Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4MultiLevelLocator.cc 99915 2016-10-11 09:24:43Z gcosmo $ >> 27 // 26 // Class G4MultiLevelLocator implementation 28 // Class G4MultiLevelLocator implementation 27 // 29 // 28 // 27.10.08 - Tatiana Nikitina. 30 // 27.10.08 - Tatiana Nikitina. 29 // 04.10.11 - John Apostolakis, revised conver 31 // 04.10.11 - John Apostolakis, revised convergence to use Surface Normal 30 // ------------------------------------------- 32 // --------------------------------------------------------------------------- 31 33 32 #include <iomanip> 34 #include <iomanip> 33 35 34 #include "G4ios.hh" 36 #include "G4ios.hh" 35 #include "G4MultiLevelLocator.hh" 37 #include "G4MultiLevelLocator.hh" 36 #include "G4LocatorChangeRecord.hh" << 38 37 #include "G4LocatorChangeLogger.hh" << 38 39 39 G4MultiLevelLocator::G4MultiLevelLocator(G4Nav 40 G4MultiLevelLocator::G4MultiLevelLocator(G4Navigator *theNavigator) 40 : G4VIntersectionLocator(theNavigator) << 41 : G4VIntersectionLocator(theNavigator), >> 42 fMaxSteps(10000), // Very loose - allows many steps (looping will be rare) >> 43 fWarnSteps(1000), // >> 44 fNumCalls(0), >> 45 fNumAdvanceFull(0.), fNumAdvanceGood(0), fNumAdvanceTrials(0) 41 { 46 { 42 // In case of too slow progress in finding I 47 // In case of too slow progress in finding Intersection Point 43 // intermediates Points on the Track must be 48 // intermediates Points on the Track must be stored. 44 // Initialise the array of Pointers [max_dep 49 // Initialise the array of Pointers [max_depth+1] to do this 45 50 46 G4ThreeVector zeroV(0.0,0.0,0.0); 51 G4ThreeVector zeroV(0.0,0.0,0.0); 47 for (auto & idepth : ptrInterMedFT) << 52 for (G4int idepth=0; idepth<max_depth+1; idepth++ ) 48 { 53 { 49 idepth = new G4FieldTrack( zeroV, zeroV, 0 << 54 ptrInterMedFT[ idepth ] = new G4FieldTrack( zeroV, zeroV, 0., 0., 0., 0.); 50 } 55 } 51 56 52 if (fCheckMode) << 57 #ifdef G4DEBUG_FIELD 53 { << 58 // Trial values Loose Tight 54 // Trial values Loose Mediu << 59 // To happen: Infrequent Often 55 // To happen: Infrequent Occas << 60 SetMaxSteps(50); // 300 25 56 SetMaxSteps(150); // 300 85 << 61 SetWarnSteps(40); // 250 15 57 SetWarnSteps(80); // 250 60 << 62 #endif 58 } << 59 } 63 } 60 64 61 G4MultiLevelLocator::~G4MultiLevelLocator() 65 G4MultiLevelLocator::~G4MultiLevelLocator() 62 { 66 { 63 for (auto & idepth : ptrInterMedFT) << 67 for ( G4int idepth=0; idepth<max_depth+1; idepth++) 64 { 68 { 65 delete idepth; << 69 delete ptrInterMedFT[idepth]; 66 } 70 } 67 #ifdef G4DEBUG_FIELD 71 #ifdef G4DEBUG_FIELD 68 ReportStatistics(); 72 ReportStatistics(); 69 #endif 73 #endif 70 } 74 } 71 75 72 76 73 // ------------------------------------------- 77 // -------------------------------------------------------------------------- 74 // G4bool G4PropagatorInField::LocateIntersect 78 // G4bool G4PropagatorInField::LocateIntersectionPoint( 75 // const G4FieldTrack& CurveStart 79 // const G4FieldTrack& CurveStartPointVelocity, // A 76 // const G4FieldTrack& CurveEndPo 80 // const G4FieldTrack& CurveEndPointVelocity, // B 77 // const G4ThreeVector& TrialPoint 81 // const G4ThreeVector& TrialPoint, // E 78 // G4FieldTrack& Intersecte 82 // G4FieldTrack& IntersectedOrRecalculated // Output 79 // G4bool& recalculat 83 // G4bool& recalculated ) // Out 80 // ------------------------------------------- 84 // -------------------------------------------------------------------------- 81 // 85 // 82 // Function that returns the intersection of t 86 // Function that returns the intersection of the true path with the surface 83 // of the current volume (either the external 87 // of the current volume (either the external one or the inner one with one 84 // of the daughters: 88 // of the daughters: 85 // 89 // 86 // A = Initial point 90 // A = Initial point 87 // B = another point 91 // B = another point 88 // 92 // 89 // Both A and B are assumed to be on the true 93 // Both A and B are assumed to be on the true path: 90 // 94 // 91 // E is the first point of intersection of 95 // E is the first point of intersection of the chord AB with 92 // a volume other than A (on the surface 96 // a volume other than A (on the surface of A or of a daughter) 93 // 97 // 94 // Convention of Use : 98 // Convention of Use : 95 // i) If it returns "true", then Intersect 99 // i) If it returns "true", then IntersectionPointVelocity is set 96 // to the approximate intersection point 100 // to the approximate intersection point. 97 // ii) If it returns "false", no intersecti 101 // ii) If it returns "false", no intersection was found. 98 // Potential reasons: 102 // Potential reasons: 99 // a) no segment found an intersection 103 // a) no segment found an intersection 100 // b) too many steps were required - af 104 // b) too many steps were required - after that it abandoned the effort 101 // and is returning how far it could 105 // and is returning how far it could go. (New - 29 Oct 2015) 102 // (If so, it must set 'recalculated 106 // (If so, it must set 'recalculated' to true.) 103 // TODO/idea: add a new flag: 'unfinish 107 // TODO/idea: add a new flag: 'unfinished' to identify these cases. 104 // 108 // 105 // IntersectedOrRecalculated means diff 109 // IntersectedOrRecalculated means different things: 106 // a) if it is the same curve lenght al 110 // a) if it is the same curve lenght along, it is a revision of the 107 // original enpdoint due to the nee 111 // original enpdoint due to the need for re-integration. 108 // b) if it is at a shorter curve lengt 112 // b) if it is at a shorter curve length, it is 'end of what it could do' 109 // i.e. as far as it could go, becau 113 // i.e. as far as it could go, because it took too many steps! 110 // Note: IntersectedOrRecalculated is v 114 // Note: IntersectedOrRecalculated is valid only if 'recalculated' is 111 // 'true'. 115 // 'true'. 112 // ------------------------------------------- 116 // -------------------------------------------------------------------------- 113 // NOTE: implementation taken from G4Propagato 117 // NOTE: implementation taken from G4PropagatorInField 114 // 118 // 115 G4bool G4MultiLevelLocator::EstimateIntersecti 119 G4bool G4MultiLevelLocator::EstimateIntersectionPoint( 116 const G4FieldTrack& CurveStart 120 const G4FieldTrack& CurveStartPointVelocity, // A 117 const G4FieldTrack& CurveEndPo 121 const G4FieldTrack& CurveEndPointVelocity, // B 118 const G4ThreeVector& TrialPoint 122 const G4ThreeVector& TrialPoint, // E 119 G4FieldTrack& Intersecte 123 G4FieldTrack& IntersectedOrRecalculatedFT, // Output 120 G4bool& recalculat 124 G4bool& recalculatedEndPoint, // Out 121 G4double& previousSa 125 G4double& previousSafety, // In/Out 122 G4ThreeVector& previousSf 126 G4ThreeVector& previousSftOrigin) // In/Out 123 { 127 { 124 // Find Intersection Point ( A, B, E ) of t 128 // Find Intersection Point ( A, B, E ) of true path AB - start at E. 125 const char* MethodName= "G4MultiLevelLocator 129 const char* MethodName= "G4MultiLevelLocator::EstimateIntersectionPoint()"; 126 130 127 G4bool found_approximate_intersection = fals 131 G4bool found_approximate_intersection = false; 128 G4bool there_is_no_intersection = fals 132 G4bool there_is_no_intersection = false; 129 << 133 130 G4FieldTrack CurrentA_PointVelocity = Curve 134 G4FieldTrack CurrentA_PointVelocity = CurveStartPointVelocity; 131 G4FieldTrack CurrentB_PointVelocity = Curve 135 G4FieldTrack CurrentB_PointVelocity = CurveEndPointVelocity; 132 G4ThreeVector CurrentE_Point = TrialPoint; 136 G4ThreeVector CurrentE_Point = TrialPoint; 133 G4bool validNormalAtE = false; 137 G4bool validNormalAtE = false; 134 G4ThreeVector NormalAtEntry; 138 G4ThreeVector NormalAtEntry; 135 139 136 G4FieldTrack ApproxIntersecPointV(CurveEndP 140 G4FieldTrack ApproxIntersecPointV(CurveEndPointVelocity); // FT-Def-Construct >> 141 // G4bool validApproxIntPV= false; // Is it current: valid and up-to-date? 137 G4bool validIntersectP= true; // Is 142 G4bool validIntersectP= true; // Is it current ? 