static instance of the singl 43 // Initialise the static instance of the singleton 44 // 44 // 45 G4ThreadLocal G4PathFinder* G4PathFinder::fpPa 45 G4ThreadLocal G4PathFinder* G4PathFinder::fpPathFinder = nullptr; 46 46 47 // ------------------------------------------- 47 // ---------------------------------------------------------------------------- 48 // GetInstance() 48 // GetInstance() 49 // 49 // 50 // Retrieve the static instance of the singlet 50 // Retrieve the static instance of the singleton and create it if not existing 51 // 51 // 52 G4PathFinder* G4PathFinder::GetInstance() 52 G4PathFinder* G4PathFinder::GetInstance() 53 { 53 { 54 if( fpPathFinder == nullptr ) 54 if( fpPathFinder == nullptr ) 55 { 55 { 56 fpPathFinder = new G4PathFinder; 56 fpPathFinder = new G4PathFinder; 57 } 57 } 58 return fpPathFinder; 58 return fpPathFinder; 59 } 59 } 60 60 61 // ------------------------------------------- 61 // ---------------------------------------------------------------------------- 62 // GetInstanceIfExist() 62 // GetInstanceIfExist() 63 // 63 // 64 // Retrieve the static instance pointer of the 64 // Retrieve the static instance pointer of the singleton 65 // 65 // 66 G4PathFinder* G4PathFinder::GetInstanceIfExist 66 G4PathFinder* G4PathFinder::GetInstanceIfExist() 67 { 67 { 68 return fpPathFinder; 68 return fpPathFinder; 69 } 69 } 70 70 71 // ------------------------------------------- 71 // ---------------------------------------------------------------------------- 72 // Constructor 72 // Constructor 73 // 73 // 74 G4PathFinder::G4PathFinder() 74 G4PathFinder::G4PathFinder() 75 : fEndState( G4ThreeVector(), G4ThreeVector( 75 : fEndState( G4ThreeVector(), G4ThreeVector(), 0., 0., 0., 0., 0.) 76 { 76 { 77 fpMultiNavigator = new G4MultiNavigator(); 77 fpMultiNavigator = new G4MultiNavigator(); 78 78 79 fpTransportManager= G4TransportationManager 79 fpTransportManager= G4TransportationManager::GetTransportationManager(); 80 fpFieldPropagator = fpTransportManager->Get 80 fpFieldPropagator = fpTransportManager->GetPropagatorInField(); 81 81 82 kCarTolerance = G4GeometryTolerance::GetIns 82 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 83 83 84 G4ThreeVector Big3Vector( kInfinity, kInfi 84 G4ThreeVector Big3Vector( kInfinity, kInfinity, kInfinity ); 85 fLastLocatedPosition= Big3Vector; 85 fLastLocatedPosition= Big3Vector; 86 fSafetyLocation= Big3Vector; 86 fSafetyLocation= Big3Vector; 87 fPreSafetyLocation= Big3Vector; 87 fPreSafetyLocation= Big3Vector; 88 fPreStepLocation= Big3Vector; 88 fPreStepLocation= Big3Vector; 89 89 90 for( auto num=0; num<fMaxNav; ++num ) 90 for( auto num=0; num<fMaxNav; ++num ) 91 { 91 { 92 fpNavigator[num] = nullptr; 92 fpNavigator[num] = nullptr; 93 fLimitTruth[num] = false; 93 fLimitTruth[num] = false; 94 fLimitedStep[num] = kUndefLimited; 94 fLimitedStep[num] = kUndefLimited; 95 fCurrentStepSize[num] = -1.0; 95 fCurrentStepSize[num] = -1.0; 96 fLocatedVolume[num] = nullptr; << 96 fLocatedVolume[num] = 0; 97 fPreSafetyValues[num]= -1.0; 97 fPreSafetyValues[num]= -1.0; 98 fCurrentPreStepSafety[num] = -1.0; 98 fCurrentPreStepSafety[num] = -1.0; 99 fNewSafetyComputed[num]= -1.0; 99 fNewSafetyComputed[num]= -1.0; 100 } 100 } 101 } 101 } 102 102 103 // ------------------------------------------- 103 // ---------------------------------------------------------------------------- 104 // Destructor 104 // Destructor 105 // 105 // 106 G4PathFinder::~G4PathFinder() 106 G4PathFinder::~G4PathFinder() 107 { 107 { 108 delete fpMultiNavigator; 108 delete fpMultiNavigator; 109 fpPathFinder = nullptr; << 109 fpPathFinder = 0; 110 } 110 } 111 111 112 // ------------------------------------------- 112 // ---------------------------------------------------------------------------- 113 // 113 // 114 void 114 void 115 G4PathFinder::EnableParallelNavigation(G4bool 115 G4PathFinder::EnableParallelNavigation(G4bool enableChoice) 116 { 116 { 117 G4Navigator *navigatorForPropagation = null 117 G4Navigator *navigatorForPropagation = nullptr, *massNavigator = nullptr; 118 118 119 massNavigator = fpTransportManager->GetNavi 119 massNavigator = fpTransportManager->GetNavigatorForTracking(); 120 if( enableChoice ) 120 if( enableChoice ) 121 { 121 { 122 navigatorForPropagation = fpMultiNavigat 122 navigatorForPropagation = fpMultiNavigator; 123 123 124 // Enable SafetyHelper to use PF 124 // Enable SafetyHelper to use PF 125 // 125 // 126 fpTransportManager->GetSafetyHelper()->E 126 fpTransportManager->GetSafetyHelper()->EnableParallelNavigation(true); 127 } 127 } 128 else 128 else 129 { 129 { 130 navigatorForPropagation = massNavigator; 130 navigatorForPropagation = massNavigator; 131 131 132 // Disable SafetyHelper to use PF 132 // Disable SafetyHelper to use PF 133 // 133 // 134 fpTransportManager->GetSafetyHelper()->E 134 fpTransportManager->GetSafetyHelper()->EnableParallelNavigation(false); 135 } 135 } 136 fpFieldPropagator->SetNavigatorForPropagati 136 fpFieldPropagator->SetNavigatorForPropagating(navigatorForPropagation); 137 } 137 } 138 138 139 // ------------------------------------------- 139 // ---------------------------------------------------------------------------- 140 // 140 // 141 G4double 141 G4double 142 G4PathFinder::ComputeStep( const G4FieldTrack& 142 G4PathFinder::ComputeStep( const G4FieldTrack& InitialFieldTrack, 143 G4double 143 G4double proposedStepLength, 144 G4int 144 G4int navigatorNo, 145 G4int 145 G4int stepNo, // find next step 146 G4double& 146 G4double& pNewSafety, // for this geom 147 ELimited& 147 ELimited& limitedStep, 148 G4FieldTrack& 148 G4FieldTrack& EndState, 149 G4VPhysicalVo 149 G4VPhysicalVolume* currentVolume) 150 { 150 { 151 G4double possibleStep = -1.0; 151 G4double possibleStep = -1.0; 152 152 153 #ifdef G4DEBUG_PATHFINDER 153 #ifdef G4DEBUG_PATHFINDER 154 if( fVerboseLevel > 2 ) 154 if( fVerboseLevel > 2 ) 155 { 155 { 156 G4cout << " -------------------------" << 156 G4cout << " -------------------------" << G4endl; 157 G4cout << " G4PathFinder::ComputeStep - en 157 G4cout << " G4PathFinder::ComputeStep - entered " << G4endl; 158 G4cout << " - stepNo = " << std::setw(4 158 G4cout << " - stepNo = " << std::setw(4) << stepNo << " " 159 << " navigatorId = " << std::setw(2 159 << " navigatorId = " << std::setw(2) << navigatorNo << " " 160 << " proposed step len = " << propo 160 << " proposed step len = " << proposedStepLength << " " << G4endl; 161 G4cout << " PF::ComputeStep requested step 161 G4cout << " PF::ComputeStep requested step " 162 << " from " << InitialFieldTrack.Ge 162 << " from " << InitialFieldTrack.GetPosition() 163 << " dir " << InitialFieldTrack.Ge 163 << " dir " << InitialFieldTrack.GetMomentumDirection() << G4endl; 164 } 164 } 165 #endif 165 #endif 166 #ifdef G4VERBOSE 166 #ifdef G4VERBOSE 167 if( navigatorNo >= fNoActiveNavigators ) 167 if( navigatorNo >= fNoActiveNavigators ) 168 { 168 { 169 std::ostringstream message; 169 std::ostringstream message; 170 message << "Bad Navigator ID !" << G4endl 170 message << "Bad Navigator ID !" << G4endl 171 << " Requested Navigator ID 171 << " Requested Navigator ID = " << navigatorNo << G4endl 172 << " Number of active navig 172 << " Number of active navigators = " << fNoActiveNavigators; 173 G4Exception("G4PathFinder::ComputeStep()", 173 G4Exception("G4PathFinder::ComputeStep()", "GeomNav0002", 174 FatalException, message); 174 FatalException, message); 175 } 175 } 176 #endif 176 #endif 177 177 178 if( fNewTrack || (stepNo != fLastStepNo) ) 178 if( fNewTrack || (stepNo != fLastStepNo) ) 179 { 179 { 180 // This is a new track or a new step, so w 180 // This is a new track or a new step, so we must make the step 181 // ( else we can simply retrieve its resul 181 // ( else we can simply retrieve its results for this Navigator Id ) 182 182 183 G4FieldTrack currentState = InitialFieldTr 183 G4FieldTrack currentState = InitialFieldTrack; 184 184 185 fCurrentStepNo = stepNo; 185 fCurrentStepNo = stepNo; 186 186 187 // Check whether a process shifted the pos 187 // Check whether a process shifted the position 188 // since the last step -- by physics proce 188 // since the last step -- by physics processes 189 // 189 // 190 G4ThreeVector newPosition = InitialFieldTr 190 G4ThreeVector newPosition = InitialFieldTrack.GetPosition(); 191 G4ThreeVector moveVector = newPosition - f 191 G4ThreeVector moveVector = newPosition - fLastLocatedPosition; 192 G4double moveLenSq = moveVector.mag2(); 192 G4double moveLenSq = moveVector.mag2(); 193 if( moveLenSq > sqr(kCarTolerance) ) 193 if( moveLenSq > sqr(kCarTolerance) ) 194 { 194 { 195 G4ThreeVector newDirection = InitialFie 195 G4ThreeVector newDirection = InitialFieldTrack.GetMomentumDirection(); 196 #ifdef G4DEBUG_PATHFINDER 196 #ifdef G4DEBUG_PATHFINDER 197 if( fVerboseLevel > 2 ) 197 if( fVerboseLevel > 2 ) 198 { 198 { 199 G4double moveLen= std::sqrt( moveLen 199 G4double moveLen= std::sqrt( moveLenSq ); 200 G4cout << " G4PathFinder::ComputeSte 200 G4cout << " G4PathFinder::ComputeStep : Point moved since last step " 201 << " -- at step # = " << step 201 << " -- at step # = " << stepNo << G4endl 202 << " by " << moveLen << " to 202 << " by " << moveLen << " to " << newPosition << G4endl; 203 } 203 } 204 #endif 204 #endif 205 MovePoint(); // Unintentional changed 205 MovePoint(); // Unintentional changed -- ???? 206 206 207 // Relocate to cope with this move -- e 207 // Relocate to cope with this move -- else could abort !? 