Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4ParameterisedNavigation.cc,v 1.13 2010-07-13 15:59:42 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-04-patch-02 $ >> 29 // >> 30 // 26 // class G4ParameterisedNavigation Implementat 31 // class G4ParameterisedNavigation Implementation 27 // 32 // 28 // Initial Author: P.Kent, 1996 33 // Initial Author: P.Kent, 1996 29 // Revisions: 34 // Revisions: 30 // J. Apostolakis 24 Nov 2005, Revised/fixed 35 // J. Apostolakis 24 Nov 2005, Revised/fixed treatment of nested params 31 // J. Apostolakis 4 Feb 2005, Reintroducting 36 // J. Apostolakis 4 Feb 2005, Reintroducting multi-level parameterisation 32 // for materials 37 // for materials only - see note 1 below 33 // G. Cosmo 11 Mar 2004, Added Check mo 38 // G. Cosmo 11 Mar 2004, Added Check mode 34 // G. Cosmo 15 May 2002, Extended to 3- 39 // G. Cosmo 15 May 2002, Extended to 3-d voxelisation, made subclass 35 // J. Apostolakis 5 Mar 1998, Enabled parame 40 // J. Apostolakis 5 Mar 1998, Enabled parameterisation of mat & solid type 36 // ------------------------------------------- 41 // -------------------------------------------------------------------- 37 42 38 // Note 1: Design/implementation note for exte 43 // Note 1: Design/implementation note for extensions - JAp, March 1st, 2005 39 // We cannot make the solid, dimensions and tr 44 // We cannot make the solid, dimensions and transformation dependent on 40 // parent because the voxelisation will not ha 45 // parent because the voxelisation will not have access to this. 41 // So the following can NOT be done: 46 // So the following can NOT be done: 42 // sampleSolid = curParam->ComputeSolid(num, 47 // sampleSolid = curParam->ComputeSolid(num, curPhysical, pParentTouch); 43 // sampleSolid->ComputeDimensions(curParam, 48 // sampleSolid->ComputeDimensions(curParam, num, curPhysical, pParentTouch); 44 // curParam->ComputeTransformation(num, curP 49 // curParam->ComputeTransformation(num, curPhysical, pParentTouch); 45 50 46 #include "G4ParameterisedNavigation.hh" 51 #include "G4ParameterisedNavigation.hh" 47 #include "G4TouchableHistory.hh" 52 #include "G4TouchableHistory.hh" 48 #include "G4VNestedParameterisation.hh" 53 #include "G4VNestedParameterisation.hh" 49 54 50 #include "G4AuxiliaryNavServices.hh" << 51 << 52 #include <cassert> << 53 << 54 // ******************************************* 55 // ******************************************************************** 55 // Constructor 56 // Constructor 56 // ******************************************* 57 // ******************************************************************** 57 // 58 // 58 G4ParameterisedNavigation::G4ParameterisedNavi << 59 G4ParameterisedNavigation::G4ParameterisedNavigation() >> 60 : fVoxelAxis(kUndefined), fVoxelNoSlices(0), fVoxelSliceWidth(0.), >> 61 fVoxelNodeNo(0), fVoxelHeader(0) >> 62 { >> 63 } 59 64 60 // ******************************************* 65 // *************************************************************************** 61 // Destructor 66 // Destructor 62 // ******************************************* 67 // *************************************************************************** 63 // 68 // 64 G4ParameterisedNavigation::~G4ParameterisedNav << 69 G4ParameterisedNavigation::~G4ParameterisedNavigation() >> 70 { >> 71 } 65 72 66 // ******************************************* 73 // *************************************************************************** 67 // ComputeStep 74 // ComputeStep 68 // ******************************************* 75 // *************************************************************************** 69 // 76 // 70 G4double G4ParameterisedNavigation:: 77 G4double G4ParameterisedNavigation:: 71 ComputeStep(const G4ThreeV 78 ComputeStep(const G4ThreeVector& localPoint, 72 const G4ThreeV 79 const G4ThreeVector& localDirection, 73 const G4double 80 const G4double currentProposedStepLength, 74 G4double 81 G4double& newSafety, 75 G4Naviga 82 G4NavigationHistory& history, 76 G4bool& 83 G4bool& validExitNormal, 77 G4ThreeV 84 G4ThreeVector& exitNormal, 78 G4bool& 85 G4bool& exiting, 79 G4bool& 86 G4bool& entering, 80 G4VPhysi 87 G4VPhysicalVolume *(*pBlockedPhysical), 81 G4int& b 88 G4int& blockedReplicaNo) 82 { 89 { 83 G4VPhysicalVolume *motherPhysical, *samplePh 90 G4VPhysicalVolume *motherPhysical, *samplePhysical; 84 G4VPVParameterisation *sampleParam; 91 G4VPVParameterisation *sampleParam; 85 G4LogicalVolume *motherLogical; 92 G4LogicalVolume *motherLogical; 86 G4VSolid *motherSolid, *sampleSolid; 93 G4VSolid *motherSolid, *sampleSolid; 87 G4ThreeVector sampleDirection; 94 G4ThreeVector sampleDirection; 88 G4double ourStep=currentProposedStepLength, << 95 G4double ourStep=currentProposedStepLength, motherSafety, ourSafety; 89 G4double motherSafety, motherStep = DBL_MAX; << 90 G4bool motherValidExitNormal = false; << 91 G4ThreeVector motherExitNormal; << 92 << 93 G4int sampleNo; 96 G4int sampleNo; 94 97 95 G4bool initialNode, noStep; 98 G4bool initialNode, noStep; 96 G4SmartVoxelNode *curVoxelNode; 99 G4SmartVoxelNode *curVoxelNode; 97 G4long curNoVolumes, contentNo; << 100 G4int curNoVolumes, contentNo; 98 G4double voxelSafety; 101 G4double voxelSafety; 99 102 100 // Replication data 103 // Replication data 101 // 104 // 102 EAxis axis; 105 EAxis axis; 103 G4int nReplicas; 106 G4int nReplicas; 104 G4double width, offset; 107 G4double width, offset; 105 G4bool consuming; 108 G4bool consuming; 106 109 107 motherPhysical = history.GetTopVolume(); 110 motherPhysical = history.GetTopVolume(); 108 motherLogical = motherPhysical->GetLogicalVo 111 motherLogical = motherPhysical->GetLogicalVolume(); 109 motherSolid = motherLogical->GetSolid(); 112 motherSolid = motherLogical->GetSolid(); 110 113 111 // 114 // 112 // Compute mother safety 115 // Compute mother safety 113 // 116 // 114 117 115 motherSafety = motherSolid->DistanceToOut(lo 118 motherSafety = motherSolid->DistanceToOut(localPoint); 116 ourSafety = motherSafety; // Wo 119 ourSafety = motherSafety; // Working isotropic safety 117 120 118 #ifdef G4VERBOSE 121 #ifdef G4VERBOSE 119 if ( fCheck ) 122 if ( fCheck ) 120 { 123 { 121 if( motherSafety < 0.0 ) 124 if( motherSafety < 0.0 ) 122 { 125 { >> 126 G4cout << "ERROR - G4ParameterisedNavigation::ComputeStep()" << G4endl >> 127 << " Current solid " << motherSolid->GetName() >> 128 << " gave negative safety: " << motherSafety << G4endl >> 129 << " for the current (local) point " << localPoint >> 130 << G4endl; 123 motherSolid->DumpInfo(); 131 motherSolid->DumpInfo(); 124 std::ostringstream message; << 125 message << "Negative Safety In Voxel Nav << 126 << " Current solid " << m << 127 << " gave negative safety: " << << 128 << " for the current (loc << 129 G4Exception("G4ParameterisedNavigation:: 132 G4Exception("G4ParameterisedNavigation::ComputeStep()", 130 "GeomNav0003", FatalExceptio << 133 "NegativeSafetyMotherVol", FatalException, >> 134 "Negative Safety In Voxel Navigation !" ); 131 } 135 } 132 if( motherSolid->Inside(localPoint) == kOu << 136 if( motherSolid->Inside(localPoint)==kOutside ) 133 { 137 { 134 std::ostringstream message; << 138 G4cout << "WARNING - G4ParameterisedNavigation::ComputeStep()" << G4endl 135 message << "Point is outside Current Vol << 139 << " Point " << localPoint 136 << " Point " << localPo << 140 << " is outside current volume " << motherPhysical->GetName() 137 << " is outside current volume " << 141 << G4endl; 138 << G4endl; << 142 G4double estDistToSolid= motherSolid->DistanceToIn(localPoint); 139 G4double estDistToSolid = motherSolid->D << 140 G4cout << " Estimated isotropic 143 G4cout << " Estimated isotropic distance to solid (distToIn)= " 141 << estDistToSolid; << 144 << estDistToSolid << G4endl; 142 if( estDistToSolid > 100.0 * motherSolid 145 if( estDistToSolid > 100.0 * motherSolid->GetTolerance() ) 143 { 146 { 144 motherSolid->DumpInfo(); 147 motherSolid->DumpInfo(); 145 G4Exception("G4ParameterisedNavigation 148 G4Exception("G4ParameterisedNavigation::ComputeStep()", 146 "GeomNav0003", FatalExcept << 149 "FarOutsideCurrentVolume", FatalException, 147 "Point is far outside Curr 150 "Point is far outside Current Volume !"); 148 } 151 } 149 else 152 else 150 { << 151 G4Exception("G4ParameterisedNavigation 153 G4Exception("G4ParameterisedNavigation::ComputeStep()", 152 "GeomNav1002", JustWarning << 154 "OutsideCurrentVolume", JustWarning, 153 "Point is a little outside << 155 "Point is a little outside Current Volume."); 154 } << 155 } << 156 << 157 // Compute early: << 158 // a) to check whether point is (wrongly) << 159 // (signaled if step < 0 or << 160 // b) to check value against answer of da << 161 // << 162 motherStep = motherSolid->DistanceToOut(lo << 163 lo << 164 tr << 165 &mo << 166 &mo << 167 << 168 if( (motherStep >= kInfinity) || (motherSt << 169 { << 170 // Error - indication of being outside s << 171 // << 172 fLogger->ReportOutsideMother(localPoint, << 173 << 174 ourStep = motherStep = 0.0; << 175 exiting = true; << 176 entering = false; << 177 << 178 // If we are outside the solid does the << 179 validExitNormal = motherValidExitNormal; << 