138 G4double NewSafety = 0.0; 143 G4double NewSafety = 0.0; 139 G4bool last_AF_intersection = false; 144 G4bool last_AF_intersection = false; 140 145 141 auto integrDriver = GetChordFinderFor()-> << 146 // G4bool final_section= true; // Shows whether current section is last 142 G4bool driverReIntegrates = integrDriver->D << 147 // (i.e. B=full end) 143 << 144 G4bool first_section = true; 148 G4bool first_section = true; >> 149 145 recalculatedEndPoint = false; 150 recalculatedEndPoint = false; >> 151 146 G4bool restoredFullEndpoint = false; 152 G4bool restoredFullEndpoint = false; 147 153 148 unsigned int substep_no = 0; 154 unsigned int substep_no = 0; 149 155 150 // Statistics for substeps 156 // Statistics for substeps 151 static G4ThreadLocal unsigned int max_no_see << 157 // 152 << 158 static G4ThreadLocal unsigned int max_no_seen= 0; 153 #ifdef G4DEBUG_FIELD << 154 unsigned int trigger_substepno_print = 0; << 155 const G4double tolerance = 1.0e-8 * CLHEP::m << 156 unsigned int biggest_depth = 0; << 157 // using kInitialisingCL = G4LocatorChange << 158 #endif << 159 << 160 // Log the location, iteration of changes in << 161 //------------------------------------------ << 162 static G4ThreadLocal G4LocatorChangeLogger e << 163 endChangeB("EndPointB"), recApproxPoint("A << 164 pointH_logger("Trial points 'E': position, << 165 unsigned int eventCount = 0; << 166 << 167 if (fCheckMode) << 168 { << 169 // Clear previous call's data << 170 endChangeA.clear(); << 171 endChangeB.clear(); << 172 recApproxPoint.clear(); << 173 pointH_logger.clear(); << 174 << 175 // Record the initialisation << 176 ++eventCount; << 177 endChangeA.AddRecord( G4LocatorChangeRecor << 178 eventCount, CurrentA << 179 endChangeB.AddRecord( G4LocatorChangeRecor << 180 eventCount, CurrentB << 181 } << 182 159 183 //------------------------------------------ 160 //-------------------------------------------------------------------------- 184 // Algorithm for the case if progress in fo 161 // Algorithm for the case if progress in founding intersection is too slow. 185 // Process is defined too slow if after N=p 162 // Process is defined too slow if after N=param_substeps advances on the 186 // path, it will be only 'fraction_done' of 163 // path, it will be only 'fraction_done' of the total length. 187 // In this case the remaining length is div 164 // In this case the remaining length is divided in two half and 188 // the loop is restarted for each half. 165 // the loop is restarted for each half. 189 // If progress is still too slow, the divis 166 // If progress is still too slow, the division in two halfs continue 190 // until 'max_depth'. 167 // until 'max_depth'. 191 //------------------------------------------ 168 //-------------------------------------------------------------------------- 192 169 193 const G4int param_substeps = 5; // Test val << 170 const G4int param_substeps=5; // Test value for the maximum number 194 // of subst << 171 // of substeps 195 const G4double fraction_done = 0.3; << 172 const G4double fraction_done=0.3; 196 173 197 G4bool Second_half = false; // First half 174 G4bool Second_half = false; // First half or second half of divided step 198 175 199 // We need to know this for the 'final_secti 176 // We need to know this for the 'final_section': 200 // real 'final_section' or first half 'final 177 // real 'final_section' or first half 'final_section' 201 // In algorithm it is considered that the 'S 178 // In algorithm it is considered that the 'Second_half' is true 202 // and it becomes false only if we are in th 179 // and it becomes false only if we are in the first-half of level 203 // depthness or if we are in the first secti 180 // depthness or if we are in the first section 204 181 205 unsigned int depth = 0; // Depth counts subd << 182 unsigned int depth=0; // Depth counts subdivisions of initial step made 206 ++fNumCalls; << 183 fNumCalls++; 207 184 208 NormalAtEntry = GetSurfaceNormal(CurrentE_Po << 185 #ifdef G4DEBUG_FIELD >> 186 unsigned int trigger_substepno_print=0; >> 187 const G4double tolerance = 1.0e-8 * CLHEP::mm; >> 188 unsigned int biggest_depth= 0; 209 189 210 if (fCheckMode) << 190 #if (G4DEBUG_FIELD>1) >> 191 G4ThreeVector StartPosition= CurveStartPointVelocity.GetPosition(); >> 192 if( (TrialPoint - StartPosition).mag2() < tolerance*tolerance) 211 { 193 { 212 pointH_logger.AddRecord( G4LocatorChangeRe << 194 ReportImmediateHit( MethodName, StartPosition, TrialPoint, 213 substep_no, event << 195 tolerance, fNumCalls); 214 G4FieldTrack( Cur << 215 0., << 216 #if (G4DEBUG_FIELD>1) << 217 G4ThreeVector StartPosition = CurveStartP << 218 if( (TrialPoint - StartPosition).mag2() < << 219 { << 220 ReportImmediateHit( MethodName, StartPo << 221 tolerance, fNumCall << 222 } << 223 #endif << 224 } 196 } >> 197 #endif >> 198 #endif >> 199 >> 200 NormalAtEntry = GetSurfaceNormal(CurrentE_Point, validNormalAtE); 225 201 226 // Intermediates Points on the Track = Subdi 202 // Intermediates Points on the Track = Subdivided Points must be stored. 227 // Give the initial values to 'InterMedFt' 203 // Give the initial values to 'InterMedFt' 228 // Important is 'ptrInterMedFT[0]', it saves 204 // Important is 'ptrInterMedFT[0]', it saves the 'EndCurvePoint' 229 // 205 // 230 *ptrInterMedFT[0] = CurveEndPointVelocity; 206 *ptrInterMedFT[0] = CurveEndPointVelocity; 231 for ( auto idepth=1; idepth<max_depth+1; ++i << 207 for (G4int idepth=1; idepth<max_depth+1; idepth++ ) 232 { 208 { 233 *ptrInterMedFT[idepth] = CurveStartPointVe << 209 *ptrInterMedFT[idepth]=CurveStartPointVelocity; 234 } 210 } 235 211 236 // Final_section boolean store 212 // Final_section boolean store 237 // 213 // 238 G4bool fin_section_depth[max_depth]; 214 G4bool fin_section_depth[max_depth]; 239 for (bool & idepth : fin_section_depth) << 215 for (G4int idepth=0; idepth<max_depth; idepth++ ) 240 { 216 { 241 idepth = true; << 217 fin_section_depth[idepth]=true; 242 } 218 } 243 // 'SubStartPoint' is needed to calculate th 219 // 'SubStartPoint' is needed to calculate the length of the divided step 244 // 220 // 245 G4FieldTrack SubStart_PointVelocity = CurveS 221 G4FieldTrack SubStart_PointVelocity = CurveStartPointVelocity; 246 222 247 do // Loop checking, 07.10.2016, J.Apostola 223 do // Loop checking, 07.10.2016, J.Apostolakis 248 { 224 { 249 unsigned int substep_no_p = 0; 225 unsigned int substep_no_p = 0; 250 G4bool sub_final_section = false; // the s 226 G4bool sub_final_section = false; // the same as final_section, 251 // but f 227 // but for 'sub_section' 252 SubStart_PointVelocity = CurrentA_PointVel 228 SubStart_PointVelocity = CurrentA_PointVelocity; 253 229 254 do // Loop checking, 07.10.2016, J.Apostol 230 do // Loop checking, 07.10.2016, J.Apostolakis 255 { // REPEAT param 231 { // REPEAT param 256 G4ThreeVector Point_A = CurrentA_PointVe 232 G4ThreeVector Point_A = CurrentA_PointVelocity.GetPosition(); 257 G4ThreeVector Point_B = CurrentB_PointVe 233 G4ThreeVector Point_B = CurrentB_PointVelocity.GetPosition(); 258 234 259 #ifdef G4DEBUG_FIELD << 260 const G4double lenA = CurrentA_PointVelo << 261 const G4double lenB = CurrentB_PointVelo << 262 G4double curv_lenAB = lenB - lenA; << 263 G4double distAB = (Point_B - Point_A << 264 if( curv_lenAB < distAB * ( 1. - 10.