208 // 208 // 209 Locate( newPosition, newDirection ); 209 Locate( newPosition, newDirection ); 210 } 210 } 211 211 212 // Check whether the particle have an (EM) 212 // Check whether the particle have an (EM) field force exerting upon it 213 // 213 // 214 G4double particleCharge = currentState.Get 214 G4double particleCharge = currentState.GetCharge(); 215 215 216 G4FieldManager* fieldMgr = nullptr; 216 G4FieldManager* fieldMgr = nullptr; 217 G4bool fieldExertsForce = false ; 217 G4bool fieldExertsForce = false ; 218 if( particleCharge != 0.0 ) 218 if( particleCharge != 0.0 ) 219 { 219 { 220 fieldMgr = fpFieldPropagator->FindAndS 220 fieldMgr = fpFieldPropagator->FindAndSetFieldManager( currentVolume ); 221 221 222 // Protect for case where field manage 222 // Protect for case where field manager has no field (= field is zero) 223 // 223 // 224 fieldExertsForce = (fieldMgr != nullpt 224 fieldExertsForce = (fieldMgr != nullptr) 225 && (fieldMgr->GetDetec 225 && (fieldMgr->GetDetectorField() != nullptr); 226 } 226 } 227 fFieldExertedForce = fieldExertsForce; // 227 fFieldExertedForce = fieldExertsForce; // Store for use in later calls 228 // 228 // referring to this 'step'. 229 229 230 fNoGeometriesLimiting = -1; // At start o 230 fNoGeometriesLimiting = -1; // At start of track, no process limited step 231 if( fieldExertsForce ) 231 if( fieldExertsForce ) 232 { 232 { 233 DoNextCurvedStep( currentState, propose 233 DoNextCurvedStep( currentState, proposedStepLength, currentVolume ); 234 //-------------- 234 //-------------- 235 }else{ 235 }else{ 236 DoNextLinearStep( currentState, propose 236 DoNextLinearStep( currentState, proposedStepLength ); 237 //-------------- 237 //-------------- 238 } 238 } 239 fLastStepNo = stepNo; 239 fLastStepNo = stepNo; 240 fRelocatedPoint = false; 240 fRelocatedPoint = false; 241 241 242 #ifdef G4DEBUG_PATHFINDER 242 #ifdef G4DEBUG_PATHFINDER 243 if ( (fNoGeometriesLimiting < 0) 243 if ( (fNoGeometriesLimiting < 0) 244 || (fNoGeometriesLimiting > fNoActiveNav 244 || (fNoGeometriesLimiting > fNoActiveNavigators) ) 245 { 245 { 246 std::ostringstream message; 246 std::ostringstream message; 247 message << "Number of geometries limitin 247 message << "Number of geometries limiting the step not set." << G4endl 248 << " Number of geometries 248 << " Number of geometries limiting step = " 249 << fNoGeometriesLimiting; 249 << fNoGeometriesLimiting; 250 G4Exception("G4PathFinder::ComputeStep() 250 G4Exception("G4PathFinder::ComputeStep()", 251 "GeomNav0002", FatalExceptio 251 "GeomNav0002", FatalException, message); 252 } 252 } 253 #endif 253 #endif 254 } 254 } 255 #ifdef G4DEBUG_PATHFINDER 255 #ifdef G4DEBUG_PATHFINDER 256 else 256 else 257 { 257 { 258 const G4double checkTolerance = 1.0e-9; 258 const G4double checkTolerance = 1.0e-9; 259 if( proposedStepLength < fTrueMinStep * ( 259 if( proposedStepLength < fTrueMinStep * ( 1.0 - checkTolerance) ) 260 { 260 { // For 2nd+ geometry 261 std::ostringstream message; 261 std::ostringstream message; 262 message.precision( 12 ); 262 message.precision( 12 ); 263 message << "Problem in step size reques 263 message << "Problem in step size request." << G4endl 264 << " Being requested to 264 << " Being requested to make a step which is shorter" 265 << " than the minimum Step " << 265 << " than the minimum Step " << G4endl 266 << " already computed fo 266 << " already computed for any Navigator/geometry during" 267 << " this tracking-step: " << G 267 << " this tracking-step: " << G4endl 268 << " This could happen d 268 << " This could happen due to an error in process ordering." 269 << G4endl 269 << G4endl 270 << " Check that all phys 270 << " Check that all physics processes are registered" 271 << " before all processe 271 << " before all processes with a navigator/geometry." 272 << G4endl 272 << G4endl 273 << " If using pre-packag 273 << " If using pre-packaged physics list and/or" 274 << " functionality, plea 274 << " functionality, please report this error." 275 << G4endl << G4endl 275 << G4endl << G4endl 276 << " Additional informat 276 << " Additional information for problem: " << G4endl 277 << " Steps request/propo 277 << " Steps request/proposed = " << proposedStepLength 278 << G4endl 278 << G4endl 279 << " MinimumStep (true) 279 << " MinimumStep (true) = " << fTrueMinStep 280 << G4endl 280 << G4endl 281 << " MinimumStep (navraw 281 << " MinimumStep (navraw) = " << fMinStep 282 << G4endl 282 << G4endl 283 << " Navigator raw retur 283 << " Navigator raw return value" << G4endl 284 << " Requested step now 284 << " Requested step now = " << proposedStepLength 285 << G4endl 285 << G4endl 286 << " Difference min-req 286 << " Difference min-req (absolute) = " 287 << fTrueMinStep-proposedStepLen 287 << fTrueMinStep-proposedStepLength << G4endl 288 << " Relative (to max of 288 << " Relative (to max of two) = " 289 << (fTrueMinStep-proposedStepLe 289 << (fTrueMinStep-proposedStepLength) 290 / std::max(proposedStepLengt 290 / std::max(proposedStepLength, fTrueMinStep) << G4endl 291 << " -- Step info> stepNo= 291 << " -- Step info> stepNo= " << stepNo 292 << " last= " << fLastStepNo 292 << " last= " << fLastStepNo 293 << " newTr= " << fNewTrack << G 293 << " newTr= " << fNewTrack << G4endl; 294 G4Exception("G4PathFinder::ComputeStep 294 G4Exception("G4PathFinder::ComputeStep()", 295 "GeomNav0003", FatalExcept 295 "GeomNav0003", FatalException, message); 296 } 296 } 297 else 297 else 298 { 298 { 299 // This is neither a new track nor a n 299 // This is neither a new track nor a new step -- just another 300 // client accessing information for th 300 // client accessing information for the current track, step 301 // We will simply retrieve the results 301 // We will simply retrieve the results of the synchronous 302 // stepping for this Navigator Id belo 302 // stepping for this Navigator Id below. 303 // 303 // 304 if( fVerboseLevel > 1 ) 304 if( fVerboseLevel > 1 ) 305 { 305 { 306 G4cout << " G4P::CS -> Not calling 306 G4cout << " G4P::CS -> Not calling DoNextLinearStep: " 307 << " stepNo= " << stepNo << 307 << " stepNo= " << stepNo << " last= " << fLastStepNo 308 << " new= " << fNewTrack << 308 << " new= " << fNewTrack << " Step already done" << G4endl; 309 } 309 } 310 } 310 } 311 } 311 } 312 #endif 312 #endif 313 313 314 fNewTrack = false; 314 fNewTrack = false; 315 315 316 // Prepare the information to return 316 // Prepare the information to return 317 317 318 pNewSafety = fCurrentPreStepSafety[ navigat 318 pNewSafety = fCurrentPreStepSafety[ navigatorNo ]; 319 limitedStep = fLimitedStep[ navigatorNo ]; 319 limitedStep = fLimitedStep[ navigatorNo ]; 320 320 321 possibleStep = std::min(proposedStepLength, 321 possibleStep = std::min(proposedStepLength, fCurrentStepSize[ navigatorNo ]); 322 EndState = fEndState; // now corrected for 322 EndState = fEndState; // now corrected for smaller step, if needed 323 323 324 #ifdef G4DEBUG_PATHFINDER 324 #ifdef G4DEBUG_PATHFINDER 325 if( fVerboseLevel > 0 ) 325 if( fVerboseLevel > 0 ) 326 { 326 { 327 G4cout << " G4PathFinder::ComputeStep retu 327 G4cout << " G4PathFinder::ComputeStep returns " 328 << fCurrentStepSize[ navigatorNo ] 328 << fCurrentStepSize[ navigatorNo ] 329 << " for Navigator " << navigatorNo 329 << " for Navigator " << navigatorNo 330 << " Limited step = " << limitedSte 330 << " Limited step = " << limitedStep 331 << " Safety(mm) = " << pNewSafety / 331 << " Safety(mm) = " << pNewSafety / mm 332 << G4endl; 332 << G4endl; 333 } 333 } 334 #endif 334 #endif 335 335 336 return possibleStep; 336 return possibleStep; 337 } 337 } 338 338 339 // ------------------------------------------- 339 // ---------------------------------------------------------------------- 340 340 341 void 341 void 342 G4PathFinder::PrepareNewTrack( const G4ThreeVe 342 G4PathFinder::PrepareNewTrack( const G4ThreeVector& position, 343 const G4ThreeVe 343 const G4ThreeVector& direction, 344 G4VPhysicalVolu 344 G4VPhysicalVolume* massStartVol) 345 { 345 { 346 // Key purposes: 346 // Key purposes: 347 // - Check and cache set of active navigat 347 // - Check and cache set of active navigators 348 // - Reset state for new track 348 // - Reset state for new track 349 349 350 G4int num=0; 350 G4int num=0; 351 351 352 EnableParallelNavigation(true); 352 EnableParallelNavigation(true); 353 // Switch PropagatorInField to use MultiNa 353 // Switch PropagatorInField to use MultiNavigator 354 354 355 fpTransportManager->GetSafetyHelper()->Initi 355 fpTransportManager->GetSafetyHelper()->InitialiseHelper(); 356 // Reinitialise state of safety helper -- 356 // Reinitialise state of safety helper -- avoid problems with overlaps 357 357 358 fNewTrack = true; 358 fNewTrack = true; 359 this->MovePoint(); // Signal further that 359 this->MovePoint(); // Signal further that the last status is wiped 360 360 361 fpFieldPropagator->PrepareNewTrack(); // Inf 361 fpFieldPropagator->PrepareNewTrack(); // Inform field propagator of new track 362 362 363 // Message the G4NavigatorPanel / Dispatcher 363 // Message the G4NavigatorPanel / Dispatcher to find active navigators 364 // 364 // 365 std::vector<G4Navigator*>::iterator pNavigat 365 std::vector<G4Navigator*>::iterator pNavigatorIter; 366 366 367 fNoActiveNavigators = (G4int)fpTransportMana << 367 fNoActiveNavigators = fpTransportManager-> GetNoActiveNavigators(); 368 if( fNoActiveNavigators > fMaxNav ) 368 if( fNoActiveNavigators > fMaxNav ) 369 { 369 { 370 std::ostringstream message; 370 std::ostringstream message; 371 message << "Too many active Navigators / w 371 message << "Too many active Navigators / worlds." << G4endl 372 << " Transportation Manager 372 << " Transportation Manager has " 373 << fNoActiveNavigators << " active 373 << fNoActiveNavigators << " active navigators." << G4endl 374 << " This is more than the 374 << " This is more than the number allowed = " 375 << fMaxNav << " !"; 375 << fMaxNav << " !"; 376 G4Exception("G4PathFinder::PrepareNewTrack 376 G4Exception("G4PathFinder::PrepareNewTrack()", "GeomNav0002", 377 FatalException, message); 377 FatalException, message); 378 } 378 } 379 379 380 fpMultiNavigator->PrepareNavigators(); 380 fpMultiNavigator->PrepareNavigators(); 381 //------------------------------------ 381 //------------------------------------ 382 382 383 pNavigatorIter = fpTransportManager->GetActi 383 pNavigatorIter = fpTransportManager->GetActiveNavigatorsIterator(); 384 for( num=0; num< fNoActiveNavigators; ++pNav 384 for( num=0; num< fNoActiveNavigators; ++pNavigatorIter,++num ) 385 { 385 { 386 // Keep information in C-array ... for cr 386 // Keep information in C-array ... for creating touchables - at least 387 // 387 // 388 fpNavigator[num] = *pNavigatorIter; 388 fpNavigator[num] = *pNavigatorIter; 389 fLimitTruth[num] = false; 389 fLimitTruth[num] = false; 390 fLimitedStep[num] = kDoNot; 390 fLimitedStep[num] = kDoNot; 391 fCurrentStepSize[num] = 0.0; 391 fCurrentStepSize[num] = 0.0; 392 fLocatedVolume[num] = nullptr; 392 fLocatedVolume[num] = nullptr; 393 } 393 } 394 fNoGeometriesLimiting = 0; // At start of t 394 fNoGeometriesLimiting = 0; // At start of track, no process limited step 395 395 396 // In case of one geometry, the tracking wil 396 // In case of one geometry, the tracking will have done the locating!! 