180 exitNormal = motherExitNormal; << 181 << 182 *pBlockedPhysical = nullptr; // or mothe << 183 blockedReplicaNo = 0; // or motherRepli << 184 << 185 newSafety = 0.0; << 186 return ourStep; << 187 } 156 } 188 } 157 } 189 #endif 158 #endif 190 159 >> 160 // >> 161 // Compute daughter safeties & intersections >> 162 // >> 163 191 initialNode = true; 164 initialNode = true; 192 noStep = true; 165 noStep = true; 193 166 194 // By definition, the parameterised volume i << 167 // By definition, parameterised volumes exist as first 195 // (and only) daughter of the mother volume << 168 // daughter of the mother volume 196 // 169 // 197 samplePhysical = motherLogical->GetDaughter( 170 samplePhysical = motherLogical->GetDaughter(0); 198 samplePhysical->GetReplicationData(axis,nRep 171 samplePhysical->GetReplicationData(axis,nReplicas,width,offset,consuming); 199 fBList.Enlarge(nReplicas); 172 fBList.Enlarge(nReplicas); 200 fBList.Reset(); 173 fBList.Reset(); 201 174 202 // Exiting normal optimisation 175 // Exiting normal optimisation 203 // 176 // 204 if (exiting && (*pBlockedPhysical==samplePhy 177 if (exiting && (*pBlockedPhysical==samplePhysical) && validExitNormal) 205 { 178 { 206 if (localDirection.dot(exitNormal)>=kMinEx 179 if (localDirection.dot(exitNormal)>=kMinExitingNormalCosine) 207 { 180 { >> 181 assert( (0 <= blockedReplicaNo)&&(blockedReplicaNo<nReplicas) ); >> 182 208 // Block exited daughter replica; Must b 183 // Block exited daughter replica; Must be on boundary => zero safety 209 // 184 // 210 fBList.BlockVolume(blockedReplicaNo); 185 fBList.BlockVolume(blockedReplicaNo); 211 ourSafety = 0; 186 ourSafety = 0; 212 } 187 } 213 } 188 } 214 exiting = false; 189 exiting = false; 215 entering = false; 190 entering = false; 216 191 217 sampleParam = samplePhysical->GetParameteris 192 sampleParam = samplePhysical->GetParameterisation(); 218 193 219 // Loop over voxels & compute daughter safet << 220 << 221 do 194 do 222 { 195 { 223 curVoxelNode = fVoxelNode; 196 curVoxelNode = fVoxelNode; 224 curNoVolumes = curVoxelNode->GetNoContaine 197 curNoVolumes = curVoxelNode->GetNoContained(); 225 198 226 for ( contentNo=curNoVolumes-1; contentNo> 199 for ( contentNo=curNoVolumes-1; contentNo>=0; contentNo-- ) 227 { 200 { 228 sampleNo = curVoxelNode->GetVolume((G4in << 201 sampleNo = curVoxelNode->GetVolume(contentNo); 229 if ( !fBList.IsBlocked(sampleNo) ) 202 if ( !fBList.IsBlocked(sampleNo) ) 230 { 203 { 231 fBList.BlockVolume(sampleNo); 204 fBList.BlockVolume(sampleNo); 232 205 233 // Call virtual methods, and copy info 206 // Call virtual methods, and copy information if needed 234 // 207 // 235 sampleSolid = IdentifyAndPlaceSolid( s 208 sampleSolid = IdentifyAndPlaceSolid( sampleNo, samplePhysical, 236 s 209 sampleParam ); 237 210 238 G4AffineTransform sampleTf(samplePhysi 211 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 239 samplePhysi 212 samplePhysical->GetTranslation()); 240 sampleTf.Invert(); 213 sampleTf.Invert(); 241 const G4ThreeVector samplePoint = samp 214 const G4ThreeVector samplePoint = sampleTf.TransformPoint(localPoint); 242 const G4double sampleSafety = sampleSo 215 const G4double sampleSafety = sampleSolid->DistanceToIn(samplePoint); 243 if ( sampleSafety<ourSafety ) 216 if ( sampleSafety<ourSafety ) 244 { 217 { 245 ourSafety = sampleSafety; 218 ourSafety = sampleSafety; 246 } 219 } 247 if ( sampleSafety<=ourStep ) 220 if ( sampleSafety<=ourStep ) 248 { 221 { 249 sampleDirection = sampleTf.Transform 222 sampleDirection = sampleTf.TransformAxis(localDirection); 250 G4double sampleStep = 223 G4double sampleStep = 251 sampleSolid->DistanceToIn(s 224 sampleSolid->DistanceToIn(samplePoint, sampleDirection); 252 if ( sampleStep<=ourStep ) 225 if ( sampleStep<=ourStep ) 253 { 226 { 254 ourStep = sampleStep; 227 ourStep = sampleStep; 255 entering = true; 228 entering = true; 256 exiting = false; 229 exiting = false; 257 *pBlockedPhysical = samplePhysical 230 *pBlockedPhysical = samplePhysical; 258 blockedReplicaNo = sampleNo; 231 blockedReplicaNo = sampleNo; 259 #ifdef G4VERBOSE 232 #ifdef G4VERBOSE 260 // Check to see that the resulti 233 // Check to see that the resulting point is indeed in/on volume. 261 // This check could eventually b 234 // This check could eventually be made only for successful 262 // candidate. 235 // candidate. 