*fiE << 265 { << 266 G4cerr << "ERROR> (Start) Point A coin << 267 << "MLL: iters = " << substep_n << 268 G4long op=G4cerr.precision(6); << 269 G4cerr << " Difference = " << di << 270 << " exceeds limit of relative << 271 << " i.e. limit = " << 10 * fi << 272 G4cerr.precision(9); << 273 G4cerr << " Len A, B = " << len << 274 << " Position A: " << Po << 275 << " Position B: " << Po << 276 G4cerr.precision(op); << 277 // G4LocatorChangeRecord::ReportVector << 278 // G4cerr<<"EndPoints A(start) and B(e << 279 if (fCheckMode) << 280 { << 281 G4LocatorChangeLogger::ReportEndChan << 282 } << 283 } << 284 << 285 if( !validIntersectP ) << 286 { << 287 G4ExceptionDescription errmsg; << 288 errmsg << "Assertion FAILURE - invalid << 289 << substep_no << " call: " << f << 290 if (fCheckMode) << 291 { << 292 G4LocatorChangeRecord::ReportEndChan << 293 } << 294 G4Exception("G4MultiLevelLocator::Esti << 295 JustWarning, errmsg); << 296 } << 297 #endif << 298 << 299 // F = a point on true AB path close to 235 // F = a point on true AB path close to point E 300 // (the closest if possible) 236 // (the closest if possible) 301 // 237 // 302 ApproxIntersecPointV = GetChordFinderFor 238 ApproxIntersecPointV = GetChordFinderFor() 303 ->ApproxCurvePoin 239 ->ApproxCurvePointV( CurrentA_PointVelocity, 304 240 CurrentB_PointVelocity, 305 241 CurrentE_Point, 306 << 242 GetEpsilonStepFor()); 307 // The above method is the key & most 243 // The above method is the key & most intuitive part ... 308 244 309 #ifdef G4DEBUG_FIELD << 245 // validApproxIntPV = true; 310 recApproxPoint.push_back(G4LocatorChange << 311 << 312 G4double lenIntsc= ApproxIntersecPointV. << 313 G4double checkVsEnd= lenB - lenIntsc; << 314 246 315 if( lenIntsc > lenB ) << 247 #ifdef G4DEBUG_FIELD >> 248 if( ApproxIntersecPointV.GetCurveLength() > >> 249 CurrentB_PointVelocity.GetCurveLength() * (1.0 + tolerance) ) 316 { 250 { 317 std::ostringstream errmsg; << 251 G4Exception(MethodName, "GeomNav0003", FatalException, 318 errmsg.precision(17); << 252 "Intermediate F point is past end B point" ); 319 G4double ratio = checkVsEnd / lenB; << 320 G4double ratioTol = std::fabs(ratio) / << 321 errmsg << "Intermediate F point is pas << 322 << " l( intersection ) = " << lenInt << 323 << " l( endpoint ) = " << lenB << 324 errmsg.precision(8); << 325 errmsg << " l_end - l_inters = " << << 326 << " / l_end = " << rati << 327 << " ratio / tolerance = " << rati << 328 if( ratioTol < 1.0 ) << 329 G4Exception(MethodName, "GeomNav0003 << 330 else << 331 G4Exception(MethodName, "GeomNav0003 << 332 } 253 } 333 #endif 254 #endif 334 255 335 G4ThreeVector CurrentF_Point= ApproxInte 256 G4ThreeVector CurrentF_Point= ApproxIntersecPointV.GetPosition(); 336 257 337 // First check whether EF is small - the 258 // First check whether EF is small - then F is a good approx. point 338 // Calculate the length and direction of 259 // Calculate the length and direction of the chord AF 339 // 260 // 340 G4ThreeVector ChordEF_Vector = CurrentF 261 G4ThreeVector ChordEF_Vector = CurrentF_Point - CurrentE_Point; 341 262 342 G4ThreeVector NewMomentumDir = ApproxIn << 263 G4ThreeVector NewMomentumDir= ApproxIntersecPointV.GetMomentumDir(); 343 G4double MomDir_dot_Norm = NewMome << 264 G4double MomDir_dot_Norm= NewMomentumDir.dot( NormalAtEntry ) ; 344 << 265 345 #ifdef G4DEBUG_FIELD 266 #ifdef G4DEBUG_FIELD 346 if( fVerboseLevel > 3 ) 267 if( fVerboseLevel > 3 ) 347 { 268 { 348 G4ThreeVector ChordAB = Po 269 G4ThreeVector ChordAB = Point_B - Point_A; 349 G4double ABchord_length = Ch 270 G4double ABchord_length = ChordAB.mag(); 350 G4double MomDir_dot_ABchord; 271 G4double MomDir_dot_ABchord; 351 MomDir_dot_ABchord = (1.0 / ABchord_l 272 MomDir_dot_ABchord = (1.0 / ABchord_length) 352 * NewMomentumDir.d 273 * NewMomentumDir.dot( ChordAB ); 353 G4VIntersectionLocator::ReportTrialSt 274 G4VIntersectionLocator::ReportTrialStep( substep_no, ChordAB, 354 ChordEF_Vector, NewMomentumDir, 275 ChordEF_Vector, NewMomentumDir, NormalAtEntry, validNormalAtE ); 355 G4cout << " dot( MomentumDir, ABchord 276 G4cout << " dot( MomentumDir, ABchord_unit ) = " 356 << MomDir_dot_ABchord << G4end 277 << MomDir_dot_ABchord << G4endl; 357 } 278 } 358 #endif 279 #endif 359 G4bool adequate_angle = 280 G4bool adequate_angle = 360 ( MomDir_dot_Norm >= 0.0 ) // Can 281 ( MomDir_dot_Norm >= 0.0 ) // Can use ( > -epsilon) instead 361 || (! validNormalAtE ); // Inv 282 || (! validNormalAtE ); // Invalid, cannot use this criterion 362 G4double EF_dist2 = ChordEF_Vector.mag2( 283 G4double EF_dist2 = ChordEF_Vector.mag2(); 363 if ( ( EF_dist2 <= sqr(fiDeltaIntersecti 284 if ( ( EF_dist2 <= sqr(fiDeltaIntersection) && ( adequate_angle ) ) 364 || ( EF_dist2 <= kCarTolerance*kCarTol 285 || ( EF_dist2 <= kCarTolerance*kCarTolerance ) ) 365 { 286 { 366 found_approximate_intersection = true; 287 found_approximate_intersection = true; 367 288 368 // Create the "point" return value 289 // Create the "point" return value 369 // 290 // 370 IntersectedOrRecalculatedFT = ApproxIn 291 IntersectedOrRecalculatedFT = ApproxIntersecPointV; 371 IntersectedOrRecalculatedFT.SetPositio 292 IntersectedOrRecalculatedFT.SetPosition( CurrentE_Point ); 372 293 373 if ( GetAdjustementOfFoundIntersection 294 if ( GetAdjustementOfFoundIntersection() ) 374 { 295 { 375 // Try to Get Correction of Intersec 296 // Try to Get Correction of IntersectionPoint using SurfaceNormal() 376 // 297 // 377 G4ThreeVector IP; 298 G4ThreeVector IP; 378 G4ThreeVector MomentumDir=ApproxInte 299 G4ThreeVector MomentumDir=ApproxIntersecPointV.GetMomentumDirection(); 379 G4bool goodCorrection = AdjustmentOf 300 G4bool goodCorrection = AdjustmentOfFoundIntersection(Point_A, 380 CurrentE_P 301 CurrentE_Point, CurrentF_Point, MomentumDir, 381 last_AF_in 302 last_AF_intersection, IP, NewSafety, 382 previousSa 303 previousSafety, previousSftOrigin ); 383 if ( goodCorrection ) 304 if ( goodCorrection ) 384 { 305 { 385 IntersectedOrRecalculatedFT = Appr 306 IntersectedOrRecalculatedFT = ApproxIntersecPointV; 386 IntersectedOrRecalculatedFT.SetPos 307 IntersectedOrRecalculatedFT.SetPosition(IP); 387 } 308 } 388 } 309 } 389 // Note: in order to return a point on 310 // Note: in order to return a point on the boundary, 390 // we must return E. But it is F 311 // we must return E. But it is F on the curve. 