397 397 398 if( fNoActiveNavigators > 1 ) 398 if( fNoActiveNavigators > 1 ) 399 { 399 { 400 Locate( position, direction, false ); 400 Locate( position, direction, false ); 401 } 401 } 402 else 402 else 403 { 403 { 404 // Update state -- depending on the track 404 // Update state -- depending on the tracking's call to Mass Navigator 405 405 406 fLastLocatedPosition = position; 406 fLastLocatedPosition = position; 407 fLocatedVolume[0] = massStartVol; // This 407 fLocatedVolume[0] = massStartVol; // This information must be given 408 // by t 408 // by transportation 409 fLimitedStep[0] = kDoNot; 409 fLimitedStep[0] = kDoNot; 410 fCurrentStepSize[0] = 0.0; 410 fCurrentStepSize[0] = 0.0; 411 } 411 } 412 412 413 // Reset Safety Information -- as in case of 413 // Reset Safety Information -- as in case of overlaps this can cause 414 // inconsistencies ... 414 // inconsistencies ... 415 // 415 // 416 fMinSafety_PreStepPt = fPreSafetyMinValue = 416 fMinSafety_PreStepPt = fPreSafetyMinValue = fMinSafety_atSafLocation = 0.0; 417 417 418 for( num=0; num<fNoActiveNavigators; ++num ) 418 for( num=0; num<fNoActiveNavigators; ++num ) 419 { 419 { 420 fPreSafetyValues[num] = 0.0; 420 fPreSafetyValues[num] = 0.0; 421 fNewSafetyComputed[num] = 0.0; 421 fNewSafetyComputed[num] = 0.0; 422 fCurrentPreStepSafety[num] = 0.0; 422 fCurrentPreStepSafety[num] = 0.0; 423 } 423 } 424 424 425 // The first location for each Navigator mus 425 // The first location for each Navigator must be non-relative 426 // or else call ResetStackAndState() for eac 426 // or else call ResetStackAndState() for each Navigator 427 427 428 fRelocatedPoint = false; 428 fRelocatedPoint = false; 429 } 429 } 430 430 431 431 432 void G4PathFinder::EndTrack() 432 void G4PathFinder::EndTrack() 433 // Signal end of tracking of current track. 433 // Signal end of tracking of current track. 434 // Reset TransportationManager to use 'ordin 434 // Reset TransportationManager to use 'ordinary' Navigator. 435 // Reset internal state, if needed 435 // Reset internal state, if needed 436 { 436 { 437 EnableParallelNavigation(false); // Else it 437 EnableParallelNavigation(false); // Else it will be continue to be used 438 } 438 } 439 439 440 void G4PathFinder::ReportMove( const G4ThreeVe 440 void G4PathFinder::ReportMove( const G4ThreeVector& OldVector, 441 const G4ThreeVe 441 const G4ThreeVector& NewVector, 442 const G4String& 442 const G4String& Quantity ) const 443 { 443 { 444 G4ThreeVector moveVec = ( NewVector - OldV 444 G4ThreeVector moveVec = ( NewVector - OldVector ); 445 445 446 std::ostringstream message; 446 std::ostringstream message; 447 message.precision(16); 447 message.precision(16); 448 message << "Endpoint moved between value r 448 message << "Endpoint moved between value returned by ComputeStep()" 449 << " and call to Locate(). " << G4 449 << " and call to Locate(). " << G4endl 450 << " Change of " << Quant 450 << " Change of " << Quantity << " is " 451 << moveVec.mag() / mm << " mm long 451 << moveVec.mag() / mm << " mm long" << G4endl 452 << " and its vector is " 452 << " and its vector is " 453 << (1.0/mm) * moveVec << " mm " << 453 << (1.0/mm) * moveVec << " mm " << G4endl 454 << " Endpoint of ComputeS 454 << " Endpoint of ComputeStep() was " << OldVector 455 << G4endl 455 << G4endl 456 << " and current position 456 << " and current position to locate is " << NewVector; 457 G4Exception("G4PathFinder::ReportMove()", 457 G4Exception("G4PathFinder::ReportMove()", "GeomNav1002", 458 JustWarning, message); 458 JustWarning, message); 459 } 459 } 460 460 461 void G4PathFinder::Locate( const G4ThreeVector 461 void G4PathFinder::Locate( const G4ThreeVector& position, 462 const G4ThreeVector 462 const G4ThreeVector& direction, 463 G4bool relati 463 G4bool relative ) 464 { 464 { 465 // Locate the point in each geometry 465 // Locate the point in each geometry 466 466 467 auto pNavIter = fpTransportManager->GetActiv 467 auto pNavIter = fpTransportManager->GetActiveNavigatorsIterator(); 468 468 469 G4ThreeVector lastEndPosition = fRelocatedPo 469 G4ThreeVector lastEndPosition = fRelocatedPoint 470 ? fLastLocated 470 ? fLastLocatedPosition 471 : fEndState.Ge 471 : fEndState.GetPosition(); 472 fLastLocatedPosition = position; 472 fLastLocatedPosition = position; 473 473 474 #ifdef G4DEBUG_PATHFINDER 474 #ifdef G4DEBUG_PATHFINDER 475 static const G4double movLenTol = 10*sqr(kCa 475 static const G4double movLenTol = 10*sqr(kCarTolerance); 476 476 477 G4ThreeVector moveVec = ( position - lastEnd 477 G4ThreeVector moveVec = ( position - lastEndPosition ); 478 G4double moveLenSq = moveVec.mag2(); 478 G4double moveLenSq = moveVec.mag2(); 479 if( (!fNewTrack) && ( moveLenSq > movLenTol 479 if( (!fNewTrack) && ( moveLenSq > movLenTol ) ) 480 { 480 { 481 ReportMove( lastEndPosition, position, 481 ReportMove( lastEndPosition, position, 482 " (End) Position / G4PathFind 482 " (End) Position / G4PathFinder::Locate" ); 483 } 483 } 484 484 485 if( fVerboseLevel > 2 ) 485 if( fVerboseLevel > 2 ) 486 { 486 { 487 G4cout << G4endl; 487 G4cout << G4endl; 488 G4cout << " G4PathFinder::Locate : entered 488 G4cout << " G4PathFinder::Locate : entered " << G4endl; 489 G4cout << " -------------------- ------- 489 G4cout << " -------------------- -------" << G4endl; 490 G4cout << " Locating at position " << po 490 G4cout << " Locating at position " << position 491 << " with direction " << direction 491 << " with direction " << direction 492 << " relative= " << relative << G4 492 << " relative= " << relative << G4endl; 493 if ( (fVerboseLevel > 1) || ( moveLenSq > 493 if ( (fVerboseLevel > 1) || ( moveLenSq > 0.0) ) 494 { 494 { 495 G4cout << " lastEndPosition = " << las 495 G4cout << " lastEndPosition = " << lastEndPosition 496 << " moveVec = " << moveVec 496 << " moveVec = " << moveVec 497 << " newTr = " << fNewTrack 497 << " newTr = " << fNewTrack 498 << " relocated = " << fRelocate 498 << " relocated = " << fRelocatedPoint << G4endl; 499 } 499 } 500 500 501 G4cout << " Located at " << position ; 501 G4cout << " Located at " << position ; 502 if( fNoActiveNavigators > 1 ) { G4cout << 502 if( fNoActiveNavigators > 1 ) { G4cout << G4endl; } 503 } 503 } 504 #endif 504 #endif 505 505 506 for ( auto num=0; num<fNoActiveNavigators ; 506 for ( auto num=0; num<fNoActiveNavigators ; ++pNavIter,++num ) 507 { 507 { 508 // ... who limited the step .... 508 // ... who limited the step .... 509 509 510 if( fLimitTruth[num] ) { (*pNavIter)->Set 510 if( fLimitTruth[num] ) { (*pNavIter)->SetGeometricallyLimitedStep(); } 511 511 512 G4VPhysicalVolume *pLocated= 512 G4VPhysicalVolume *pLocated= 513 (*pNavIter)->LocateGlobalPointAndSetup( p 513 (*pNavIter)->LocateGlobalPointAndSetup( position, &direction, 514 r 514 relative, 515 f 515 false); 516 // Set the state related to the location 516 // Set the state related to the location 517 // 517 // 518 fLocatedVolume[num] = pLocated; 518 fLocatedVolume[num] = pLocated; 519 519 520 // Clear state related to the step 520 // Clear state related to the step 521 // 521 // 522 fLimitedStep[num] = kDoNot; 522 fLimitedStep[num] = kDoNot; 523 fCurrentStepSize[num] = 0.0; 523 fCurrentStepSize[num] = 0.0; 524 524 525 #ifdef G4DEBUG_PATHFINDER 525 #ifdef G4DEBUG_PATHFINDER 526 if( fVerboseLevel > 2 ) 526 if( fVerboseLevel > 2 ) 527 { 527 { 528 G4cout << " - In world " << num << " ge 528 G4cout << " - In world " << num << " geomLimStep= " << fLimitTruth[num] 529 << " gives volume= " << pLocate 529 << " gives volume= " << pLocated ; 530 if( pLocated ) 530 if( pLocated ) 531 { 531 { 532 G4cout << " name = '" << pLocated->G 532 G4cout << " name = '" << pLocated->GetName() << "'"; 533 G4cout << " - CopyNo= " << pLocated-> 533 G4cout << " - CopyNo= " << pLocated->GetCopyNo(); 534 } 534 } 535 G4cout << G4endl; 535 G4cout << G4endl; 536 } 536 } 537 #endif 537 #endif 538 } 538 } 539 539 540 fRelocatedPoint = false; 540 fRelocatedPoint = false; 541 } 541 } 542 542 543 void G4PathFinder::ReLocate( const G4ThreeVect 543 void G4PathFinder::ReLocate( const G4ThreeVector& position ) 544 { 544 { 545 // Locate the point in each geometry 545 // Locate the point in each geometry 546 546 547 auto pNavIter = fpTransportManager->GetActiv << 547 std::vector<G4Navigator*>::iterator pNavIter = >> 548 fpTransportManager->GetActiveNavigatorsIterator(); 548 549 549 #ifdef G4DEBUG_PATHFINDER 550 #ifdef G4DEBUG_PATHFINDER 550 551 551 // Check that this relocation does not viola 552 // Check that this relocation does not violate safety 552 // - at endpoint (computed from start poin 553 // - at endpoint (computed from start point) AND 553 // - at last safety location (likely just 554 // - at last safety location (likely just called) 554 555 555 G4ThreeVector lastEndPosition = fEndState.Ge 556 G4ThreeVector lastEndPosition = fEndState.GetPosition(); 556 557 557 // Calculate end-point safety ... 