263 236 264 if ( ( fCheck ) && ( sampleStep 237 if ( ( fCheck ) && ( sampleStep < kInfinity ) ) 265 { 238 { 266 G4ThreeVector intersectionPoin 239 G4ThreeVector intersectionPoint; 267 intersectionPoint = samplePoin << 240 intersectionPoint= samplePoint + sampleStep * sampleDirection; 268 EInside insideIntPt = sampleSo << 241 EInside insideIntPt= sampleSolid->Inside(intersectionPoint); 269 if( insideIntPt != kSurface ) 242 if( insideIntPt != kSurface ) 270 { 243 { 271 G4long oldcoutPrec = G4cout. << 244 G4int oldcoutPrec = G4cout.precision(16); 272 std::ostringstream message; << 245 G4cout << "WARNING - G4ParameterisedNavigation::ComputeStep()" 273 message << "Navigator gets c << 246 << G4endl 274 << G4endl << 247 << " Inaccurate solid DistanceToIn" 275 << " Inaccu << 248 << " for solid " << sampleSolid->GetName() << G4endl; 276 << " for solid " << << 249 G4cout << " Solid gave DistanceToIn = " 277 << " Solid << 250 << sampleStep << " yet returns " ; 278 << sampleStep << " y << 279 if( insideIntPt == kInside ) 251 if( insideIntPt == kInside ) 280 { << 252 G4cout << "-kInside-"; 281 message << "-kInside-"; << 282 } << 283 else if( insideIntPt == kOut 253 else if( insideIntPt == kOutside ) 284 { << 254 G4cout << "-kOutside-"; 285 message << "-kOutside-"; << 286 } << 287 else 255 else 288 { << 256 G4cout << "-kSurface-"; 289 message << "-kSurface-"; << 257 G4cout << " for this point !" << G4endl; 290 } << 258 G4cout << " Point = " << intersectionPoint << G4endl; 291 message << " for this point << 292 << " Point << 293 << G4endl; << 294 if ( insideIntPt != kInside 259 if ( insideIntPt != kInside ) 295 { << 260 G4cout << " DistanceToIn(p) = " 296 message << " Distan << 261 << sampleSolid->DistanceToIn(intersectionPoint) 297 << sampleSolid->Di << 262 << G4endl; 298 } << 263 if ( insideIntPt != kOutside ) 299 if ( insideIntPt != kOutside << 264 G4cout << " DistanceToOut(p) = " 300 { << 265 << sampleSolid->DistanceToOut(intersectionPoint) 301 message << " Distan << 266 << G4endl; 302 << sampleSolid->Di << 303 } << 304 G4Exception("G4Parameterised 267 G4Exception("G4ParameterisedNavigation::ComputeStep()", 305 "GeomNav1002", J << 268 "InaccurateDistanceToIn", JustWarning, >> 269 "Navigator gets conflicting response from Solid."); 306 G4cout.precision(oldcoutPrec 270 G4cout.precision(oldcoutPrec); 307 } 271 } 308 } 272 } 309 #endif 273 #endif 310 } 274 } 311 } 275 } 312 } 276 } 313 } 277 } 314 278 315 if ( initialNode ) 279 if ( initialNode ) 316 { 280 { 317 initialNode = false; 281 initialNode = false; 318 voxelSafety = ComputeVoxelSafety(localPo 282 voxelSafety = ComputeVoxelSafety(localPoint,axis); 319 if ( voxelSafety<ourSafety ) 283 if ( voxelSafety<ourSafety ) 320 { 284 { 321 ourSafety = voxelSafety; 285 ourSafety = voxelSafety; 322 } 286 } 323 if ( currentProposedStepLength<ourSafety 287 if ( currentProposedStepLength<ourSafety ) 324 { 288 { 325 // Guaranteed physics limited 289 // Guaranteed physics limited 326 // 290 // 327 noStep = false; 291 noStep = false; 328 entering = false; 292 entering = false; 329 exiting = false; 293 exiting = false; 330 *pBlockedPhysical = nullptr; << 294 *pBlockedPhysical = 0; 331 ourStep = kInfinity; 295 ourStep = kInfinity; 332 } 296 } 333 else 297 else 334 { 298 { 335 // Consider intersection with mother s << 299 // >> 300 // Compute mother intersection if required 336 // 301 // 337 if ( motherSafety<=ourStep ) 302 if ( motherSafety<=ourStep ) 338 { 303 { 339 if ( !fCheck ) << 304 G4double motherStep = motherSolid->DistanceToOut(localPoint, 340 { << 305 localDirection, 341 motherStep = motherSolid->Distance << 306 true, 342 << 307 &validExitNormal, 343 << 308 &exitNormal); 344 << 345 << 346 } << 347 << 348 if( ( motherStep < 0.0 ) || ( mother << 349 { << 350 #ifdef G4VERBOSE 309 #ifdef G4VERBOSE 351 fLogger->ReportOutsideMother(local << 310 if ( fCheck ) 352 mothe << 311 if( ( motherStep < 0.0 ) || ( motherStep >= kInfinity) ) 353 #endif << 312 { 354 ourStep = motherStep = 0.0; << 313 G4int oldPrOut= G4cout.precision(16); 355 // Rely on the code below to set t << 314 G4int oldPrErr= G4cerr.precision(16); 356 // exiting, entering, exitNormal << 315 G4cerr << "ERROR - G4ParameterisedNavigation::ComputeStep()" 357 // pBlockedPhysical etc. << 316 << G4endl 358 } << 317 << " Problem in Navigation" << G4endl 359 #ifdef G4VERBOSE << 318 << " Point (local coordinates): " 360 if( motherValidExitNormal && ( fChec << 319 << localPoint << G4endl 361 { << 320 << " Local Direction: " 362 fLogger->CheckAndReportBadNormal(m << 321 << localDirection << G4endl 363 l << 322 << " Solid: " << motherSolid->GetName() << G4endl; 364 m << 323 motherSolid->DumpInfo(); 365 " << 324 G4Exception("G4ParameterisedNavigation::ComputeStep()", 366 } << 325 "PointOutsideCurrentVolume", FatalException, >> 