391 // So we must "cheat": we are us 312 // So we must "cheat": we are using the position at point E 392 // and the velocity at point F ! 313 // and the velocity at point F !!! 393 // 314 // 394 // This must limit the length we can a 315 // This must limit the length we can allow for displacement! 395 } 316 } 396 else // E is NOT close enough to the cu 317 else // E is NOT close enough to the curve (ie point F) 397 { 318 { 398 // Check whether any volumes are encou 319 // Check whether any volumes are encountered by the chord AF 399 // ----------------------------------- 320 // --------------------------------------------------------- 400 // First relocate to restore any Voxel 321 // First relocate to restore any Voxel etc information 401 // in the Navigator before calling Com 322 // in the Navigator before calling ComputeStep() 402 // 323 // 403 GetNavigatorFor()->LocateGlobalPointWi 324 GetNavigatorFor()->LocateGlobalPointWithinVolume( Point_A ); 404 325 405 G4ThreeVector PointG; // Candidate i 326 G4ThreeVector PointG; // Candidate intersection point 406 G4double stepLengthAF; 327 G4double stepLengthAF; 407 G4bool Intersects_FB = false; << 408 G4bool Intersects_AF = IntersectChord( 328 G4bool Intersects_AF = IntersectChord( Point_A, CurrentF_Point, 409 329 NewSafety, previousSafety, 410 330 previousSftOrigin, 411 331 stepLengthAF, 412 332 PointG ); 413 last_AF_intersection = Intersects_AF; 333 last_AF_intersection = Intersects_AF; 414 if( Intersects_AF ) 334 if( Intersects_AF ) 415 { 335 { 416 // G is our new Candidate for the in 336 // G is our new Candidate for the intersection point. 417 // It replaces "E" and we will see << 337 // It replaces "E" and we will repeat the test to see if 418 CurrentB_PointVelocity = ApproxInter << 338 // it is a good enough approximate point for us. 419 CurrentE_Point = PointG; << 339 // B <- F >> 340 // E <- G >> 341 // >> 342 CurrentB_PointVelocity = ApproxIntersecPointV; >> 343 CurrentE_Point = PointG; 420 344 421 validIntersectP = true; // 'E' ha << 345 validIntersectP= true; // 'E' has been updated. >> 346 // validApproxIntPV= false; // 'F' is no longer valid, as B changed 422 347 423 G4bool validNormalLast; 348 G4bool validNormalLast; 424 NormalAtEntry = GetSurfaceNormal( P 349 NormalAtEntry = GetSurfaceNormal( PointG, validNormalLast ); 425 validNormalAtE = validNormalLast; 350 validNormalAtE = validNormalLast; 426 351 427 // As we move point B, must take car << 352 // By moving point B, must take care if current 428 // AF has no intersection to try cur 353 // AF has no intersection to try current FB!! 429 fin_section_depth[depth] = false; << 354 // >> 355 fin_section_depth[depth]=false; 430 356 431 if (fCheckMode) << 432 { << 433 ++eventCount; << 434 endChangeB.push_back( << 435 G4LocatorChangeRecord(G4LocatorC << 436 substep_no, event << 437 } << 438 #ifdef G4VERBOSE 357 #ifdef G4VERBOSE 439 if( fVerboseLevel > 3 ) 358 if( fVerboseLevel > 3 ) 440 { 359 { 441 G4cout << "G4PiF::LI> Investigatin 360 G4cout << "G4PiF::LI> Investigating intermediate point" 442 << " at s=" << ApproxInters 361 << " at s=" << ApproxIntersecPointV.GetCurveLength() 443 << " on way to full s=" 362 << " on way to full s=" 444 << CurveEndPointVelocity.Ge 363 << CurveEndPointVelocity.GetCurveLength() << G4endl; 445 } 364 } 446 #endif 365 #endif 447 } 366 } 448 else // not Intersects_AF 367 else // not Intersects_AF 449 { 368 { 450 // In this case: 369 // In this case: 451 // There is NO intersection of AF wi 370 // There is NO intersection of AF with a volume boundary. 452 // We must continue the search in th 371 // We must continue the search in the segment FB! 453 // 372 // 454 GetNavigatorFor()->LocateGlobalPoint 373 GetNavigatorFor()->LocateGlobalPointWithinVolume( CurrentF_Point ); 455 374 456 G4double stepLengthFB; 375 G4double stepLengthFB; 457 G4ThreeVector PointH; 376 G4ThreeVector PointH; 458 377 459 // Check whether any volumes are enc 378 // Check whether any volumes are encountered by the chord FB 460 // --------------------------------- 379 // --------------------------------------------------------- 461 380 462 Intersects_FB = IntersectChord( Curr << 381 G4bool Intersects_FB = IntersectChord( CurrentF_Point, Point_B, 463 NewS << 382 NewSafety, previousSafety, 464 prev << 383 previousSftOrigin, 465 step << 384 stepLengthFB, 466 Poin << 385 PointH ); 467 if( Intersects_FB ) 386 if( Intersects_FB ) 468 { 387 { 469 // There is an intersection of FB 388 // There is an intersection of FB with a volume boundary 470 // H <- First Intersection of Chor 389 // H <- First Intersection of Chord FB 471 390 472 // H is our new Candidate for the 391 // H is our new Candidate for the intersection point. 473 // It replaces "E" and we will re 392 // It replaces "E" and we will repeat the test to see if 474 // it is a good enough approximate 393 // it is a good enough approximate point for us. 475 394 476 // Note that F must be in volume v 395 // Note that F must be in volume volA (the same as A) 477 // (otherwise AF would meet a volu 396 // (otherwise AF would meet a volume boundary!) 478 // A <- F 397 // A <- F 479 // E <- H 398 // E <- H 480 // 399 // 481 CurrentA_PointVelocity = ApproxInt 400 CurrentA_PointVelocity = ApproxIntersecPointV; 482 CurrentE_Point = PointH; 401 CurrentE_Point = PointH; 483 402 484 validIntersectP = true; // 'E' 403 validIntersectP = true; // 'E' has been updated. >> 404 // validApproxIntPV = false; // 'F' is no longer valid, as A changed 485 405 486 G4bool validNormalH; 406 G4bool validNormalH; 487 NormalAtEntry = GetSurfaceNormal( 407 NormalAtEntry = GetSurfaceNormal( PointH, validNormalH ); 488 validNormalAtE = validNormalH; << 408 validNormalAtE = validNormalH; 489 << 490 if (fCheckMode) << 491 { << 492 ++eventCount; << 493 endChangeA.push_back( << 494 G4LocatorChangeRecord(G4Locat << 495 substep_no, event << 496 G4FieldTrack intersectH_pn('0'); << 497 << 498 intersectH_pn.SetPosition( Point << 499 intersectH_pn.SetMomentum( Norma << 500 pointH_logger.AddRecord(G4Locato << 501 substep_no << 502 } << 503 } 409 } 504 else // not Intersects_FB 410 else // not Intersects_FB 505 { 411 { 506 validIntersectP = false; // Int << 412 if(fin_section_depth[depth]) 507 if( fin_section_depth[depth] ) << 508 { 413 { 509 // If B is the original endpoint 414 // If B is the original endpoint, this means that whatever 510 // volume(s) intersected the ori 415 // volume(s) intersected the original chord, none touch the 511 // smaller chords we have used. 416 // smaller chords we have used. 512 // The value of 'IntersectedOrRe 417 // The value of 'IntersectedOrRecalculatedFT' returned is 513 // likely not valid 418 // likely not valid 514 419 515 // Check on real final_section o 420 // Check on real final_section or SubEndSection 516 // 421 // 517 if( ((Second_half)&&(depth==0)) 422 if( ((Second_half)&&(depth==0)) || (first_section) ) 518 { 423 { 519 there_is_no_intersection = tru 424 there_is_no_intersection = true; // real final_section 520 } 425 } 521 else 426 else 522 { 427 { 523 // end of subsection, not real 428 // end of subsection, not real final section 524 // exit from the and go to the 429 // exit from the and go to the depth-1 level 525 substep_no_p = param_substeps+ 430 substep_no_p = param_substeps+2; // exit from the loop 526 431 527 // but 'Second_half' is still 432 // but 'Second_half' is still true because we need to find 528 // the 'CurrentE_point' for th 433 // the 'CurrentE_point' for the next loop 529 Second_half = true; 434 Second_half = true; 530 sub_final_section = true; 435 sub_final_section = true; 531 } 436 } 532 } 437 } 533 else 438 else 534 { 439 { 535 CurrentA_PointVelocity = Current 440 CurrentA_PointVelocity = CurrentB_PointVelocity; // Got to B 536 CurrentB_PointVelocity = (depth= 441 CurrentB_PointVelocity = (depth==0) ? CurveEndPointVelocity 537 442 : *ptrInterMedFT[depth] ; 538 SubStart_PointVelocity = Current 443 SubStart_PointVelocity = CurrentA_PointVelocity; 539 restoredFullEndpoint = true; 444 restoredFullEndpoint = true; 540 445 541 validIntersectP = false; // 'E' << 446 validIntersectP= false; // 'E' has NOT been updated. 