558 // Calculate end-point safety ... 558 // 559 // 559 G4double DistanceStartEnd = (lastEndPosition 560 G4double DistanceStartEnd = (lastEndPosition - fPreStepLocation).mag(); 560 G4double endPointSafety_raw = fMinSafety_Pre 561 G4double endPointSafety_raw = fMinSafety_PreStepPt - DistanceStartEnd; 561 G4double endPointSafety_Est1 = std::max( 0.0 562 G4double endPointSafety_Est1 = std::max( 0.0, endPointSafety_raw ); 562 563 563 // ... and check move from endpoint against 564 // ... and check move from endpoint against this endpoint safety 564 // 565 // 565 G4ThreeVector moveVecEndPos = position - la 566 G4ThreeVector moveVecEndPos = position - lastEndPosition; 566 G4double moveLenEndPosSq = moveVecEndPo 567 G4double moveLenEndPosSq = moveVecEndPos.mag2(); 567 568 568 // Check that move from endpoint of last ste 569 // Check that move from endpoint of last step is within safety 569 // -- or check against last location or relo 570 // -- or check against last location or relocation ?? 570 // 571 // 571 G4ThreeVector moveVecSafety = position - fSa 572 G4ThreeVector moveVecSafety = position - fSafetyLocation; 572 G4double moveLenSafSq = moveVecSafety.m 573 G4double moveLenSafSq = moveVecSafety.mag2(); 573 574 574 G4double distCheckEnd_sq = ( moveLenEndPosSq 575 G4double distCheckEnd_sq = ( moveLenEndPosSq - endPointSafety_Est1 575 576 *endPointSafety_Est1 ); 576 G4double distCheckSaf_sq = ( moveLenSafSq - 577 G4double distCheckSaf_sq = ( moveLenSafSq - fMinSafety_atSafLocation 577 * 578 *fMinSafety_atSafLocation ); 578 579 579 G4bool longMoveEnd = distCheckEnd_sq > 0.0; 580 G4bool longMoveEnd = distCheckEnd_sq > 0.0; 580 G4bool longMoveSaf = distCheckSaf_sq > 0.0; 581 G4bool longMoveSaf = distCheckSaf_sq > 0.0; 581 582 582 G4double revisedSafety = 0.0; 583 G4double revisedSafety = 0.0; 583 584 584 if( (!fNewTrack) && ( longMoveEnd && longMov 585 if( (!fNewTrack) && ( longMoveEnd && longMoveSaf ) ) 585 { 586 { 586 // Recompute ComputeSafety for end positi 587 // Recompute ComputeSafety for end position 587 // 588 // 588 revisedSafety = ComputeSafety(lastEndPosi 589 revisedSafety = ComputeSafety(lastEndPosition); 589 590 590 const G4double kRadTolerance = 591 const G4double kRadTolerance = 591 G4GeometryTolerance::GetInstance()- 592 G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 592 const G4double cErrorTolerance = 1e-12; 593 const G4double cErrorTolerance = 1e-12; 593 // Maximum relative error from roundoff 594 // Maximum relative error from roundoff of arithmetic 594 595 595 G4double distCheckRevisedEnd = moveLenEnd 596 G4double distCheckRevisedEnd = moveLenEndPosSq - sqr(revisedSafety); 596 597 597 G4bool longMoveRevisedEnd = ( distCheckR 598 G4bool longMoveRevisedEnd = ( distCheckRevisedEnd > 0. ) ; 598 599 599 G4double moveMinusSafety = 0.0; 600 G4double moveMinusSafety = 0.0; 600 G4double moveLenEndPosition = std::sqrt( 601 G4double moveLenEndPosition = std::sqrt( moveLenEndPosSq ); 601 moveMinusSafety = moveLenEndPosition - re 602 moveMinusSafety = moveLenEndPosition - revisedSafety; 602 603 603 if ( longMoveRevisedEnd && ( moveMinusSaf 604 if ( longMoveRevisedEnd && ( moveMinusSafety > 0.0 ) 604 && ( revisedSafet 605 && ( revisedSafety > 0.0 ) ) 605 { 606 { 606 // Take into account possibility of ro 607 // Take into account possibility of roundoff error causing 607 // this apparent move further than saf 608 // this apparent move further than safety 608 609 609 if( fVerboseLevel > 0 ) 610 if( fVerboseLevel > 0 ) 610 { 611 { 611 G4cout << " G4PF:Relocate> Ratio to 612 G4cout << " G4PF:Relocate> Ratio to revised safety is " 612 << std::fabs(moveMinusSafety 613 << std::fabs(moveMinusSafety)/revisedSafety << G4endl; 613 } 614 } 614 615 615 G4double absMoveMinusSafety = std::fab 616 G4double absMoveMinusSafety = std::fabs(moveMinusSafety); 616 G4bool smallRatio = absMoveMinusSafety 617 G4bool smallRatio = absMoveMinusSafety < kRadTolerance * revisedSafety; 617 G4double maxCoordPos = std::max( 618 G4double maxCoordPos = std::max( 618 std::max 619 std::max( std::fabs(position.x()), 619 620 std::fabs(position.y())), 620 std::fab 621 std::fabs(position.z()) ); 621 G4bool smallValue= absMoveMinusSafety 622 G4bool smallValue= absMoveMinusSafety < cErrorTolerance * maxCoordPos; 622 if( !(smallRatio || smallValue) ) 623 if( !(smallRatio || smallValue) ) 623 { 624 { 624 G4cout << " G4PF:Relocate> Ratio to 625 G4cout << " G4PF:Relocate> Ratio to revised safety is " 625 << std::fabs(moveMinusSafety 626 << std::fabs(moveMinusSafety)/revisedSafety << G4endl; 626 G4cout << " Difference of move and 627 G4cout << " Difference of move and safety is not very small." 627 << G4endl; 628 << G4endl; 628 } 629 } 629 else 630 else 630 { 631 { 631 moveMinusSafety = 0.0; 632 moveMinusSafety = 0.0; 632 longMoveRevisedEnd = false; // Num 633 longMoveRevisedEnd = false; // Numerical issue -- not too long! 633 634 634 G4cout << " Difference of move & saf 635 G4cout << " Difference of move & safety is very small in magnitude, " 635 << absMoveMinusSafety << G4en 636 << absMoveMinusSafety << G4endl; 636 if( smallRatio ) 637 if( smallRatio ) 637 { 638 { 638 G4cout << " ratio to safety " << r 639 G4cout << " ratio to safety " << revisedSafety 639 << " is " << absMoveMinusS 640 << " is " << absMoveMinusSafety / revisedSafety 640 << "smaller than " << kRadT 641 << "smaller than " << kRadTolerance << " of safety "; 641 } 642 } 642 else 643 else 643 { 644 { 644 G4cout << " as fraction " << absMo 645 G4cout << " as fraction " << absMoveMinusSafety / maxCoordPos 645 << " of position vector max 646 << " of position vector max-coord " << maxCoordPos 646 << " smaller than " << cErr 647 << " smaller than " << cErrorTolerance ; 647 } 648 } 648 G4cout << " -- reset moveMinusSafety 649 G4cout << " -- reset moveMinusSafety to " 649 << moveMinusSafety << G4endl; 650 << moveMinusSafety << G4endl; 650 } 651 } 651 } 652 } 652 653 653 if ( longMoveEnd && longMoveSaf 654 if ( longMoveEnd && longMoveSaf 654 && longMoveRevisedEnd && (moveMinusSafe 655 && longMoveRevisedEnd && (moveMinusSafety>0.0) ) 655 { 656 { 656 std::ostringstream message; 657 std::ostringstream message; 657 message.precision(9); 658 message.precision(9); 658 message << "ReLocation is further than 659 message << "ReLocation is further than end-safety value." << G4endl 659 << " Moved from last endpoint 660 << " Moved from last endpoint by " << moveLenEndPosition 660 << " compared to end safety (f 661 << " compared to end safety (from preStep point) = " 661 << endPointSafety_Est1 << G4en 662 << endPointSafety_Est1 << G4endl 662 << " --> last PreSafety Locat 663 << " --> last PreSafety Location was " << fPreSafetyLocation 663 << G4endl 664 << G4endl 664 << " safety value = " < 665 << " safety value = " << fPreSafetyMinValue << G4endl 665 << " --> last PreStep Locatio 666 << " --> last PreStep Location was " << fPreStepLocation 666 << G4endl 667 << G4endl 667 << " safety value = " < 668 << " safety value = " << fMinSafety_PreStepPt << G4endl 668 << " --> last EndStep Locatio 669 << " --> last EndStep Location was " << lastEndPosition 669 << G4endl 670 << G4endl 670 << " safety value = " < 671 << " safety value = " << endPointSafety_Est1 671 << " raw-value = " << endPoint 672 << " raw-value = " << endPointSafety_raw << G4endl 672 << " --> Calling again at thi 673 << " --> Calling again at this endpoint, we get " 673 << revisedSafety << " as safe 674 << revisedSafety << " as safety value." << G4endl 674 << " --> last position for sa 675 << " --> last position for safety " << fSafetyLocation 675 << G4endl 676 << G4endl 676 << " its safety value = 677 << " its safety value = " << fMinSafety_atSafLocation 677 << G4endl 678 << G4endl 678 << " move from safety lo 679 << " move from safety location = " 679 << std::sqrt(moveLenSafSq) << 680 << std::sqrt(moveLenSafSq) << G4endl 680 << " again= " << moveV 681 << " again= " << moveVecSafety.mag() << G4endl 681 << " safety - Move-from- 682 << " safety - Move-from-end= " 682 << revisedSafety - moveLenEndP 683 << revisedSafety - moveLenEndPosition 683 << " (negative is Bad.)" << G4 684 << " (negative is Bad.)" << G4endl 684 << " Debug: distCheckRevisedE 685 << " Debug: distCheckRevisedEnd = " 685 << distCheckRevisedEnd; 686 << distCheckRevisedEnd; 686 ReportMove( lastEndPosition, position, 687 ReportMove( lastEndPosition, position, "Position" ); 687 G4Exception("G4PathFinder::ReLocate", 688 G4Exception("G4PathFinder::ReLocate", "GeomNav0003", 688 FatalException, message); 689 FatalException, message); 689 } 690 } 690 } 691 } 691 692 692 if( fVerboseLevel > 2 ) 693 if( fVerboseLevel > 2 ) 693 { 694 { 694 G4cout << G4endl; 695 G4cout << G4endl; 695 G4cout << " G4PathFinder::ReLocate : enter 696 G4cout << " G4PathFinder::ReLocate : entered " << G4endl; 696 G4cout << " ---------------------- ----- 697 G4cout << " ---------------------- -------" << G4endl; 697 G4cout << " *Re*Locating at position " << 698 G4cout << " *Re*Locating at position " << position << G4endl; 698 if ( (fVerboseLevel > -1) || ( moveLenEndP 699 if ( (fVerboseLevel > -1) || ( moveLenEndPosSq > 0.0) ) 699 { 700 { 700 G4cout << " lastEndPosition = " << las 701 G4cout << " lastEndPosition = " << lastEndPosition 701 << " moveVec from step-end = " 702 << " moveVec from step-end = " << moveVecEndPos 702 << " is new Track = " << fNewTr 703 << " is new Track = " << fNewTrack 703 << " relocated = " << fRelocate 704 << " relocated = " << fRelocatedPoint << G4endl; 704 } 705 } 705 } 706 } 706 #endif // G4DEBUG_PATHFINDER 707 #endif // G4DEBUG_PATHFINDER 707 708 708 for ( auto num=0; num< fNoActiveNavigators ; 709 for ( auto num=0; num< fNoActiveNavigators ; ++pNavIter,++num ) 709 { 710 { 710 // ... none limited the step 711 // ... none limited the step 711 712 712 (*pNavIter)->LocateGlobalPointWithinVolum 713 (*pNavIter)->LocateGlobalPointWithinVolume( position ); 713 714 714 // Clear state related to the step 715 // Clear state related to the step 715 // 716 // 716 fLimitedStep[num] = kDoNot; 717 fLimitedStep[num] = kDoNot; 717 fCurrentStepSize[num] = 0.0; 718 fCurrentStepSize[num] = 0.0; 718 fLimitTruth[num] = false; 719 fLimitTruth[num] = false; 719 } 720 } 720 721 721 fLastLocatedPosition = position; 722 fLastLocatedPosition = position; 722 fRelocatedPoint = true; 723 fRelocatedPoint = true; 723 724 724 #ifdef G4DEBUG_PATHFINDER 725 #ifdef G4DEBUG_PATHFINDER 725 if( fVerboseLevel > 2 ) 726 if( fVerboseLevel > 2 ) 726 { 727 { 727 G4cout << " G4PathFinder::ReLocate : exiti 728 G4cout << " G4PathFinder::ReLocate : exiting " 728 << " at position " << fLastLocated 729 << " at position " << fLastLocatedPosition << G4endl << G4endl; 729 } 730 } 730 #endif 731 #endif 731 } 732 } 732 733 733 // ------------------------------------------- 734 // ----------------------------------------------------------------------------- 734 735 735 G4double G4PathFinder::ComputeSafety( const G 736 G4double G4PathFinder::ComputeSafety( const G4ThreeVector& position ) 736 { 737 { 737 // Recompute safety for the relevant point 738 // Recompute safety for the relevant point 738 739 739 G4double minSafety = kInfinity; 740 G4double minSafety = kInfinity; 740 741 741 std::vector<G4Navigator*>::iterator pNaviga 742 std::vector<G4Navigator*>::iterator pNavigatorIter; 742 pNavigatorIter = fpTransportManager->GetAct 743 pNavigatorIter = fpTransportManager->GetActiveNavigatorsIterator(); 743 744 744 for( auto num=0; num<fNoActiveNavigators; + 745 for( auto num=0; num<fNoActiveNavigators; ++pNavigatorIter,++num ) 745 { 746 { 746 G4double safety = (*pNavigatorIter)->Com 747 G4double safety = (*pNavigatorIter)->ComputeSafety(position,DBL_MAX,true); 747 if( safety < minSafety ) { minSafety = s 748 if( safety < minSafety ) { minSafety = safety; } 748 fNewSafetyComputed[num] = safety; 749 fNewSafetyComputed[num] = safety; 749 } 750 } 750 751 751 fSafetyLocation = position; 752 fSafetyLocation = position; 752 fMinSafety_atSafLocation = minSafety; 753 fMinSafety_atSafLocation = minSafety; 753 754 754 #ifdef G4DEBUG_PATHFINDER 755 #ifdef G4DEBUG_PATHFINDER 755 if( fVerboseLevel > 1 ) 756 if( fVerboseLevel > 1 ) 756 { 757 { 757 G4cout << " G4PathFinder::ComputeSafety - 758 G4cout << " G4PathFinder::ComputeSafety - returns " 758 << minSafety << " at location " << 759 << minSafety << " at location " << position << G4endl; 759 } 760 } 760 #endif 761 #endif 761 return minSafety; 762 return minSafety; 762 } 763 } 763 764 764 765 765 // ------------------------------------------- 766 // ----------------------------------------------------------------------------- 766 767 767 G4TouchableHandle 768 G4TouchableHandle 768 G4PathFinder::CreateTouchableHandle( G4int nav 769 G4PathFinder::CreateTouchableHandle( G4int navId ) const 769 { 770 { 770 #ifdef G4DEBUG_PATHFINDER 771 #ifdef G4DEBUG_PATHFINDER 771 if( fVerboseLevel > 2 ) 772 if( fVerboseLevel > 2 ) 772 { 773 { 773 G4cout << "G4PathFinder::CreateTouchableHa 774 G4cout << "G4PathFinder::CreateTouchableHandle : navId = " 774 << navId << " -- " << GetNavigator( 775 << navId << " -- " << GetNavigator(navId) << G4endl; 775 } 776 } 776 #endif 777 #endif 777 778 778 G4TouchableHistory* touchHist; 779 G4TouchableHistory* touchHist; 779 touchHist = GetNavigator(navId)->CreateTouch 780 touchHist = GetNavigator(navId)->CreateTouchableHistory(); 780 781 781 G4VPhysicalVolume* locatedVolume = fLocatedV 782 G4VPhysicalVolume* locatedVolume = fLocatedVolume[navId]; 782 if( locatedVolume == nullptr ) 783 if( locatedVolume == nullptr ) 783 { 784 { 784 // Workaround to ensure that the touchabl 785 // Workaround to ensure that the touchable is fixed !! // TODO: fix 785 786 786 touchHist->UpdateYourself( locatedVolume, 787 touchHist->UpdateYourself( locatedVolume, touchHist->GetHistory() ); 787 } 788 } 788 789 789 #ifdef G4DEBUG_PATHFINDER 790 #ifdef G4DEBUG_PATHFINDER 790 if( fVerboseLevel > 2 ) 791 if( fVerboseLevel > 2 ) 791 { 792 { 792 G4String VolumeName("None"); 793 G4String VolumeName("None"); 793 if( locatedVolume ) { VolumeName = located 794 if( locatedVolume ) { VolumeName = locatedVolume->GetName(); } 794 G4cout << " Touchable History created at a 795 G4cout << " Touchable History created at address " << touchHist 795 << "; volume = " << locatedVolume < 796 << "; volume = " << locatedVolume << "; name= " << VolumeName 796 << G4endl; 797 << G4endl; 797 } 798 } 798 #endif 799 #endif 799 800 800 return {touchHist}; << 801 return G4TouchableHandle(touchHist); 801 } 802 } 802 803 803 G4double 804 G4double 804 G4PathFinder::DoNextLinearStep( const G4FieldT 805 G4PathFinder::DoNextLinearStep( const G4FieldTrack& initialState, 805 G4double 806 G4double proposedStepLength ) 806 { 807 { 807 std::vector<G4Navigator*>::iterator pNavigat 808 std::vector<G4Navigator*>::iterator pNavigatorIter; 808 G4double safety = 0.0, step =0.0; 809 G4double safety = 0.0, step =0.0; 809 G4double minSafety = kInfinity, minStep = kI 810 G4double minSafety = kInfinity, minStep = kInfinity; 810 811 811 const G4int IdTransport = 0; // Id of Mass 812 const G4int IdTransport = 0; // Id of Mass Navigator !! 812 G4int num = 0; 813 G4int num = 0; 813 814 814 #ifdef G4DEBUG_PATHFINDER 815 #ifdef G4DEBUG_PATHFINDER 815 if( fVerboseLevel > 2 ) 816 if( fVerboseLevel > 2 ) 816 { 817 { 817 G4cout << " G4PathFinder::DoNextLinearStep 818 G4cout << " G4PathFinder::DoNextLinearStep : entered " << G4endl; 818 G4cout << " Input field track= " << init 819 G4cout << " Input field track= " << initialState << G4endl; 819 G4cout << " Requested step= " << propose 820 G4cout << " Requested step= " << proposedStepLength << G4endl; 820 } 821 } 821 #endif 822 #endif 822 823 823 G4ThreeVector initialPosition = initialState 824 G4ThreeVector initialPosition = initialState.GetPosition(); 824 G4ThreeVector initialDirection = initialStat 825 G4ThreeVector initialDirection = initialState.GetMomentumDirection(); 825 826 826 G4ThreeVector OriginShift = initialPosition 827 G4ThreeVector OriginShift = initialPosition - fPreSafetyLocation; 827 G4double MagSqShift = OriginShift.mag2 828 G4double MagSqShift = OriginShift.mag2() ; 828 G4double MagShift; // Only given value 829 G4double MagShift; // Only given value if it larger than minimum safety 829 830 830 // Potential optimisation using Maximum Valu 831 // Potential optimisation using Maximum Value of safety! 831 // if( MagSqShift >= sqr(fPreSafetyMaxValue 832 // if( MagSqShift >= sqr(fPreSafetyMaxValue ) ){ 832 // MagShift= kInfinity; // Not a useful 833 // MagShift= kInfinity; // Not a useful value -- all will not use/ignore 833 // else 834 // else 834 // MagShift= std::sqrt(MagSqShift) ; 835 // MagShift= std::sqrt(MagSqShift) ; 835 836 836 MagShift= std::sqrt(MagSqShift) ; 837 MagShift= std::sqrt(MagSqShift) ; 837 838 838 #ifdef G4PATHFINDER_OPTIMISATION 839 #ifdef G4PATHFINDER_OPTIMISATION 839 840 840 G4double fullSafety; // For all geometries, 841 G4double fullSafety; // For all geometries, for prestep point 841 842 842 if( MagSqShift >= sqr(fPreSafetyMinValue) ) 843 if( MagSqShift >= sqr(fPreSafetyMinValue) ) 843 { 844 { 844 fullSafety = 0.0 ; 845 fullSafety = 0.0 ; 845 } 846 } 846 else 847 else 847 { 848 { 848 fullSafety = fPreSafetyMinValue - MagShif 849 fullSafety = fPreSafetyMinValue - MagShift; 849 } 850 } 850 if( proposedStepLength < fullSafety ) 851 if( proposedStepLength < fullSafety ) 851 { 852 { 852 // Move is smaller than all safeties 853 // Move is smaller than all safeties 853 // -> so we do not have to move the safe 854 // -> so we do not have to move the safety center 854 855 855 fPreStepCenterRenewed = false; 856 fPreStepCenterRenewed = false; 856 857 857 for( num=0; num< fNoActiveNavigators; ++n 858 for( num=0; num< fNoActiveNavigators; ++num ) 858 { 859 { 859 fCurrentStepSize[num] = kInfinity; 860 fCurrentStepSize[num] = kInfinity; 860 safety = std::max( 0.0, fPreSafetyVal 861 safety = std::max( 0.0, fPreSafetyValues[num] - MagShift); 861 minSafety= std::min( safety, minSafety 862 minSafety= std::min( safety, minSafety ); 862 fCurrentPreStepSafety[num] = safety; 863 fCurrentPreStepSafety[num] = safety; 863 } 864 } 864 minStep = kInfinity; 865 minStep = kInfinity; 865 866 866 #ifdef G4DEBUG_PATHFINDER 867 #ifdef G4DEBUG_PATHFINDER 867 if( fVerboseLevel > 2 ) 868 if( fVerboseLevel > 2 ) 868 { 869 { 869 G4cout << "G4PathFinder::DoNextLinearSt 870 G4cout << "G4PathFinder::DoNextLinearStep : Quick Stepping. " << G4endl 870 << " proposedStepLength " << p 871 << " proposedStepLength " << proposedStepLength 871 << " < (full) safety = " << ful 872 << " < (full) safety = " << fullSafety 872 << " at " << initialPosition 873 << " at " << initialPosition 873 << G4endl; 874 << G4endl; 874 } 875 } 875 #endif 876 #endif 876 } 877 } 877 else 878 else 878 #endif // End of G4PATHFINDER_OPTIMISATION 1 879 #endif // End of G4PATHFINDER_OPTIMISATION 1 879 { 880 { 880 // Move is larger than at least one of th 881 // Move is larger than at least one of the safeties 881 // -> so we must move the safety center! 882 // -> so we must move the safety center! 882 883 883 fPreStepCenterRenewed = true; 884 fPreStepCenterRenewed = true; 884 pNavigatorIter = fpTransportManager-> Get 885 pNavigatorIter = fpTransportManager-> GetActiveNavigatorsIterator(); 885 886 886 minStep = kInfinity; // Not proposedStep 887 minStep = kInfinity; // Not proposedStepLength; 887 888 888 for( num=0; num< fNoActiveNavigators; ++p 889 for( num=0; num< fNoActiveNavigators; ++pNavigatorIter,++num ) 889 { 890 { 890 safety = std::max( 0.0, fPreSafetyVal 891 safety = std::max( 0.0, fPreSafetyValues[num] - MagShift); 891 892 892 #ifdef G4PATHFINDER_OPTIMISATION 893 #ifdef G4PATHFINDER_OPTIMISATION 893 if( proposedStepLength <= safety ) // 894 if( proposedStepLength <= safety ) // Should be just < safety ? 