326 "Current point is outside the current solid !"); >> 327 G4cout.precision(oldPrOut); >> 328 G4cerr.precision(oldPrErr); >> 329 } 367 #endif 330 #endif 368 if ( motherStep<=ourStep ) 331 if ( motherStep<=ourStep ) 369 { 332 { 370 ourStep = motherStep; 333 ourStep = motherStep; 371 exiting = true; 334 exiting = true; 372 entering = false; 335 entering = false; 373 if ( validExitNormal ) 336 if ( validExitNormal ) 374 { 337 { 375 const G4RotationMatrix* rot = mo << 338 const G4RotationMatrix *rot = motherPhysical->GetRotation(); 376 if (rot != nullptr) << 339 if (rot) 377 { 340 { 378 exitNormal *= rot->inverse(); 341 exitNormal *= rot->inverse(); 379 } 342 } 380 } 343 } 381 } 344 } 382 else 345 else 383 { 346 { 384 validExitNormal = false; 347 validExitNormal = false; 385 } 348 } 386 } 349 } 387 } 350 } 388 newSafety = ourSafety; << 351 newSafety=ourSafety; 389 } 352 } 390 if (noStep) 353 if (noStep) 391 { 354 { 392 noStep = LocateNextVoxel(localPoint, loc 355 noStep = LocateNextVoxel(localPoint, localDirection, ourStep, axis); 393 } 356 } 394 } while (noStep); 357 } while (noStep); 395 358 396 return ourStep; 359 return ourStep; 397 } 360 } 398 361 399 // ******************************************* 362 // *************************************************************************** 400 // ComputeSafety 363 // ComputeSafety 401 // ******************************************* 364 // *************************************************************************** 402 // 365 // 403 G4double 366 G4double 404 G4ParameterisedNavigation::ComputeSafety(const 367 G4ParameterisedNavigation::ComputeSafety(const G4ThreeVector& localPoint, 405 const 368 const G4NavigationHistory& history, 406 const 369 const G4double ) 407 { 370 { 408 G4VPhysicalVolume *motherPhysical, *samplePh 371 G4VPhysicalVolume *motherPhysical, *samplePhysical; 409 G4VPVParameterisation *sampleParam; 372 G4VPVParameterisation *sampleParam; 410 G4LogicalVolume *motherLogical; 373 G4LogicalVolume *motherLogical; 411 G4VSolid *motherSolid, *sampleSolid; 374 G4VSolid *motherSolid, *sampleSolid; 412 G4double motherSafety, ourSafety; 375 G4double motherSafety, ourSafety; 413 G4int sampleNo, curVoxelNodeNo; 376 G4int sampleNo, curVoxelNodeNo; 414 377 415 G4SmartVoxelNode *curVoxelNode; 378 G4SmartVoxelNode *curVoxelNode; 416 G4long curNoVolumes, contentNo; << 379 G4int curNoVolumes, contentNo; 417 G4double voxelSafety; 380 G4double voxelSafety; 418 381 419 // Replication data 382 // Replication data 420 // 383 // 421 EAxis axis; 384 EAxis axis; 422 G4int nReplicas; 385 G4int nReplicas; 423 G4double width, offset; 386 G4double width, offset; 424 G4bool consuming; 387 G4bool consuming; 425 388 426 motherPhysical = history.GetTopVolume(); 389 motherPhysical = history.GetTopVolume(); 427 motherLogical = motherPhysical->GetLogicalVo 390 motherLogical = motherPhysical->GetLogicalVolume(); 428 motherSolid = motherLogical->GetSolid(); 391 motherSolid = motherLogical->GetSolid(); 429 392 430 // 393 // 431 // Compute mother safety 394 // Compute mother safety 432 // 395 // 433 396 434 motherSafety = motherSolid->DistanceToOut(lo 397 motherSafety = motherSolid->DistanceToOut(localPoint); 435 ourSafety = motherSafety; 398 ourSafety = motherSafety; // Working isotropic safety 436 399 437 // 400 // 438 // Compute daughter safeties 401 // Compute daughter safeties 439 // 402 // 440 403 441 // By definition, parameterised volumes exis 404 // By definition, parameterised volumes exist as first 442 // daughter of the mother volume 405 // daughter of the mother volume 443 // 406 // 444 samplePhysical = motherLogical->GetDaughter( 407 samplePhysical = motherLogical->GetDaughter(0); 445 samplePhysical->GetReplicationData(axis, nRe 408 samplePhysical->GetReplicationData(axis, nReplicas, 446 width, of 409 width, offset, consuming); 447 sampleParam = samplePhysical->GetParameteris 410 sampleParam = samplePhysical->GetParameterisation(); 448 411 449 // Look inside the current Voxel only at the 412 // Look inside the current Voxel only at the current point 450 // 413 // 451 if ( axis==kUndefined ) // 3D case: cur 414 if ( axis==kUndefined ) // 3D case: current voxel node is retrieved 452 { // fro 415 { // from G4VoxelNavigation. 