542 << 447 // validApproxIntPV= false; // 'F' is no longer valid, A changed 543 if (fCheckMode) << 544 { << 545 ++eventCount; << 546 endChangeA.push_back( << 547 G4LocatorChangeRecord( << 548 G4LocatorChangeRecord::kNo << 549 substep_no, event << 550 endChangeB.push_back( << 551 G4LocatorChangeRecord ( << 552 G4LocatorChangeRecord::kNo << 553 substep_no, event << 554 } << 555 } 448 } 556 } // Endif (Intersects_FB) 449 } // Endif (Intersects_FB) 557 } // Endif (Intersects_AF) 450 } // Endif (Intersects_AF) 558 451 559 G4int errorEndPt = 0; // Default: no e << 452 G4FieldTrack RevisedB_FT= CurrentB_PointVelocity; 560 << 453 G4int errorEndPt; 561 G4bool recalculatedB= false; << 454 G4bool recalculatedB= CheckAndReEstimateEndpoint(CurrentA_PointVelocity, 562 if( driverReIntegrates ) << 455 CurrentB_PointVelocity, >> 456 RevisedB_FT, >> 457 errorEndPt ); >> 458 if( recalculatedB ) 563 { 459 { 564 G4FieldTrack RevisedB_FT = CurrentB_ << 460 CurrentB_PointVelocity= RevisedB_FT; // Use it ! 565 recalculatedB= CheckAndReEstimateEnd << 461 // Do not invalidate intersection F -- it is still roughly OK. 566 << 462 // 567 << 463 // The best course would be to invalidate (reset validIntersectP) 568 << 464 // BUT if we invalidate it, we must re-estimate it somewhere! 569 if( recalculatedB ) << 465 570 { << 466 // validApproxIntPV= false; // 'F' is no longer valid, as B changed 571 CurrentB_PointVelocity = RevisedB_ << 467 // validIntersectP= false; // 'E' has NOT been updated. 572 // Do not invalidate intersection << 573 // << 574 // The best course would be to inv << 575 // BUT if we invalidate it, we mus << 576 // validIntersectP = false; // << 577 468 578 if ( (fin_section_depth[depth]) << 469 if ( (fin_section_depth[depth]) // real final section 579 &&( first_section || ((Second_h << 470 &&( first_section || ((Second_half)&&(depth==0)) ) ) 580 { << 581 recalculatedEndPoint = true; << 582 IntersectedOrRecalculatedFT = Re << 583 // So that we can return it, if << 584 } << 585 // else << 586 // Move forward the other points << 587 // - or better flag it, so that << 588 // [ Implementation: a counter << 589 // => avoids extra work] << 590 } << 591 if (fCheckMode) << 592 { 471 { 593 ++eventCount; << 472 recalculatedEndPoint = true; 594 endChangeB.push_back( << 473 IntersectedOrRecalculatedFT = RevisedB_FT; 595 G4LocatorChangeRecord( G4Locator << 474 // So that we can return it, if it is the endpoint! 596 substep_n << 597 } << 598 } << 599 else << 600 { << 601 if( CurrentB_PointVelocity.GetCurveL << 602 < CurrentA_PointVelocity.GetCurveL << 603 { << 604 errorEndPt = 2; << 605 } 475 } 606 } << 476 // else >> 477 // Move forward the other points >> 478 // - or better flag it, so that they are re-computed when next used >> 479 // [ Implementation: a counter for # of recomputations >> 480 // => avoids extra work] 607 481 >> 482 } 608 if( errorEndPt > 1 ) // errorEndPt = 483 if( errorEndPt > 1 ) // errorEndPt = 1 is milder, just: len(B)=len(A) 609 { 484 { 610 std::ostringstream errmsg; << 485 std::ostringstream errmsg; 611 << 486 errmsg << "Location: " << MethodName 612 ReportReversedPoints(errmsg, << 487 << "- After EndIf(Intersects_AF)" << G4endl; 613 CurveStartPoint << 488 ReportReversedPoints(errmsg, 614 NewSafety, fiEp << 489 CurveStartPointVelocity, CurveEndPointVelocity, 615 CurrentA_PointV << 490 NewSafety, fiEpsilonStep, 616 SubStart_PointV << 491 CurrentA_PointVelocity, CurrentB_PointVelocity, 617 ApproxIntersecP << 492 SubStart_PointVelocity, CurrentE_Point, 618 << 493 ApproxIntersecPointV, substep_no, substep_no_p, depth); 619 if (fCheckMode) << 494 G4Exception(MethodName, "GeomNav0003", FatalException, errmsg); 620 { << 621 G4LocatorChangeRecord::ReportEndCh << 622 } << 623 << 624 errmsg << G4endl << " * Location: " << 625 << "- After EndIf(Intersects_ << 626 errmsg << " * Bool flags: Recalcula << 627 << " Intersects_AF = " << I << 628 << " Intersects_FB = " << I << 629 errmsg << " * Number of calls to MLL << 630 G4Exception(MethodName, "GeomNav0003 << 631 } 495 } 632 if( restoredFullEndpoint ) 496 if( restoredFullEndpoint ) 633 { 497 { 634 fin_section_depth[depth] = restoredF 498 fin_section_depth[depth] = restoredFullEndpoint; 635 restoredFullEndpoint = false; 499 restoredFullEndpoint = false; 636 } 500 } 637 } // EndIf ( E is close enough to the cu 501 } // EndIf ( E is close enough to the curve, ie point F. ) 638 // tests ChordAF_Vector.mag() <= maxim 502 // tests ChordAF_Vector.mag() <= maximum_lateral_displacement 639 503 640 #ifdef G4DEBUG_FIELD 504 #ifdef G4DEBUG_FIELD 641 if( trigger_substepno_print == 0) 505 if( trigger_substepno_print == 0) 642 { 506 { 643 trigger_substepno_print= fWarnSteps - 507 trigger_substepno_print= fWarnSteps - 20; 644 } 508 } 645 509 646 if( substep_no >= trigger_substepno_prin 510 if( substep_no >= trigger_substepno_print ) 647 { 511 { 648 G4cout << "Difficulty in converging in 512 G4cout << "Difficulty in converging in " << MethodName >> 513 << G4endl 649 << " Substep no = " << subst 514 << " Substep no = " << substep_no << G4endl; 650 if( substep_no == trigger_substepno_pr 515 if( substep_no == trigger_substepno_print ) 651 { 516 { 652 G4cout << " Start: "; << 653 printStatus( CurveStartPointVelocity 517 printStatus( CurveStartPointVelocity, CurveEndPointVelocity, 654 -1.0, NewSafety, 0 ); << 518 -1.0, NewSafety, 0); 655 if( fCheckMode ) { << 656 G4LocatorChangeRecord::ReportEndCh << 657 } else { << 658 G4cout << " ** For more informatio << 659 << "-- (it saves and can ou << 660 } << 661 } 519 } 662 G4cout << " Point A: "; << 520 G4cout << " State of point A: "; 663 printStatus( CurrentA_PointVelocity, C 521 printStatus( CurrentA_PointVelocity, CurrentA_PointVelocity, 664 -1.0, NewSafety, substep_ << 522 -1.0, NewSafety, substep_no-1); 665 G4cout << " Point B: "; << 523 G4cout << " State of point B: "; 666 printStatus( CurrentA_PointVelocity, C 524 printStatus( CurrentA_PointVelocity, CurrentB_PointVelocity, 667 -1.0, NewSafety, substep_ << 525 -1.0, NewSafety, substep_no); 668 } 526 } 669 #endif 527 #endif 670 ++substep_no; << 528 substep_no++; 671 ++substep_no_p; << 529 substep_no_p++; 672 530 673 } while ( ( ! found_approximate_intersect 531 } while ( ( ! found_approximate_intersection ) 674 && ( ! there_is_no_intersection ) 532 && ( ! there_is_no_intersection ) 675 && validIntersectP // New c << 676 && ( substep_no_p <= param_substep 533 && ( substep_no_p <= param_substeps) ); // UNTIL found or 677 534 // failed param substep 678 535 679 if( (!found_approximate_intersection) && ( 536 if( (!found_approximate_intersection) && (!there_is_no_intersection) ) 680 { 537 { 681 G4double did_len = std::abs( CurrentA_Po 538 G4double did_len = std::abs( CurrentA_PointVelocity.GetCurveLength() 682 - SubStart_PointVelocit 539 - SubStart_PointVelocity.GetCurveLength()); 683 G4double all_len = std::abs( CurrentB_Po 540 G4double all_len = std::abs( CurrentB_PointVelocity.GetCurveLength() 684 - SubStart_PointVelocit 541 - SubStart_PointVelocity.GetCurveLength()); 685 542 686 G4double distAB = -1; << 543 G4double distAB= -1; >> 544 G4ThreeVector PointGe; 687 // 545 // 688 // Is progress is too slow, and is it po 546 // Is progress is too slow, and is it possible to go deeper? 