894 { 895 { 895 // The Step is guaranteed to be tak 896 // The Step is guaranteed to be taken 896 897 897 step = kInfinity; // ComputeSte 898 step = kInfinity; // ComputeStep Would return this 898 899 899 #ifdef G4DEBUG_PATHFINDER 900 #ifdef G4DEBUG_PATHFINDER 900 G4cout.precision(8); 901 G4cout.precision(8); 901 G4cout << "PathFinder::ComputeStep> 902 G4cout << "PathFinder::ComputeStep> small proposed step = " 902 << proposedStepLength 903 << proposedStepLength 903 << " <= safety = " << safet 904 << " <= safety = " << safety << " for nav " << num 904 << " Step fully taken. " << 905 << " Step fully taken. " << G4endl; 905 #endif 906 #endif 906 } 907 } 907 else 908 else 908 #endif // End of G4PATHFINDER_OPTIMISATION 2 909 #endif // End of G4PATHFINDER_OPTIMISATION 2 909 { 910 { 910 #ifdef G4DEBUG_PATHFINDER 911 #ifdef G4DEBUG_PATHFINDER 911 G4double previousSafety = safety; 912 G4double previousSafety = safety; 912 #endif 913 #endif 913 step = (*pNavigatorIter)->ComputeSt 914 step = (*pNavigatorIter)->ComputeStep( initialPosition, 914 915 initialDirection, 915 916 proposedStepLength, 916 917 safety ); 917 minStep = std::min(step, minStep); 918 minStep = std::min(step, minStep); // OLD ==> can be 'logical' 918 919 // value, ie. kInfinity 919 920 920 #ifdef G4DEBUG_PATHFINDER 921 #ifdef G4DEBUG_PATHFINDER 921 if( fVerboseLevel > 0) 922 if( fVerboseLevel > 0) 922 { 923 { 923 G4cout.precision(8); 924 G4cout.precision(8); 924 G4cout << "PathFinder::ComputeSte 925 G4cout << "PathFinder::ComputeStep> long proposed step = " 925 << proposedStepLength 926 << proposedStepLength 926 << " > safety = " << pre 927 << " > safety = " << previousSafety 927 << " for nav " << num 928 << " for nav " << num 928 << " . New safety = " << 929 << " . New safety = " << safety << " step= " << step 929 << G4endl; 930 << G4endl; 930 } 931 } 931 #endif 932 #endif 932 } 933 } 933 fCurrentStepSize[num] = step; // Raw 934 fCurrentStepSize[num] = step; // Raw value - can be kInfinity 934 935 935 // TODO: consider whether/how to r 936 // TODO: consider whether/how to reduce the proposed step 936 // to the latest minStep val 937 // to the latest minStep value - to reduce calculations. 937 // ( If so, much change 1st 938 // ( If so, much change 1st minimum above. ) 938 939 939 // Save safety value, must be done for 940 // Save safety value, must be done for all geometries "together" 940 // (even if not recomputed using call 941 // (even if not recomputed using call to ComputeStep) 941 // since they share the fPreSafetyLoca 942 // since they share the fPreSafetyLocation 942 943 943 fPreSafetyValues[num] = safety; 944 fPreSafetyValues[num] = safety; 944 fCurrentPreStepSafety[num] = safety; 945 fCurrentPreStepSafety[num] = safety; 945 946 946 minSafety = std::min( safety, minSafet 947 minSafety = std::min( safety, minSafety ); 947 948 948 #ifdef G4DEBUG_PATHFINDER 949 #ifdef G4DEBUG_PATHFINDER 949 if( fVerboseLevel > 2 ) 950 if( fVerboseLevel > 2 ) 950 { 951 { 951 G4cout << "G4PathFinder::DoNextLinea 952 G4cout << "G4PathFinder::DoNextLinearStep : Navigator [" 952 << num << "] -- step size " < 953 << num << "] -- step size " << step << G4endl; 953 } 954 } 954 #endif 955 #endif 955 } 956 } 956 957 957 // Only change these when safety is recal 958 // Only change these when safety is recalculated 958 // it is good/relevant only for safety ca 959 // it is good/relevant only for safety calculations 959 960 960 fPreSafetyLocation = initialPosition; 961 fPreSafetyLocation = initialPosition; 961 fPreSafetyMinValue = minSafety; 962 fPreSafetyMinValue = minSafety; 962 } // end of else for if( proposedStepLength 963 } // end of else for if( proposedStepLength <= fullSafety) 963 964 964 // For use in Relocation, need PreStep point 965 // For use in Relocation, need PreStep point location, min-safety 965 // 966 // 966 fPreStepLocation = initialPosition; 967 fPreStepLocation = initialPosition; 967 fMinSafety_PreStepPt = minSafety; 968 fMinSafety_PreStepPt = minSafety; 968 969 969 fMinStep = minStep; 970 fMinStep = minStep; 970 971 971 if( fMinStep == kInfinity ) 972 if( fMinStep == kInfinity ) 972 { 973 { 973 minStep = proposedStepLength; // Use t 974 minStep = proposedStepLength; // Use this below for endpoint !! 974 } 975 } 975 fTrueMinStep = minStep; 976 fTrueMinStep = minStep; 976 977 977 // Set the EndState 978 // Set the EndState 978 979 979 G4ThreeVector endPosition; 980 G4ThreeVector endPosition; 980 981 981 fEndState = initialState; 982 fEndState = initialState; 982 endPosition = initialPosition + minStep * in 983 endPosition = initialPosition + minStep * initialDirection ; 983 984 984 #ifdef G4DEBUG_PATHFINDER 985 #ifdef G4DEBUG_PATHFINDER 985 if( fVerboseLevel > 1 ) 986 if( fVerboseLevel > 1 ) 986 { 987 { 987 G4int oldPrec= G4cout.precision(14); 988 G4int oldPrec= G4cout.precision(14); 988 G4cout << "G4PathFinder::DoNextLinearStep 989 G4cout << "G4PathFinder::DoNextLinearStep : " 989 << " initialPosition = " << initial 990 << " initialPosition = " << initialPosition 990 << " and endPosition = " << endPosi 991 << " and endPosition = " << endPosition<< G4endl; 991 G4cout.precision(oldPrec); 992 G4cout.precision(oldPrec); 992 } 993 } 993 #endif 994 #endif 994 995 995 fEndState.SetPosition( endPosition ); 996 fEndState.SetPosition( endPosition ); 996 fEndState.SetProperTimeOfFlight( -1.000 ); 997 fEndState.SetProperTimeOfFlight( -1.000 ); // Not defined YET 997 998 998 if( fNoActiveNavigators == 1 ) 999 if( fNoActiveNavigators == 1 ) 999 { 1000 { 1000 G4bool transportLimited = (fMinStep!= kI 1001 G4bool transportLimited = (fMinStep!= kInfinity); 1001 fLimitTruth[IdTransport] = transportLimi 1002 fLimitTruth[IdTransport] = transportLimited; 1002 fLimitedStep[IdTransport] = transportLim 1003 fLimitedStep[IdTransport] = transportLimited ? kUnique : kDoNot; 1003 1004 1004 // Set fNoGeometriesLimiting - as WhichL 1005 // Set fNoGeometriesLimiting - as WhichLimited does 1005 fNoGeometriesLimiting = transportLimited 1006 fNoGeometriesLimiting = transportLimited ? 1 : 0; 1006 } 1007 } 1007 else 1008 else 1008 { 1009 { 1009 WhichLimited(); 1010 WhichLimited(); 1010 } 1011 } 1011 1012 1012 #ifdef G4DEBUG_PATHFINDER 1013 #ifdef G4DEBUG_PATHFINDER 1013 if( fVerboseLevel > 2 ) 1014 if( fVerboseLevel > 2 ) 1014 { 1015 { 1015 G4cout << " G4PathFinder::DoNextLinearSte 1016 G4cout << " G4PathFinder::DoNextLinearStep : exits returning " 1016 << minStep << G4endl; 1017 << minStep << G4endl; 1017 G4cout << " - Endpoint values = " << fEnd 1018 G4cout << " - Endpoint values = " << fEndState << G4endl; 1018 G4cout << G4endl; 1019 G4cout << G4endl; 1019 } 1020 } 1020 #endif 1021 #endif 1021 1022 1022 return minStep; 1023 return minStep; 1023 } 1024 } 1024 1025 1025 void G4PathFinder::WhichLimited() 1026 void G4PathFinder::WhichLimited() 1026 { 1027 { 1027 // Flag which processes limited the step 1028 // Flag which processes limited the step 1028 1029 1029 G4int num = -1, last = -1; 1030 G4int num = -1, last = -1; 1030 G4int noLimited = 0; 1031 G4int noLimited = 0; 1031 ELimited shared = kSharedOther; 1032 ELimited shared = kSharedOther; 1032 1033 1033 const G4int IdTransport = 0; // Id of Mass 1034 const G4int IdTransport = 0; // Id of Mass Navigator !! 1034 1035 1035 // Assume that [IdTransport] is Mass / Tran 1036 // Assume that [IdTransport] is Mass / Transport 1036 // 1037 // 1037 G4bool transportLimited = (fCurrentStepSize 1038 G4bool transportLimited = (fCurrentStepSize[IdTransport] == fMinStep) 1038 && (fMinStep != kInf 1039 && (fMinStep != kInfinity); 1039 1040 1040 if( transportLimited ) 1041 if( transportLimited ) 1041 { 1042 { 1042 shared= kSharedTransport; 1043 shared= kSharedTransport; 1043 } 1044 } 1044 1045 1045 for ( num = 0; num < fNoActiveNavigators; + 1046 for ( num = 0; num < fNoActiveNavigators; ++num ) 1046 { 1047 { 1047 G4bool limitedStep; 1048 G4bool limitedStep; 1048 1049 1049 G4double step = fCurrentStepSize[num]; 1050 G4double step = fCurrentStepSize[num]; 1050 1051 1051 limitedStep = ( std::fabs(step - fMinStep 1052 limitedStep = ( std::fabs(step - fMinStep) < kCarTolerance ) 1052 && ( step != kInfinity); 1053 && ( step != kInfinity); 1053 1054 1054 fLimitTruth[ num ] = limitedStep; 1055 fLimitTruth[ num ] = limitedStep; 1055 if( limitedStep ) 1056 if( limitedStep ) 1056 { 1057 { 1057 ++noLimited; 1058 ++noLimited; 1058 fLimitedStep[num] = shared; 1059 fLimitedStep[num] = shared; 1059 last= num; 1060 last= num; 1060 } 1061 } 1061 else 1062 else 1062 { 1063 { 1063 fLimitedStep[num] = kDoNot; 1064 fLimitedStep[num] = kDoNot; 1064 } 1065 } 1065 } 1066 } 1066 fNoGeometriesLimiting= noLimited; // Save 1067 fNoGeometriesLimiting= noLimited; // Save # processes limiting step 1067 1068 1068 if( (last > -1) && (noLimited == 1 ) ) 1069 if( (last > -1) && (noLimited == 1 ) ) 1069 { 1070 { 1070 fLimitedStep[ last ] = kUnique; 1071 fLimitedStep[ last ] = kUnique; 1071 } 1072 } 1072 1073 1073 #ifdef G4DEBUG_PATHFINDER 1074 #ifdef G4DEBUG_PATHFINDER 1074 if( fVerboseLevel > 1 ) 1075 if( fVerboseLevel > 1 ) 1075 { 1076 { 1076 PrintLimited(); // --> for tracing 1077 PrintLimited(); // --> for tracing 1077 if( fVerboseLevel > 4 ) 1078 if( fVerboseLevel > 4 ) 1078 { 1079 { 1079 G4cout << " G4PathFinder::WhichLimited 1080 G4cout << " G4PathFinder::WhichLimited - exiting. " << G4endl; 1080 } 1081 } 1081 } 1082 } 1082 #endif 1083 #endif 1083 } 1084 } 1084 1085 1085 void G4PathFinder::PrintLimited() 1086 void G4PathFinder::PrintLimited() 1086 { 1087 { 1087 // Report results -- for checking 1088 // Report results -- for checking 1088 1089 1089 G4cout << "G4PathFinder::PrintLimited repor 1090 G4cout << "G4PathFinder::PrintLimited reports: " ; 1090 G4cout << " Minimum step (true)= " << fTru 1091 G4cout << " Minimum step (true)= " << fTrueMinStep 1091 << " reported min = " << fMinStep 1092 << " reported min = " << fMinStep 1092 << G4endl; 1093 << G4endl; 1093 if( (fCurrentStepNo <= 2) || (fVerboseLeve 1094 if( (fCurrentStepNo <= 2) || (fVerboseLevel>=2) ) 1094 { 1095 { 1095 G4cout << std::setw(5) << " Step#" << " 1096 G4cout << std::setw(5) << " Step#" << " " 1096 << std::setw(5) << " NavId" << " 1097 << std::setw(5) << " NavId" << " " 1097 << std::setw(12) << " step-size " 1098 << std::setw(12) << " step-size " << " " 1098 << std::setw(12) << " raw-size " 1099 << std::setw(12) << " raw-size " << " " 1099 << std::setw(12) << " pre-safety " 1100 << std::setw(12) << " pre-safety " << " " 1100 << std::setw(15) << " Limited / fl 1101 << std::setw(15) << " Limited / flag" << " " 1101 << std::setw(15) << " World " << 1102 << std::setw(15) << " World " << " " 1102 << G4endl; 1103 << G4endl; 1103 } 1104 } 1104 for ( auto num = 0; num < fNoActiveNavigato 1105 for ( auto num = 0; num < fNoActiveNavigators; ++num ) 1105 { 1106 { 1106 G4double rawStep = fCurrentStepSize[num]; 1107 G4double rawStep = fCurrentStepSize[num]; 1107 G4double stepLen = fCurrentStepSize[num]; 1108 G4double stepLen = fCurrentStepSize[num]; 1108 if( stepLen > fTrueMinStep ) 1109 if( stepLen > fTrueMinStep ) 1109 { 1110 { 1110 stepLen = fTrueMinStep; // did not 1111 stepLen = fTrueMinStep; // did not limit (went as far as asked) 1111 } 1112 } 1112 G4long oldPrec = G4cout.precision(9); << 1113 G4int oldPrec = G4cout.precision(9); 1113 1114 1114 G4cout << std::setw(5) << fCurrentStepNo 1115 G4cout << std::setw(5) << fCurrentStepNo << " " 1115 << std::setw(5) << num << " " 1116 << std::setw(5) << num << " " 1116 << std::setw(12) << stepLen << " " 1117 << std::setw(12) << stepLen << " " 1117 << std::setw(12) << rawStep << " " 1118 << std::setw(12) << rawStep << " " 1118 << std::setw(12) << fCurrentPreSte 1119 << std::setw(12) << fCurrentPreStepSafety[num] << " " 1119 << std::setw(5) << (fLimitTruth[nu 1120 << std::setw(5) << (fLimitTruth[num] ? "YES" : " NO") << " "; 1120 G4String limitedStr= LimitedString(fLimit 1121 G4String limitedStr= LimitedString(fLimitedStep[num]); 1121 G4cout << " " << std::setw(15) << limited 1122 G4cout << " " << std::setw(15) << limitedStr << " "; 1122 G4cout.precision(oldPrec); 1123 G4cout.precision(oldPrec); 1123 1124 1124 G4Navigator* pNav = GetNavigator( num ); 1125 G4Navigator* pNav = GetNavigator( num ); 1125 G4String WorldName( "Not-Set" ); 1126 G4String WorldName( "Not-Set" ); 1126 if (pNav != nullptr) 1127 if (pNav != nullptr) 1127 { 1128 { 1128 G4VPhysicalVolume *pWorld = pNav->GetW 1129 G4VPhysicalVolume *pWorld = pNav->GetWorldVolume(); 1129 if( pWorld != nullptr ) << 1130 if( pWorld ) 1130 { 1131 { 1131 WorldName = pWorld->GetName(); 1132 WorldName = pWorld->GetName(); 1132 } 1133 } 1133 } 1134 } 1134 G4cout << " " << WorldName ; 1135 G4cout << " " << WorldName ; 1135 G4cout << G4endl; 1136 G4cout << G4endl; 1136 } 1137 } 1137 1138 1138 if( fVerboseLevel > 4 ) 1139 if( fVerboseLevel > 4 ) 1139 { 1140 { 1140 G4cout << " G4PathFinder::PrintLimited - 1141 G4cout << " G4PathFinder::PrintLimited - exiting. " << G4endl; 1141 } 1142 } 1142 } 1143 } 1143 1144 1144 G4double 1145 G4double 1145 G4PathFinder::DoNextCurvedStep( const G4Field 1146 G4PathFinder::DoNextCurvedStep( const G4FieldTrack &initialState, 1146 G4doubl 1147 G4double proposedStepLength, 1147 G4VPhysicalVo 1148 G4VPhysicalVolume* pCurrentPhysicalVolume ) 1148 { 1149 { 1149 const G4double toleratedRelativeError = 1.0 1150 const G4double toleratedRelativeError = 1.0e-10; 1150 G4double minStep= kInfinity, newSafety = 0. 1151 G4double minStep= kInfinity, newSafety = 0.0; 1151 G4int numNav; 1152 G4int numNav; 1152 G4FieldTrack fieldTrack = initialState; 1153 G4FieldTrack fieldTrack = initialState; 1153 G4ThreeVector startPoint = initialState.Get 1154 G4ThreeVector startPoint = initialState.GetPosition(); 1154 1155 1155 1156 1156 G4EquationOfMotion* equationOfMotion = 1157 G4EquationOfMotion* equationOfMotion = 1157 fpFieldPropagator->GetCurrentEquationOfM 1158 fpFieldPropagator->GetCurrentEquationOfMotion(); 1158 1159 1159 equationOfMotion->SetChargeMomentumMass( *( 1160 equationOfMotion->SetChargeMomentumMass( *(initialState.GetChargeState()), 1160 in 1161 initialState.GetMomentum().mag(), 1161 in 1162 initialState.GetRestMass() ); 1162 1163 1163 #ifdef G4DEBUG_PATHFINDER 1164 #ifdef G4DEBUG_PATHFINDER 1164 G4int prc = G4cout.precision(9); 1165 G4int prc = G4cout.precision(9); 1165 if( fVerboseLevel > 2 ) 1166 if( fVerboseLevel > 2 ) 1166 { 1167 { 1167 G4cout << " G4PathFinder::DoNextCurvedSte 1168 G4cout << " G4PathFinder::DoNextCurvedStep ****** " << G4endl; 1168 G4cout << " Initial value of field track 1169 G4cout << " Initial value of field track is " << fieldTrack 1169 << " and proposed step= " << propo 1170 << " and proposed step= " << proposedStepLength << G4endl; 1170 } 1171 } 1171 #endif 1172 #endif 1172 1173 1173 fPreStepCenterRenewed = true; // Always upd 1174 fPreStepCenterRenewed = true; // Always update PreSafety with PreStep point 1174 1175 1175 if( fNoActiveNavigators > 1 ) 1176 if( fNoActiveNavigators > 1 ) 1176 { 1177 { 1177 // Calculate the safety values before ma 1178 // Calculate the safety values before making the step 1178 1179 1179 G4double minSafety= kInfinity, safety; 1180 G4double minSafety= kInfinity, safety; 1180 for( numNav=0; numNav < fNoActiveNavigat 1181 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1181 { 1182 { 1182 safety= fpNavigator[numNav]->ComputeS 1183 safety= fpNavigator[numNav]->ComputeSafety( startPoint,DBL_MAX,false ); 1183 fPreSafetyValues[numNav] = safety; 1184 fPreSafetyValues[numNav] = safety; 1184 fCurrentPreStepSafety[numNav] = safet 1185 fCurrentPreStepSafety[numNav] = safety; 1185 minSafety = std::min( safety, minSafe 1186 minSafety = std::min( safety, minSafety ); 1186 } 1187 } 1187 1188 1188 // Save safety value, related position 1189 // Save safety value, related position 1189 1190 1190 fPreSafetyLocation = startPoint; 1191 fPreSafetyLocation = startPoint; 1191 fPreSafetyMinValue = minSafety; 1192 fPreSafetyMinValue = minSafety; 1192 fPreStepLocation = startPoint; 1193 fPreStepLocation = startPoint; 1193 fMinSafety_PreStepPt = minSafety; 1194 fMinSafety_PreStepPt = minSafety; 1194 } 1195 } 1195 1196 1196 // Allow Propagator In Field to do the hard 1197 // Allow Propagator In Field to do the hard work, calling G4MultiNavigator 1197 // 1198 // 1198 minStep = fpFieldPropagator->ComputeStep( f 1199 minStep = fpFieldPropagator->ComputeStep( fieldTrack, 1199 p 1200 proposedStepLength, 1200 n 1201 newSafety, 1201 p 1202 pCurrentPhysicalVolume, 1202 f 1203 false); 1203 1204 1204 // fieldTrack now contains the endpoint inf 1205 // fieldTrack now contains the endpoint information 1205 // 1206 // 1206 fEndState = fieldTrack; 1207 fEndState = fieldTrack; 1207 fMinStep = minStep; 1208 fMinStep = minStep; 1208 fTrueMinStep = std::min( minStep, proposedS 1209 fTrueMinStep = std::min( minStep, proposedStepLength ); 1209 1210 1210 if( fNoActiveNavigators == 1 ) 1211 if( fNoActiveNavigators == 1 ) 1211 { 1212 { 1212 // Update the 'PreSafety' sphere - as an 1213 // Update the 'PreSafety' sphere - as any ComputeStep was called 1213 // (must be done anyway in field) 1214 // (must be done anyway in field) 1214 1215 1215 fPreSafetyValues[0] = newSafety; 1216 fPreSafetyValues[0] = newSafety; 1216 fPreSafetyLocation = startPoint; 1217 fPreSafetyLocation = startPoint; 1217 fPreSafetyMinValue = newSafety; 1218 fPreSafetyMinValue = newSafety; 1218 1219 1219 // Update the current 'PreStep' point's 1220 // Update the current 'PreStep' point's values - mandatory 1220 // 1221 // 1221 fCurrentPreStepSafety[0] = newSafety; 1222 fCurrentPreStepSafety[0] = newSafety; 1222 fPreStepLocation = startPoint; 1223 fPreStepLocation = startPoint; 1223 fMinSafety_PreStepPt= newSafety; 1224 fMinSafety_PreStepPt= newSafety; 1224 } 1225 } 1225 1226 1226 #ifdef G4DEBUG_PATHFINDER 1227 #ifdef G4DEBUG_PATHFINDER 1227 if( fVerboseLevel > 2 ) 1228 if( fVerboseLevel > 2 ) 1228 { 1229 { 1229 G4cout << "G4PathFinder::DoNextCurvedStep 1230 G4cout << "G4PathFinder::DoNextCurvedStep : " << G4endl 1230 << " initialState = " << initialSt 1231 << " initialState = " << initialState << G4endl 1231 << " and endState = " << fEndState 1232 << " and endState = " << fEndState << G4endl; 1232 G4cout << "G4PathFinder::DoNextCurvedStep 1233 G4cout << "G4PathFinder::DoNextCurvedStep : " 1233 << " minStep = " << minStep 1234 << " minStep = " << minStep 1234 << " proposedStepLength " << propo 1235 << " proposedStepLength " << proposedStepLength 1235 << " safety = " << newSafety << G4 1236 << " safety = " << newSafety << G4endl; 1236 } 1237 } 1237 #endif 1238 #endif 1238 G4double currentStepSize; // = 0.0; 1239 G4double currentStepSize; // = 0.0; 1239 if( minStep < proposedStepLength ) // if == 1240 if( minStep < proposedStepLength ) // if == , then a boundary found at end ?? 1240 { 1241 { 1241 // Recover the remaining information from 1242 // Recover the remaining information from MultiNavigator 1242 // especially regarding which Navigator l 1243 // especially regarding which Navigator limited the step 1243 1244 1244 G4int noLimited = 0; // No geometries 1245 G4int noLimited = 0; // No geometries limiting step 1245 for( numNav=0; numNav < fNoActiveNavigato 1246 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1246 { 1247 { 1247 G4double finalStep, lastPreSafety = 0.0 1248 G4double finalStep, lastPreSafety = 0.0, minStepLast; 1248 ELimited didLimit; 1249 ELimited didLimit; 1249 G4bool limited; 1250 G4bool limited; 1250 1251 1251 finalStep= fpMultiNavigator->ObtainFin 1252 finalStep= fpMultiNavigator->ObtainFinalStep( numNav, lastPreSafety, 1252 1253 minStepLast, didLimit ); 1253 1254 1254 // Calculate the step for this geometry 1255 // Calculate the step for this geometry, using the 1255 // final step (the only one which can d 1256 // final step (the only one which can differ.) 