453 curVoxelNode = fVoxelNode; 416 curVoxelNode = fVoxelNode; 454 } 417 } 455 else // 1D case: cur 418 else // 1D case: current voxel node is computed here. 456 { 419 { 457 curVoxelNodeNo = G4int((localPoint(fVoxelA 420 curVoxelNodeNo = G4int((localPoint(fVoxelAxis) 458 -fVoxelHeader->GetM 421 -fVoxelHeader->GetMinExtent()) / fVoxelSliceWidth ); 459 curVoxelNode = fVoxelHeader->GetSlice(curV 422 curVoxelNode = fVoxelHeader->GetSlice(curVoxelNodeNo)->GetNode(); 460 fVoxelNodeNo = curVoxelNodeNo; 423 fVoxelNodeNo = curVoxelNodeNo; 461 fVoxelNode = curVoxelNode; 424 fVoxelNode = curVoxelNode; 462 } 425 } 463 curNoVolumes = curVoxelNode->GetNoContained( 426 curNoVolumes = curVoxelNode->GetNoContained(); 464 427 465 for ( contentNo=curNoVolumes-1; contentNo>=0 428 for ( contentNo=curNoVolumes-1; contentNo>=0; contentNo-- ) 466 { 429 { 467 sampleNo = curVoxelNode->GetVolume((G4int) << 430 sampleNo = curVoxelNode->GetVolume(contentNo); 468 431 469 // Call virtual methods, and copy informat 432 // Call virtual methods, and copy information if needed 470 // 433 // 471 sampleSolid= IdentifyAndPlaceSolid( sample 434 sampleSolid= IdentifyAndPlaceSolid( sampleNo,samplePhysical,sampleParam ); 472 435 473 G4AffineTransform sampleTf(samplePhysical- 436 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 474 samplePhysical- 437 samplePhysical->GetTranslation()); 475 sampleTf.Invert(); 438 sampleTf.Invert(); 476 const G4ThreeVector samplePoint = sampleTf 439 const G4ThreeVector samplePoint = sampleTf.TransformPoint(localPoint); 477 G4double sampleSafety = sampleSolid->Dista 440 G4double sampleSafety = sampleSolid->DistanceToIn(samplePoint); 478 if ( sampleSafety<ourSafety ) 441 if ( sampleSafety<ourSafety ) 479 { 442 { 480 ourSafety = sampleSafety; 443 ourSafety = sampleSafety; 481 } 444 } 482 } 445 } 483 446 484 voxelSafety = ComputeVoxelSafety(localPoint, 447 voxelSafety = ComputeVoxelSafety(localPoint,axis); 485 if ( voxelSafety<ourSafety ) 448 if ( voxelSafety<ourSafety ) 486 { 449 { 487 ourSafety=voxelSafety; 450 ourSafety=voxelSafety; 488 } 451 } 489 452 490 return ourSafety; 453 return ourSafety; 491 } 454 } 492 455 493 // ******************************************* 456 // ******************************************************************** 494 // ComputeVoxelSafety 457 // ComputeVoxelSafety 495 // 458 // 496 // Computes safety from specified point to col 459 // Computes safety from specified point to collected voxel boundaries 497 // using already located point. 460 // using already located point. 498 // ******************************************* 461 // ******************************************************************** 499 // 462 // 500 G4double G4ParameterisedNavigation:: 463 G4double G4ParameterisedNavigation:: 501 ComputeVoxelSafety(const G4ThreeVector& localP 464 ComputeVoxelSafety(const G4ThreeVector& localPoint, 502 const EAxis pAxis) const 465 const EAxis pAxis) const 503 { 466 { 504 // If no best axis is specified, adopt defau 467 // If no best axis is specified, adopt default 505 // strategy as for placements 468 // strategy as for placements 506 // 469 // 507 if ( pAxis==kUndefined ) 470 if ( pAxis==kUndefined ) 508 { 471 { 509 return G4VoxelNavigation::ComputeVoxelSafe 472 return G4VoxelNavigation::ComputeVoxelSafety(localPoint); 510 } 473 } 511 474 512 G4double voxelSafety, plusVoxelSafety, minus 475 G4double voxelSafety, plusVoxelSafety, minusVoxelSafety; 513 G4double curNodeOffset, minCurCommonDelta, m 476 G4double curNodeOffset, minCurCommonDelta, maxCurCommonDelta; 514 G4long minCurNodeNoDelta, maxCurNodeNoDelta; << 477 G4int minCurNodeNoDelta, maxCurNodeNoDelta; 515 478 516 // Compute linear intersection distance to b 479 // Compute linear intersection distance to boundaries of max/min 517 // to collected nodes at current level 480 // to collected nodes at current level 518 // 481 // 519 curNodeOffset = fVoxelNodeNo*fVoxelSliceWidt 482 curNodeOffset = fVoxelNodeNo*fVoxelSliceWidth; 520 minCurCommonDelta = localPoint(fVoxelAxis) 483 minCurCommonDelta = localPoint(fVoxelAxis) 521 - fVoxelHeader->GetMinExte 484 - fVoxelHeader->GetMinExtent()-curNodeOffset; 522 maxCurNodeNoDelta = fVoxelNode->GetMaxEquiva 485 maxCurNodeNoDelta = fVoxelNode->GetMaxEquivalentSliceNo()-fVoxelNodeNo; 523 minCurNodeNoDelta = fVoxelNodeNo-fVoxelNode- 486 minCurNodeNoDelta = fVoxelNodeNo-fVoxelNode->GetMinEquivalentSliceNo(); 524 maxCurCommonDelta = fVoxelSliceWidth-minCurC 487 maxCurCommonDelta = fVoxelSliceWidth-minCurCommonDelta; 525 plusVoxelSafety = minCurNodeNoDelta*fVoxel 488 plusVoxelSafety = minCurNodeNoDelta*fVoxelSliceWidth+minCurCommonDelta; 526 minusVoxelSafety = maxCurNodeNoDelta*fVoxel 489 minusVoxelSafety = maxCurNodeNoDelta*fVoxelSliceWidth+maxCurCommonDelta; 527 voxelSafety = std::min(plusVoxelSafety,minus 490 voxelSafety = std::min(plusVoxelSafety,minusVoxelSafety); 528 491 529 if ( voxelSafety<0 ) 492 if ( voxelSafety<0 ) 530 { 493 { 531 voxelSafety = 0; 494 voxelSafety = 0; 532 } 495 } 533 496 534 return voxelSafety; 497 return voxelSafety; 535 } 498 } 536 499 537 // ******************************************* 500 // ******************************************************************** 538 // LocateNextVoxel 501 // LocateNextVoxel 539 // 502 // 540 // Finds the next voxel from the current voxel 503 // Finds the next voxel from the current voxel and point 541 // in the specified direction. 