689 // If so, then *halve the step* 547 // If so, then *halve the step* 690 // ============== 548 // ============== 691 if( (did_len < fraction_done*all_len) 549 if( (did_len < fraction_done*all_len) 692 && (depth<max_depth) && (!sub_final_s 550 && (depth<max_depth) && (!sub_final_section) ) 693 { 551 { 694 #ifdef G4DEBUG_FIELD 552 #ifdef G4DEBUG_FIELD 695 static G4ThreadLocal unsigned int numS 553 static G4ThreadLocal unsigned int numSplits=0; // For debugging only 696 biggest_depth = std::max(depth, bigges << 554 biggest_depth= std::max(depth, biggest_depth); 697 ++numSplits; << 555 numSplits++; 698 #endif 556 #endif 699 Second_half = false; << 557 Second_half=false; 700 ++depth; << 558 depth++; 701 first_section = false; 559 first_section = false; 702 560 703 G4double Sub_len = (all_len-did_len)/( 561 G4double Sub_len = (all_len-did_len)/(2.); 704 G4FieldTrack midPoint = CurrentA_Point 562 G4FieldTrack midPoint = CurrentA_PointVelocity; >> 563 G4MagInt_Driver* integrDriver >> 564 = GetChordFinderFor()->GetIntegrationDriver(); 705 G4bool fullAdvance= 565 G4bool fullAdvance= 706 integrDriver->AccurateAdvance(midPo 566 integrDriver->AccurateAdvance(midPoint, Sub_len, fiEpsilonStep); 707 567 708 ++fNumAdvanceTrials; << 568 fNumAdvanceTrials++; 709 if( fullAdvance ) { ++fNumAdvanceFull << 569 if( fullAdvance ) { fNumAdvanceFull++; } 710 570 711 G4double lenAchieved= 571 G4double lenAchieved= 712 midPoint.GetCurveLength()-CurrentA_ 572 midPoint.GetCurveLength()-CurrentA_PointVelocity.GetCurveLength(); 713 573 714 const G4double adequateFraction = (1.0 574 const G4double adequateFraction = (1.0-CLHEP::perThousand); 715 G4bool goodAdvance = (lenAchieved >= a 575 G4bool goodAdvance = (lenAchieved >= adequateFraction * Sub_len); 716 if ( goodAdvance ) { ++fNumAdvanceGoo << 576 if ( goodAdvance ) { fNumAdvanceGood++; } 717 577 718 #ifdef G4DEBUG_FIELD 578 #ifdef G4DEBUG_FIELD 719 else // !goodAdvance 579 else // !goodAdvance 720 { 580 { 721 G4cout << "MLL> AdvanceChordLimited 581 G4cout << "MLL> AdvanceChordLimited not full at depth=" << depth 722 << " total length achieved 582 << " total length achieved = " << lenAchieved << " of " 723 << Sub_len << " fraction= " 583 << Sub_len << " fraction= "; 724 if (Sub_len != 0.0 ) { G4cout << le 584 if (Sub_len != 0.0 ) { G4cout << lenAchieved / Sub_len; } 725 else { G4cout << "D 585 else { G4cout << "DivByZero"; } 726 G4cout << " Good-enough fraction = 586 G4cout << " Good-enough fraction = " << adequateFraction; 727 G4cout << " Number of call to mll 587 G4cout << " Number of call to mll = " << fNumCalls 728 << " iteration " << subste 588 << " iteration " << substep_no 729 << " inner = " << substep_ 589 << " inner = " << substep_no_p << G4endl; 730 G4cout << " Epsilon of integration 590 G4cout << " Epsilon of integration = " << fiEpsilonStep << G4endl; 731 G4cout << " State at start is 591 G4cout << " State at start is = " << CurrentA_PointVelocity 732 << G4endl 592 << G4endl 733 << " at end (midpoint 593 << " at end (midpoint)= " << midPoint << G4endl; 734 G4cout << " Particle mass = " << m 594 G4cout << " Particle mass = " << midPoint.GetRestMass() << G4endl; 735 595 736 G4EquationOfMotion *equation = inte << 596 G4EquationOfMotion *equation >> 597 = integrDriver->GetStepper()->GetEquationOfMotion(); 737 ReportFieldValue( CurrentA_PointVel 598 ReportFieldValue( CurrentA_PointVelocity, "start", equation ); 738 ReportFieldValue( midPoint, "midPoi 599 ReportFieldValue( midPoint, "midPoint", equation ); 739 G4cout << " Original Start = " 600 G4cout << " Original Start = " 740 << CurveStartPointVelocity < 601 << CurveStartPointVelocity << G4endl; 741 G4cout << " Original End = " 602 G4cout << " Original End = " 742 << CurveEndPointVelocity << 603 << CurveEndPointVelocity << G4endl; 743 G4cout << " Original TrialPoint = 604 G4cout << " Original TrialPoint = " 744 << TrialPoint << G4endl; 605 << TrialPoint << G4endl; 745 G4cout << " (this is STRICT mode) 606 G4cout << " (this is STRICT mode) " 746 << " num Splits= " << numSp 607 << " num Splits= " << numSplits; 747 G4cout << G4endl; 608 G4cout << G4endl; 748 } 609 } 749 #endif 610 #endif 750 611 751 *ptrInterMedFT[depth] = midPoint; 612 *ptrInterMedFT[depth] = midPoint; 752 CurrentB_PointVelocity = midPoint; 613 CurrentB_PointVelocity = midPoint; 753 614 754 if (fCheckMode) << 755 { << 756 ++eventCount; << 757 endChangeB.push_back( << 758 G4LocatorChangeRecord( G4LocatorCh << 759 substep_no, << 760 } << 761 << 762 // Adjust 'SubStartPoint' to calculate 615 // Adjust 'SubStartPoint' to calculate the 'did_length' in next loop 763 // 616 // 764 SubStart_PointVelocity = CurrentA_Poin 617 SubStart_PointVelocity = CurrentA_PointVelocity; 765 618 766 // Find new trial intersection point n 619 // Find new trial intersection point needed at start of the loop 767 // 620 // 768 G4ThreeVector Point_A = CurrentA_Point 621 G4ThreeVector Point_A = CurrentA_PointVelocity.GetPosition(); 769 G4ThreeVector Point_B = CurrentB_Point 622 G4ThreeVector Point_B = CurrentB_PointVelocity.GetPosition(); 770 << 623 771 G4ThreeVector PointGe; << 772 GetNavigatorFor()->LocateGlobalPointWi 624 GetNavigatorFor()->LocateGlobalPointWithinVolume(Point_A); 773 G4bool Intersects_AB = IntersectChord( 625 G4bool Intersects_AB = IntersectChord(Point_A, Point_B, 774 626 NewSafety, previousSafety, 775 627 previousSftOrigin, distAB, 776 628 PointGe); 777 if( Intersects_AB ) 629 if( Intersects_AB ) 778 { 630 { 779 last_AF_intersection = Intersects_AB 631 last_AF_intersection = Intersects_AB; 780 CurrentE_Point = PointGe; 632 CurrentE_Point = PointGe; 781 fin_section_depth[depth] = true; << 633 fin_section_depth[depth]=true; 782 634 783 validIntersectP = true; // 'E' has << 635 validIntersectP= true; // 'E' has been updated. >> 636 // validApproxIntPV= false; // 'F' is no longer valid, as E changed 784 637 785 G4bool validNormalAB; 638 G4bool validNormalAB; 786 NormalAtEntry = GetSurfaceNormal( P 639 NormalAtEntry = GetSurfaceNormal( PointGe, validNormalAB ); 787 validNormalAtE = validNormalAB; 640 validNormalAtE = validNormalAB; 788 } 641 } 789 else 642 else 790 { 643 { 791 // No intersection found for first p 644 // No intersection found for first part of curve 792 // (CurrentA,InterMedPoint[depth]). 