1256 1257 1257 currentStepSize = fTrueMinStep; 1258 currentStepSize = fTrueMinStep; 1258 G4double diffStep = 0.0; 1259 G4double diffStep = 0.0; 1259 if( (minStepLast != kInfinity) ) 1260 if( (minStepLast != kInfinity) ) 1260 { 1261 { 1261 diffStep = (finalStep-minStepLast); 1262 diffStep = (finalStep-minStepLast); 1262 if ( std::abs(diffStep) <= toleratedR 1263 if ( std::abs(diffStep) <= toleratedRelativeError * finalStep ) 1263 { 1264 { 1264 diffStep = 0.0; 1265 diffStep = 0.0; 1265 } 1266 } 1266 currentStepSize += diffStep; 1267 currentStepSize += diffStep; 1267 } 1268 } 1268 fCurrentStepSize[numNav] = currentStepS 1269 fCurrentStepSize[numNav] = currentStepSize; 1269 1270 1270 // TODO: could refine the way to obtain 1271 // TODO: could refine the way to obtain safeties for > 1 geometries 1271 // - for pre step safety 1272 // - for pre step safety 1272 // notify MultiNavigator about n 1273 // notify MultiNavigator about new set of sub-steps 1273 // allow it to return this value 1274 // allow it to return this value in ObtainFinalStep 1274 // instead of lastPreSafety (or 1275 // instead of lastPreSafety (or as well?) 1275 // - for final step start (availabl 1276 // - for final step start (available) 1276 // get final Step start from Mul 1277 // get final Step start from MultiNavigator 1277 // and corresponding safety valu 1278 // and corresponding safety values 1278 // and/or ALSO calculate ComputeSafety 1279 // and/or ALSO calculate ComputeSafety at endpoint 1279 // endSafety= fpNavigator[numNav]-> 1280 // endSafety= fpNavigator[numNav]->ComputeSafety( endPoint ); 1280 1281 1281 fLimitedStep[numNav] = didLimit; 1282 fLimitedStep[numNav] = didLimit; 1282 fLimitTruth[numNav] = limited = (didLim 1283 fLimitTruth[numNav] = limited = (didLimit != kDoNot ); 1283 if( limited ) { ++noLimited; } 1284 if( limited ) { ++noLimited; } 1284 1285 1285 #ifdef G4DEBUG_PATHFINDER 1286 #ifdef G4DEBUG_PATHFINDER 1286 G4bool StepError = (currentStepSize < 0 1287 G4bool StepError = (currentStepSize < 0) 1287 || ( (minStepLast != kI 1288 || ( (minStepLast != kInfinity) && (diffStep < 0) ) ; 1288 if( StepError || (fVerboseLevel > 2) ) 1289 if( StepError || (fVerboseLevel > 2) ) 1289 { 1290 { 1290 G4String limitedString = LimitedStr 1291 G4String limitedString = LimitedString( fLimitedStep[numNav] ); 1291 1292 1292 G4cout << " G4PathFinder::ComputeStep 1293 G4cout << " G4PathFinder::ComputeStep. Geometry " << numNav 1293 << " step= " << fCurrentStepS 1294 << " step= " << fCurrentStepSize[numNav] 1294 << " from final-step= " << fin 1295 << " from final-step= " << finalStep 1295 << " fTrueMinStep= " << fTrueM 1296 << " fTrueMinStep= " << fTrueMinStep 1296 << " minStepLast= " << minSte 1297 << " minStepLast= " << minStepLast 1297 << " limited = " << (fLimitTr 1298 << " limited = " << (fLimitTruth[numNav] ? "YES" : " NO") 1298 << " "; 1299 << " "; 1299 G4cout << " status = " << limitedStr 1300 G4cout << " status = " << limitedString << " #= " << didLimit 1300 << G4endl; 1301 << G4endl; 1301 1302 1302 if( StepError ) 1303 if( StepError ) 1303 { 1304 { 1304 std::ostringstream message; 1305 std::ostringstream message; 1305 message << "Incorrect calculation o 1306 message << "Incorrect calculation of step size for one navigator" 1306 << G4endl 1307 << G4endl 1307 << " currentStepSize 1308 << " currentStepSize = " << currentStepSize 1308 << ", diffStep= " << diffSt 1309 << ", diffStep= " << diffStep << G4endl 1309 << "ERROR in computing step 1310 << "ERROR in computing step size for this navigator."; 1310 G4Exception("G4PathFinder::DoNextCu 1311 G4Exception("G4PathFinder::DoNextCurvedStep", 1311 "GeomNav0003", FatalExc 1312 "GeomNav0003", FatalException, message); 1312 } 1313 } 1313 } 1314 } 1314 #endif 1315 #endif 1315 } // for num Navigators 1316 } // for num Navigators 1316 1317 1317 fNoGeometriesLimiting = noLimited; // Sa 1318 fNoGeometriesLimiting = noLimited; // Save # processes limiting step 1318 } 1319 } 1319 else if ( (minStep == proposedStepLength) 1320 else if ( (minStep == proposedStepLength) 1320 || (minStep == kInfinity) 1321 || (minStep == kInfinity) 1321 || ( std::abs(minStep-proposedSte 1322 || ( std::abs(minStep-proposedStepLength) 1322 < toleratedRelativeError * pro 1323 < toleratedRelativeError * proposedStepLength ) ) 1323 { 1324 { 1324 // In case the step was not limited, use 1325 // In case the step was not limited, use default responses 1325 // --> all Navigators 1326 // --> all Navigators 1326 // Also avoid problems in case of PathFin 1327 // Also avoid problems in case of PathFinder using safety to optimise 1327 // - it is possible that the Navigators 1328 // - it is possible that the Navigators were not called 1328 // if the safety was already satisfact 1329 // if the safety was already satisfactory. 1329 // (In that case calling ObtainFinalSt 1330 // (In that case calling ObtainFinalStep gives invalid results.) 1330 1331 1331 currentStepSize = minStep; 1332 currentStepSize = minStep; 1332 for( numNav=0; numNav < fNoActiveNavigato 1333 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) 1333 { 1334 { 1334 fCurrentStepSize[numNav] = minStep; 1335 fCurrentStepSize[numNav] = minStep; 1335 // Safety for endpoint ?? // Can event 1336 // Safety for endpoint ?? // Can eventuall improve it -- see TODO above 1336 fLimitedStep[numNav] = kDoNot; 1337 fLimitedStep[numNav] = kDoNot; 1337 fLimitTruth[numNav] = false; 1338 fLimitTruth[numNav] = false; 1338 } 1339 } 1339 fNoGeometriesLimiting = 0; // Save # pro 1340 fNoGeometriesLimiting = 0; // Save # processes limiting step 1340 } 1341 } 1341 else // (minStep > proposedStepLength) 1342 else // (minStep > proposedStepLength) and not (minStep == kInfinity) 1342 { 1343 { 1343 std::ostringstream message; 1344 std::ostringstream message; 1344 message << "Incorrect calculation of step 1345 message << "Incorrect calculation of step size for one navigator." << G4endl 1345 << " currentStepSize = " < 1346 << " currentStepSize = " << minStep << " is larger than " 1346 << " proposed StepSize = " << pro 1347 << " proposed StepSize = " << proposedStepLength << "."; 1347 G4Exception("G4PathFinder::DoNextCurvedSt 1348 G4Exception("G4PathFinder::DoNextCurvedStep()", 1348 "GeomNav0003", FatalException 1349 "GeomNav0003", FatalException, message); 1349 } 1350 } 1350 1351 1351 #ifdef G4DEBUG_PATHFINDER 1352 #ifdef G4DEBUG_PATHFINDER 1352 if( fVerboseLevel > 2 ) 1353 if( fVerboseLevel > 2 ) 1353 { 1354 { 1354 G4cout << " Exiting G4PathFinder::DoNextC 1355 G4cout << " Exiting G4PathFinder::DoNextCurvedStep " << G4endl; 1355 PrintLimited(); 1356 PrintLimited(); 1356 } 1357 } 1357 G4cout.precision(prc); 1358 G4cout.precision(prc); 1358 #endif 1359 #endif 1359 1360 1360 return minStep; 1361 return minStep; 1361 } 1362 } >> 1363 >> 1364 >> 1365 G4bool G4PathFinder::RecheckDistanceToCurrentBoundary( >> 1366 const G4ThreeVector& pGlobalPoint, >> 1367 const G4ThreeVector& pDirection, >> 1368 const G4double aProposedMove, >> 1369 G4double* prDistance, >> 1370 G4double* prNewSafety)const >> 1371 { >> 1372 G4bool retval = true; >> 1373 >> 1374 if( fNoActiveNavigators > 0 ) >> 1375 { >> 1376 // Calculate the safety values before making the step >> 1377 >> 1378 G4double minSafety = kInfinity; >> 1379 G4double minMove = kInfinity; >> 1380 int numNav; >> 1381 for( numNav=0; numNav < fNoActiveNavigators; ++numNav ) >> 1382 { >> 1383 G4double distance, safety; >> 1384 G4bool moveIsOK; >> 1385 moveIsOK = fpNavigator[numNav]->RecheckDistanceToCurrentBoundary( >> 1386 pGlobalPoint, >> 1387 pDirection, >> 1388 aProposedMove, >> 1389 &distance, >> 1390 &safety); >> 1391 minSafety = std::min( safety, minSafety ); >> 1392 minMove = std::min( distance, minMove ); >> 1393 // The first surface encountered will determine it >> 1394 // - even if it is at a negative distance. >> 1395 retval &= moveIsOK; >> 1396 } >> 1397 >> 1398 *prDistance = minMove; >> 1399 if( prNewSafety ) >> 1400 { >> 1401 *prNewSafety = minSafety; >> 1402 } >> 1403 } >> 1404 else >> 1405 { >> 1406 retval = false; >> 1407 } >> 1408 >> 1409 return retval; >> 1410 } >> 1411 >> 1412 1362 1413 1363 G4String& G4PathFinder::LimitedString( ELimit 1414 G4String& G4PathFinder::LimitedString( ELimited lim ) 1364 { 1415 { 1365 static G4String StrDoNot("DoNot"), 1416 static G4String StrDoNot("DoNot"), 1366 StrUnique("Unique"), 1417 StrUnique("Unique"), 1367 StrUndefined("Undefined"), 1418 StrUndefined("Undefined"), 1368 StrSharedTransport("SharedT 1419 StrSharedTransport("SharedTransport"), 1369 StrSharedOther("SharedOther 1420 StrSharedOther("SharedOther"); 1370 1421 1371 G4String* limitedStr; 1422 G4String* limitedStr; 1372 switch ( lim ) 1423 switch ( lim ) 1373 { 1424 { 1374 case kDoNot: limitedStr = &StrDoNot; br 1425 case kDoNot: limitedStr = &StrDoNot; break; 1375 case kUnique: limitedStr = &StrUnique; b 1426 case kUnique: limitedStr = &StrUnique; break; 1376 case kSharedTransport: limitedStr = &St 1427 case kSharedTransport: limitedStr = &StrSharedTransport; break; 1377 case kSharedOther: limitedStr = &StrShar 1428 case kSharedOther: limitedStr = &StrSharedOther; break; 1378 default: limitedStr = &StrUndefined; bre 1429 default: limitedStr = &StrUndefined; break; 1379 } 1430 } 1380 return *limitedStr; 1431 return *limitedStr; 1381 } 1432 } 1382 1433 1383 void G4PathFinder::PushPostSafetyToPreSafety( 1434 void G4PathFinder::PushPostSafetyToPreSafety() 1384 { 1435 { 1385 fPreSafetyLocation = fSafetyLocation; 1436 fPreSafetyLocation = fSafetyLocation; 1386 fPreSafetyMinValue = fMinSafety_atSafLocati 1437 fPreSafetyMinValue = fMinSafety_atSafLocation; 1387 for( auto nav=0; nav < fNoActiveNavigators; 1438 for( auto nav=0; nav < fNoActiveNavigators; ++nav ) 1388 { 1439 { 1389 fPreSafetyValues[nav] = fNewSafetyComput 1440 fPreSafetyValues[nav] = fNewSafetyComputed[nav]; 1390 } 1441 } 1391 } 1442 } 1392 1443