504 // in the specified direction. 542 // 505 // 543 // Returns false if all voxels considered 506 // Returns false if all voxels considered 544 // true otherwise 507 // true otherwise 545 // [current Step ends inside same voxel or lea 508 // [current Step ends inside same voxel or leaves all voxels] 546 // ******************************************* 509 // ******************************************************************** 547 // 510 // 548 G4bool G4ParameterisedNavigation:: 511 G4bool G4ParameterisedNavigation:: 549 LocateNextVoxel( const G4ThreeVector& localPoi 512 LocateNextVoxel( const G4ThreeVector& localPoint, 550 const G4ThreeVector& localDir 513 const G4ThreeVector& localDirection, 551 const G4double currentStep, 514 const G4double currentStep, 552 const EAxis pAxis) 515 const EAxis pAxis) 553 { 516 { 554 // If no best axis is specified, adopt defau 517 // If no best axis is specified, adopt default 555 // location strategy as for placements 518 // location strategy as for placements 556 // 519 // 557 if ( pAxis==kUndefined ) 520 if ( pAxis==kUndefined ) 558 { 521 { 559 return G4VoxelNavigation::LocateNextVoxel( 522 return G4VoxelNavigation::LocateNextVoxel(localPoint, 560 523 localDirection, 561 524 currentStep); 562 } 525 } 563 526 564 G4bool isNewVoxel; 527 G4bool isNewVoxel; 565 G4int newNodeNo; 528 G4int newNodeNo; 566 G4double minVal, maxVal, curMinExtent, curCo 529 G4double minVal, maxVal, curMinExtent, curCoord; 567 530 568 curMinExtent = fVoxelHeader->GetMinExtent(); 531 curMinExtent = fVoxelHeader->GetMinExtent(); 569 curCoord = localPoint(fVoxelAxis)+currentSte 532 curCoord = localPoint(fVoxelAxis)+currentStep*localDirection(fVoxelAxis); 570 minVal = curMinExtent+fVoxelNode->GetMinEqui 533 minVal = curMinExtent+fVoxelNode->GetMinEquivalentSliceNo()*fVoxelSliceWidth; 571 isNewVoxel = false; 534 isNewVoxel = false; 572 535 573 if ( minVal<=curCoord ) 536 if ( minVal<=curCoord ) 574 { 537 { 575 maxVal = curMinExtent 538 maxVal = curMinExtent 576 + (fVoxelNode->GetMaxEquivalentSlic 539 + (fVoxelNode->GetMaxEquivalentSliceNo()+1)*fVoxelSliceWidth; 577 if ( maxVal<curCoord ) 540 if ( maxVal<curCoord ) 578 { 541 { 579 newNodeNo = fVoxelNode->GetMaxEquivalent 542 newNodeNo = fVoxelNode->GetMaxEquivalentSliceNo()+1; 580 if ( newNodeNo<G4int(fVoxelHeader->GetNo << 543 if ( newNodeNo<fVoxelHeader->GetNoSlices() ) 581 { 544 { 582 fVoxelNodeNo = newNodeNo; 545 fVoxelNodeNo = newNodeNo; 583 fVoxelNode = fVoxelHeader->GetSlice(ne 546 fVoxelNode = fVoxelHeader->GetSlice(newNodeNo)->GetNode(); 584 isNewVoxel = true; 547 isNewVoxel = true; 585 } 548 } 586 } 549 } 587 } 550 } 588 else 551 else 589 { 552 { 590 newNodeNo = fVoxelNode->GetMinEquivalentSl 553 newNodeNo = fVoxelNode->GetMinEquivalentSliceNo()-1; 591 554 592 // Must locate from newNodeNo no and down 555 // Must locate from newNodeNo no and down to setup stack and fVoxelNode 593 // Repeat or earlier code... 556 // Repeat or earlier code... 594 // 557 // 595 if ( newNodeNo>=0 ) 558 if ( newNodeNo>=0 ) 596 { 559 { 597 fVoxelNodeNo = newNodeNo; 560 fVoxelNodeNo = newNodeNo; 598 fVoxelNode = fVoxelHeader->GetSlice(newN 561 fVoxelNode = fVoxelHeader->GetSlice(newNodeNo)->GetNode(); 599 isNewVoxel = true; 562 isNewVoxel = true; 600 } 563 } 601 } 564 } 602 return isNewVoxel; 565 return isNewVoxel; 603 } 566 } 604 567 605 // ******************************************* 568 // ******************************************************************** 606 // LevelLocate 569 // LevelLocate 607 // ******************************************* 570 // ******************************************************************** 608 // 571 // 609 G4bool 572 G4bool 610 G4ParameterisedNavigation::LevelLocate( G4Navi 573 G4ParameterisedNavigation::LevelLocate( G4NavigationHistory& history, 611 const G4VPhy 574 const G4VPhysicalVolume* blockedVol, 612 const G4int 575 const G4int blockedNum, 613 const G4Thre 576 const G4ThreeVector& globalPoint, 614 const G4Thre 577 const G4ThreeVector* globalDirection, 615 const G4bool 578 const G4bool