645 // (CurrentA,InterMedPoint[depth]). Go to the second part 793 // 646 // 794 Second_half = true; 647 Second_half = true; 795 648 796 validIntersectP= false; // No new 649 validIntersectP= false; // No new 'E' chord intersection found >> 650 // validApproxIntPV= false; // So also 'F' is invalid 797 } 651 } 798 } // if did_len 652 } // if did_len 799 653 >> 654 unsigned int levelPops=0; >> 655 800 G4bool unfinished = Second_half; 656 G4bool unfinished = Second_half; 801 while ( unfinished && (depth>0) ) // Lo << 657 while ( unfinished && (depth>0) ) // Loop checking, 07.10.2016, J. Apostolakis 802 { 658 { 803 // Second part of curve (InterMed[dept 659 // Second part of curve (InterMed[depth],Intermed[depth-1])) 804 // On the depth-1 level normally we ar 660 // On the depth-1 level normally we are on the 'second_half' 805 661 >> 662 levelPops++; >> 663 806 // Find new trial intersection point 664 // Find new trial intersection point needed at start of the loop 807 // 665 // 808 SubStart_PointVelocity = *ptrInterMedF 666 SubStart_PointVelocity = *ptrInterMedFT[depth]; 809 CurrentA_PointVelocity = *ptrInterMedF 667 CurrentA_PointVelocity = *ptrInterMedFT[depth]; 810 CurrentB_PointVelocity = *ptrInterMedF 668 CurrentB_PointVelocity = *ptrInterMedFT[depth-1]; 811 669 812 if (fCheckMode) << 813 { << 814 ++eventCount; << 815 G4LocatorChangeRecord chngPop_a( G4L << 816 substep_no, even << 817 endChangeA.push_back( chngPop_a ); << 818 G4LocatorChangeRecord chngPop_b( G4L << 819 substep_no, even << 820 endChangeB.push_back( chngPop_b ); << 821 } << 822 << 823 // Ensure that the new endpoints are n 670 // Ensure that the new endpoints are not further apart in space 824 // than on the curve due to different 671 // than on the curve due to different errors in the integration 825 // 672 // 826 G4int errorEndPt = -1; << 673 G4FieldTrack RevisedEndPointFT= CurrentB_PointVelocity; 827 G4bool recalculatedB= false; << 674 G4int errorEndPt; 828 if( driverReIntegrates ) << 675 G4bool recalculatedB= 829 { << 676 CheckAndReEstimateEndpoint( CurrentA_PointVelocity, 830 // Ensure that the new endpoints are << 677 CurrentB_PointVelocity, 831 // than on the curve due to differen << 678 RevisedEndPointFT, 832 // << 679 errorEndPt ); 833 G4FieldTrack RevisedEndPointFT = Cur << 680 if( recalculatedB ) 834 recalculatedB = << 681 { 835 CheckAndReEstimateEndpoint( Curre << 682 CurrentB_PointVelocity= RevisedEndPointFT; // Use it ! 836 Curre << 683 837 Revis << 684 if (depth==1) 838 error << 685 { 839 if( recalculatedB ) << 686 recalculatedEndPoint = true; 840 { << 687 IntersectedOrRecalculatedFT = RevisedEndPointFT; 841 CurrentB_PointVelocity = RevisedEn << 688 // So that we can return it, if it is the endpoint! 842 << 843 if ( depth == 1 ) << 844 { << 845 recalculatedEndPoint = true; << 846 IntersectedOrRecalculatedFT = R << 847 // So that we can return it, if << 848 } << 849 } << 850 else << 851 { << 852 if( CurrentB_PointVelocity.GetCurv << 853 < CurrentA_PointVelocity.GetCurv << 854 { << 855 errorEndPt = 2; << 856 } << 857 } << 858 << 859 if (fCheckMode) << 860 { << 861 ++eventCount; << 862 endChangeB.push_back( << 863 G4LocatorChangeRecord(G4LocatorC << 864 substep_no << 865 } 689 } 866 } 690 } 867 if( errorEndPt > 1 ) // errorEndPt = 691 if( errorEndPt > 1 ) // errorEndPt = 1 is milder, just: len(B)=len(A) 868 { 692 { 869 std::ostringstream errmsg; 693 std::ostringstream errmsg; >> 694 errmsg << "Location: " << MethodName << "- Second-Half" << G4endl; 870 ReportReversedPoints(errmsg, 695 ReportReversedPoints(errmsg, 871 CurveStartPointVelocity, C 696 CurveStartPointVelocity, CurveEndPointVelocity, 872 NewSafety, fiEpsilonStep, 697 NewSafety, fiEpsilonStep, 873 CurrentA_PointVelocity, Cu << 698 CurrentA_PointVelocity, CurrentA_PointVelocity, 874 SubStart_PointVelocity, Cu 699 SubStart_PointVelocity, CurrentE_Point, 875 ApproxIntersecPointV, subs 700 ApproxIntersecPointV, substep_no, substep_no_p, depth); 876 errmsg << " * Location: " << Method << 877 errmsg << " * Recalculated = " << re << 878 G4Exception(MethodName, "GeomNav0003 701 G4Exception(MethodName, "GeomNav0003", FatalException, errmsg); 879 } 702 } 880 << 881 G4ThreeVector Point_A = CurrentA_Point 703 G4ThreeVector Point_A = CurrentA_PointVelocity.GetPosition(); 882 G4ThreeVector Point_B = CurrentB_Point << 704 G4ThreeVector Point_B = CurrentB_PointVelocity.GetPosition(); 883 G4ThreeVector PointGi; << 884 GetNavigatorFor()->LocateGlobalPointWi 705 GetNavigatorFor()->LocateGlobalPointWithinVolume(Point_A); 885 G4bool Intersects_AB = IntersectChord( 706 G4bool Intersects_AB = IntersectChord(Point_A, Point_B, NewSafety, 886 707 previousSafety, 887 708 previousSftOrigin, distAB, 888 << 709 PointGe); 889 if( Intersects_AB ) 710 if( Intersects_AB ) 890 { 711 { 891 last_AF_intersection = Intersects_AB 712 last_AF_intersection = Intersects_AB; 892 CurrentE_Point = PointGi; << 713 CurrentE_Point = PointGe; 893 714 894 validIntersectP = true; // 'E' has << 715 validIntersectP= true; // 'E' has been updated. 895 NormalAtEntry = GetSurfaceNormal( P << 716 // validApproxIntPV= false; // 'F' is no longer valid, as E changed >> 717 >> 718 G4bool validNormalAB; >> 719 NormalAtEntry = GetSurfaceNormal( PointGe, validNormalAB ); >> 720 validNormalAtE = validNormalAB; 896 } 721 } 897 else 722 else 898 { 723 { 899 validIntersectP = false; // No new << 724 validIntersectP= false; // No new 'E' chord intersection found >> 725 // validApproxIntPV= false; // So also 'F' is invalid 900 if( depth == 1) 726 if( depth == 1) 901 { << 727 { 902 there_is_no_intersection = true; 728 there_is_no_intersection = true; 903 } 729 } 904 } << 730 } 905 depth--; 731 depth--; 906 fin_section_depth[depth] = true; << 732 fin_section_depth[depth]=true; 907 unfinished = !validIntersectP; 733 unfinished = !validIntersectP; 908 } 734 } 909 #ifdef G4DEBUG_FIELD 735 #ifdef G4DEBUG_FIELD 910 if( ! ( validIntersectP || there_is_no_i 736 if( ! ( validIntersectP || there_is_no_intersection ) ) 911 { 737 { 912 // What happened ?? 738 // What happened ?? 913 G4cout << "MLL - WARNING Potential FA 739 G4cout << "MLL - WARNING Potential FAILURE: Conditions not met!" 914 << G4endl 740 << G4endl 915 << " Depth = " << depth << G4e 741 << " Depth = " << depth << G4endl >> 742 << " Levels popped = " << levelPops 916 << " Num Substeps= " << subste 743 << " Num Substeps= " << substep_no << G4endl; 917 G4cout << " Found intersection= " << 744 G4cout << " Found intersection= " << found_approximate_intersection 918 << G4endl; 745 << G4endl; 919 G4cout << " Progress report: -- " << 746 G4cout << " Progress report: -- " << G4endl; 920 ReportProgress(G4cout, 747 ReportProgress(G4cout, 921 CurveStartPointVelocit 748 CurveStartPointVelocity, CurveEndPointVelocity, 922 substep_no, CurrentA_P 749 substep_no, CurrentA_PointVelocity, 923 CurrentB_PointVelocity 750 CurrentB_PointVelocity, 924 NewSafety, depth ); 751 NewSafety, depth ); 925 G4cout << G4endl; 752 G4cout << G4endl; 926 } 753 } 927 #endif 754 #endif 928 } // if(!found_aproximate_intersection) 755 } // if(!found_aproximate_intersection) 929 756 930 assert( validIntersectP || there_is_no_int 757 assert( validIntersectP || there_is_no_intersection 931 || found_approxima << 758 || found_approximate_intersection); 932 759 933 } while ( ( ! found_approximate_intersection 760 } while ( ( ! found_approximate_intersection ) 934 && ( ! there_is_no_intersection ) 761 && ( ! there_is_no_intersection ) 935 && ( substep_no <= fMaxSteps) ); / 762 && ( substep_no <= fMaxSteps) ); // UNTIL found or failed 936 763 937 if( substep_no > max_no_seen ) 764 if( substep_no > max_no_seen ) 938 { 765 { 939 max_no_seen = substep_no; 766 max_no_seen = substep_no; 940 #ifdef G4DEBUG_FIELD 767 #ifdef G4DEBUG_FIELD 941 if( max_no_seen > fWarnSteps ) 768 if( max_no_seen > fWarnSteps ) 942 { 769 { 943 trigger_substepno_print = max_no_seen-20 770 trigger_substepno_print = max_no_seen-20; // Want to see last 20 steps 944 } 771 } 945 #endif 772 #endif 946 } 773 } 947 774 948 if( !there_is_no_intersection && !found_appr 775 if( !there_is_no_intersection && !found_approximate_intersection ) 949 { 776 { 950 if( substep_no >= fMaxSteps) 777 if( substep_no >= fMaxSteps) 951 { 778 { 952 // Since we cannot go further (yet), w 779 // Since we cannot go further (yet), we return as far as we have gone 953 780 954 recalculatedEndPoint = true; 781 recalculatedEndPoint = true; 955 IntersectedOrRecalculatedFT = CurrentA 782 IntersectedOrRecalculatedFT = CurrentA_PointVelocity; 956 found_approximate_intersection = false 783 found_approximate_intersection = false; 957 784 958 std::ostringstream message; 785 std::ostringstream message; 959 message << G4endl; 786 message << G4endl; 960 message << "Convergence is requiring t 787 message << "Convergence is requiring too many substeps: " 961 << substep_no << " ( limit = 788 << substep_no << " ( limit = "<< fMaxSteps << ")" 962 << G4endl 789 << G4endl 963 << " Abandoning effort to int 790 << " Abandoning effort to intersect. " << G4endl << G4endl; 964 message << " Number of calls to MLL 791 message << " Number of calls to MLL: " << fNumCalls; 965 message << " iteration = " << substep 792 message << " iteration = " << substep_no <<G4endl << G4endl; 966 793 967 message.precision( 12 ); 794 message.precision( 12 ); 968 G4double done_len = CurrentA_PointVelo 795 G4double done_len = CurrentA_PointVelocity.GetCurveLength(); 969 G4double full_len = CurveEndPointVeloc 796 G4double full_len = CurveEndPointVelocity.GetCurveLength(); 970 message << " Undertaken only le 797 message << " Undertaken only length: " << done_len 971 << " out of " << full_len << " 798 << " out of " << full_len << " required." << G4endl 972 << " Remaining length = 799 << " Remaining length = " << full_len - done_len; 973 800 974 message << " Start and end-point o 801 message << " Start and end-point of requested Step:" << G4endl; 975 printStatus( CurveStartPointVelocity, 802 printStatus( CurveStartPointVelocity, CurveEndPointVelocity, 976 -1.0, NewSafety, 0, m 803 -1.0, NewSafety, 0, message, -1 ); 977 message << " Start and end-poin 804 message << " Start and end-point of current Sub-Step:" << G4endl; 978 printStatus( CurrentA_PointVelocity, C 805 printStatus( CurrentA_PointVelocity, CurrentA_PointVelocity, 979 -1.0, NewSafety, substep_ 806 -1.0, NewSafety, substep_no-1, message, -1 ); 980 printStatus( CurrentA_PointVelocity, C 807 printStatus( CurrentA_PointVelocity, CurrentB_PointVelocity, 981 -1.0, NewSafety, substep_ 808 -1.0, NewSafety, substep_no, message, -1 ); 982 809 983 G4Exception(MethodName, "GeomNav0003", 810 G4Exception(MethodName, "GeomNav0003", JustWarning, message); 984 } 811 } 985 else if( substep_no >= fWarnSteps) 812 else if( substep_no >= fWarnSteps) 986 { 813 { 987 std::ostringstream message; 814 std::ostringstream message; 988 message << "Many substeps while trying 815 message << "Many substeps while trying to locate intersection." 989 << G4endl 816 << G4endl 990 << " Undertaken lengt 817 << " Undertaken length: " 991 << CurrentB_PointVelocity.GetC 818 << CurrentB_PointVelocity.GetCurveLength() 992 << " - Needed: " << substep_n 819 << " - Needed: " << substep_no << " substeps." << G4endl 993 << " Warning number = 820 << " Warning number = " << fWarnSteps 994 << " and maximum substeps = " 821 << " and maximum substeps = " << fMaxSteps; 995 G4Exception(MethodName, "GeomNav1002", 822 G4Exception(MethodName, "GeomNav1002", JustWarning, message); 996 } 823 } 997 } 824 } >> 825 >> 826 #ifdef G4DEBUG_FIELD >> 827 if( found_approximate_intersection ) >> 828 { >> 829 assert( validApproxIntPV && >> 830 "Approximate Intersection must not have been invalidated." ); >> 831 } >> 832 #endif 998 833 999 return (!there_is_no_intersection) && found 834 return (!there_is_no_intersection) && found_approximate_intersection; 1000 // Success or failure 835 // Success or failure 1001 } 836 } 1002 837 1003 void G4MultiLevelLocator::ReportStatistics() 838 void G4MultiLevelLocator::ReportStatistics() 1004 { 839 { 1005 G4cout << " Number of calls = " << fNumCal 840 G4cout << " Number of calls = " << fNumCalls << G4endl; 1006 G4cout << " Number of split level ('advanc 841 G4cout << " Number of split level ('advances'): " 1007 << fNumAdvanceTrials << G4endl; 842 << fNumAdvanceTrials << G4endl; 1008 G4cout << " Number of full advances: 843 G4cout << " Number of full advances: " 1009 << fNumAdvanceGood << G4endl; 844 << fNumAdvanceGood << G4endl; 1010 G4cout << " Number of good advances: 845 G4cout << " Number of good advances: " 1011 << fNumAdvanceFull << G4endl; 846 << fNumAdvanceFull << G4endl; 1012 } 847 } 1013 848 1014 void G4MultiLevelLocator::ReportFieldValue( c 849 void G4MultiLevelLocator::ReportFieldValue( const G4FieldTrack& locationPV, 1015 c 850 const char* nameLoc, 1016 c 851 const G4EquationOfMotion* equation ) 1017 { 852 { 1018 enum { maxNumFieldComp = 24 }; << 853 enum { maxNumFieldComp= 24 }; 1019 854 1020 G4ThreeVector position = locationPV.GetPos 855 G4ThreeVector position = locationPV.GetPosition(); 1021 G4double startPoint[4] = { position.x(), p 856 G4double startPoint[4] = { position.x(), position.y(), position.z(), 1022 locationPV.GetL 857 locationPV.GetLabTimeOfFlight() }; 1023 G4double FieldVec[maxNumFieldComp]; // 24 858 G4double FieldVec[maxNumFieldComp]; // 24 ; 1024 for (double & i : FieldVec) << 859 for (unsigned int i=0; i<maxNumFieldComp; ++i ) 1025 { 860 { 1026 i = 0.0; << 861 FieldVec[i]= 0.0; 1027 } 862 } 1028 equation->GetFieldValue( startPoint, Field 863 equation->GetFieldValue( startPoint, FieldVec); 1029 G4cout << " B-field value (" << nameLoc < 864 G4cout << " B-field value (" << nameLoc << ")= " 1030 << FieldVec[0] << " " << FieldVec[1 865 << FieldVec[0] << " " << FieldVec[1] << " " << FieldVec[2]; 1031 G4double Emag2= G4ThreeVector( FieldVec[3] 866 G4double Emag2= G4ThreeVector( FieldVec[3], 1032 FieldVec[4] 867 FieldVec[4], 1033 FieldVec[5] 868 FieldVec[5] ).mag2(); 1034 if( Emag2 > 0.0 ) 869 if( Emag2 > 0.0 ) 1035 { 870 { 1036 G4cout << " Electric = " << FieldVec[3] 871 G4cout << " Electric = " << FieldVec[3] << " " 1037 << FieldVec[4] 872 << FieldVec[4] << " " 1038 << FieldVec[5] 873 << FieldVec[5]<< G4endl; 1039 } 874 } 1040 return; 875 return; 1041 } 876 } 1042 877