pLocatedOnEdge, 616 G4Thre 579 G4ThreeVector& localPoint ) 617 { 580 { 618 G4SmartVoxelHeader *motherVoxelHeader; 581 G4SmartVoxelHeader *motherVoxelHeader; 619 G4SmartVoxelNode *motherVoxelNode; 582 G4SmartVoxelNode *motherVoxelNode; 620 G4VPhysicalVolume *motherPhysical, *pPhysica 583 G4VPhysicalVolume *motherPhysical, *pPhysical; 621 G4VPVParameterisation *pParam; 584 G4VPVParameterisation *pParam; 622 G4LogicalVolume *motherLogical; 585 G4LogicalVolume *motherLogical; 623 G4VSolid *pSolid; 586 G4VSolid *pSolid; 624 G4ThreeVector samplePoint; 587 G4ThreeVector samplePoint; 625 G4int voxelNoDaughters, replicaNo; 588 G4int voxelNoDaughters, replicaNo; 626 589 627 motherPhysical = history.GetTopVolume(); 590 motherPhysical = history.GetTopVolume(); 628 motherLogical = motherPhysical->GetLogicalVo 591 motherLogical = motherPhysical->GetLogicalVolume(); 629 motherVoxelHeader = motherLogical->GetVoxelH 592 motherVoxelHeader = motherLogical->GetVoxelHeader(); 630 593 631 // Find the voxel containing the point 594 // Find the voxel containing the point 632 // 595 // 633 motherVoxelNode = ParamVoxelLocate(motherVox 596 motherVoxelNode = ParamVoxelLocate(motherVoxelHeader,localPoint); 634 597 635 voxelNoDaughters = (G4int)motherVoxelNode->G << 598 voxelNoDaughters = motherVoxelNode->GetNoContained(); 636 if ( voxelNoDaughters==0 ) { return false; 599 if ( voxelNoDaughters==0 ) { return false; } 637 600 638 pPhysical = motherLogical->GetDaughter(0); 601 pPhysical = motherLogical->GetDaughter(0); 639 pParam = pPhysical->GetParameterisation(); 602 pParam = pPhysical->GetParameterisation(); 640 603 641 // Save parent history in touchable history 604 // Save parent history in touchable history 642 // ... for use as parent t-h in ComputeMat 605 // ... for use as parent t-h in ComputeMaterial method of param 643 // 606 // 644 G4TouchableHistory parentTouchable( history 607 G4TouchableHistory parentTouchable( history ); 645 608 646 // Search replicated daughter volume 609 // Search replicated daughter volume 647 // 610 // 648 for ( auto sampleNo=voxelNoDaughters-1; samp << 611 for ( register int sampleNo=voxelNoDaughters-1; sampleNo>=0; sampleNo-- ) 649 { 612 { 650 replicaNo = motherVoxelNode->GetVolume(sam 613 replicaNo = motherVoxelNode->GetVolume(sampleNo); 651 if ( (replicaNo!=blockedNum) || (pPhysical 614 if ( (replicaNo!=blockedNum) || (pPhysical!=blockedVol) ) 652 { 615 { 653 // Obtain solid (as it can vary) and obt 616 // Obtain solid (as it can vary) and obtain its parameters 654 // 617 // 655 pSolid = IdentifyAndPlaceSolid( replicaN 618 pSolid = IdentifyAndPlaceSolid( replicaNo, pPhysical, pParam ); 656 619 657 // Setup history 620 // Setup history 658 // 621 // 659 history.NewLevel(pPhysical, kParameteris 622 history.NewLevel(pPhysical, kParameterised, replicaNo); 660 samplePoint = history.GetTopTransform(). 623 samplePoint = history.GetTopTransform().TransformPoint(globalPoint); 661 if ( !G4AuxiliaryNavServices::CheckPoint 624 if ( !G4AuxiliaryNavServices::CheckPointOnSurface( pSolid, samplePoint, 662 globalDirection, history.GetTopTra 625 globalDirection, history.GetTopTransform(), pLocatedOnEdge) ) 663 { 626 { 664 history.BackLevel(); 627 history.BackLevel(); 665 } 628 } 666 else 629 else 667 { 630 { 668 // Enter this daughter 631 // Enter this daughter 669 // 632 // 670 localPoint = samplePoint; 633 localPoint = samplePoint; 671 634 672 // Set the correct copy number in phys 635 // Set the correct copy number in physical 673 // 636 // 674 pPhysical->SetCopyNo(replicaNo); 637 pPhysical->SetCopyNo(replicaNo); 675 638 676 // Set the correct solid and material 639 // Set the correct solid and material in Logical Volume 677 // 640 // 678 G4LogicalVolume *pLogical = pPhysical- 641 G4LogicalVolume *pLogical = pPhysical->GetLogicalVolume(); 679 pLogical->SetSolid(pSolid); 642 pLogical->SetSolid(pSolid); 680 pLogical->UpdateMaterial(pParam->Compu 643 pLogical->UpdateMaterial(pParam->ComputeMaterial(replicaNo, 681 pPhysical, &p 644 pPhysical, &parentTouchable) ); 682 return true; 645 return true; 683 } 646 } 684 } 647 } 685 } 648 } 686 return false; 649 return false; 687 } << 688 << 689 void G4ParameterisedNavigation::RelocateWithin << 690 << 691 { << 692 auto motherLogical = motherPhysical->GetLogi << 693 << 694 /* this should only be called on parameteriz << 695 assert(motherPhysical->GetRegularStructureId << 696 assert(motherLogical->GetNoDaughters() == 1) << 697 << 698 if ( auto pVoxelHeader = motherLogical->GetV << 699 ParamVoxelLocate( pVoxelHeader, localPoint << 700 } 650 } 701 651