Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Class G4VoxelLimits implementation << 27 // 26 // 28 // 13.07.95, P.Kent - Initial version << 27 // $Id: G4VoxelLimits.cc 66356 2012-12-18 09:02:32Z gcosmo $ >> 28 // >> 29 // class G4VoxelLimits >> 30 // >> 31 // Implementation >> 32 // >> 33 // History: >> 34 // >> 35 // 14.03.02 V. Grichine, cosmetics >> 36 // 13.07.95 P.Kent Initial version 29 // ------------------------------------------- 37 // -------------------------------------------------------------------- 30 38 31 #include "G4VoxelLimits.hh" 39 #include "G4VoxelLimits.hh" 32 40 33 #include "G4ios.hh" 41 #include "G4ios.hh" 34 42 35 ////////////////////////////////////////////// 43 /////////////////////////////////////////////////////////////////////////// 36 // 44 // >> 45 // Empty constructor and destructor >> 46 // >> 47 >> 48 G4VoxelLimits::G4VoxelLimits() >> 49 : fxAxisMin(-kInfinity),fxAxisMax(kInfinity), >> 50 fyAxisMin(-kInfinity),fyAxisMax(kInfinity), >> 51 fzAxisMin(-kInfinity),fzAxisMax(kInfinity) >> 52 { >> 53 } >> 54 >> 55 G4VoxelLimits::~G4VoxelLimits() >> 56 { >> 57 } >> 58 >> 59 /////////////////////////////////////////////////////////////////////////// >> 60 // 37 // Further restrict limits 61 // Further restrict limits 38 // No checks for illegal restrictions 62 // No checks for illegal restrictions 39 // 63 // >> 64 40 void G4VoxelLimits::AddLimit( const EAxis pAxi 65 void G4VoxelLimits::AddLimit( const EAxis pAxis, 41 const G4double p 66 const G4double pMin, 42 const G4double p 67 const G4double pMax ) 43 { 68 { 44 if ( pAxis == kXAxis ) 69 if ( pAxis == kXAxis ) 45 { 70 { 46 if ( pMin > fxAxisMin ) fxAxisMin = pMin ; 71 if ( pMin > fxAxisMin ) fxAxisMin = pMin ; 47 if ( pMax < fxAxisMax ) fxAxisMax = pMax ; 72 if ( pMax < fxAxisMax ) fxAxisMax = pMax ; 48 } 73 } 49 else if ( pAxis == kYAxis ) 74 else if ( pAxis == kYAxis ) 50 { 75 { 51 if ( pMin > fyAxisMin ) fyAxisMin = pMin ; 76 if ( pMin > fyAxisMin ) fyAxisMin = pMin ; 52 if ( pMax < fyAxisMax ) fyAxisMax = pMax ; 77 if ( pMax < fyAxisMax ) fyAxisMax = pMax ; 53 } 78 } 54 else 79 else 55 { 80 { 56 assert( pAxis == kZAxis ) ; 81 assert( pAxis == kZAxis ) ; 57 82 58 if ( pMin > fzAxisMin ) fzAxisMin = pMin ; 83 if ( pMin > fzAxisMin ) fzAxisMin = pMin ; 59 if ( pMax < fzAxisMax ) fzAxisMax = pMax ; 84 if ( pMax < fzAxisMax ) fzAxisMax = pMax ; 60 } 85 } 61 } 86 } 62 87 63 ////////////////////////////////////////////// 88 /////////////////////////////////////////////////////////////////////////// 64 // 89 // 65 // ClipToLimits 90 // ClipToLimits 66 // 91 // 67 // Clip the line segment pStart->pEnd to the v 92 // Clip the line segment pStart->pEnd to the volume described by the 68 // current limits. Return true if the line rem 93 // current limits. Return true if the line remains after clipping, 69 // else false, and leave the vectors in an und 94 // else false, and leave the vectors in an undefined state. 70 // 95 // 71 // Process: 96 // Process: 72 // 97 // 73 // Use Cohen-Sutherland clipping in 3D 98 // Use Cohen-Sutherland clipping in 3D 74 // [Fundamentals of Interactive Computer Graph 99 // [Fundamentals of Interactive Computer Graphics,Foley & Van Dam] 75 // 100 // >> 101 76 G4bool G4VoxelLimits::ClipToLimits( G4ThreeVec 102 G4bool G4VoxelLimits::ClipToLimits( G4ThreeVector& pStart, 77 G4ThreeVec 103 G4ThreeVector& pEnd ) const 78 { 104 { 79 G4int sCode, eCode ; 105 G4int sCode, eCode ; 80 G4bool remainsAfterClip ; 106 G4bool remainsAfterClip ; 81 107 82 // Determine if line is trivially inside (bo 108 // Determine if line is trivially inside (both outcodes==0) or outside 83 // (logical AND of outcodes !=0) 109 // (logical AND of outcodes !=0) 84 110 85 sCode = OutCode(pStart) ; 111 sCode = OutCode(pStart) ; 86 eCode = OutCode(pEnd) ; 112 eCode = OutCode(pEnd) ; 87 113 88 if ( (sCode & eCode) != 0 ) << 114 if ( sCode & eCode ) 89 { 115 { 90 // Trivially outside, no intersection with 116 // Trivially outside, no intersection with region 91 117 92 remainsAfterClip = false; 118 remainsAfterClip = false; 93 } 119 } 94 else if ( sCode == 0 && eCode == 0 ) 120 else if ( sCode == 0 && eCode == 0 ) 95 { 121 { 96 // Trivially inside, no intersections 122 // Trivially inside, no intersections 97 123 98 remainsAfterClip = true ; 124 remainsAfterClip = true ; 99 } 125 } 100 else 126 else 101 { 127 { 102 // Line segment *may* cut volume boundarie 128 // Line segment *may* cut volume boundaries 103 // At most, one end point is inside 129 // At most, one end point is inside 104 130 105 G4double x1, y1, z1, x2, y2, z2 ; 131 G4double x1, y1, z1, x2, y2, z2 ; 106 132 107 x1 = pStart.x() ; 133 x1 = pStart.x() ; 108 y1 = pStart.y() ; 134 y1 = pStart.y() ; 109 z1 = pStart.z() ; 135 z1 = pStart.z() ; 110 136 111 x2 = pEnd.x() ; 137 x2 = pEnd.x() ; 112 y2 = pEnd.y() ; 138 y2 = pEnd.y() ; 113 z2 = pEnd.z() ; 139 z2 = pEnd.z() ; 114 << 140 /* 115 while ( sCode != eCode ) // Loop checking << 141 if( std::abs(x1-x2) < kCarTolerance*kCarTolerance) >> 142 { >> 143 G4cout<<"x1 = "<<x1<<"\t"<<"x2 = "<<x2<<G4endl; >> 144 } >> 145 if( std::abs(y1-y2) < kCarTolerance*kCarTolerance) >> 146 { >> 147 G4cout<<"y1 = "<<y1<<"\t"<<"y2 = "<<y2<<G4endl; >> 148 } >> 149 if( std::abs(z1-z2) < kCarTolerance*kCarTolerance) >> 150 { >> 151 G4cout<<"z1 = "<<z1<<"\t"<<"z2 = "<<z2<<G4endl; >> 152 } >> 153 */ >> 154 while ( sCode != eCode ) 116 { 155 { 117 // Copy vectors to work variables x1-z1, 156 // Copy vectors to work variables x1-z1,x2-z2 118 // Ensure x1-z1 lies outside volume, swa 157 // Ensure x1-z1 lies outside volume, swapping vectors and outcodes 119 // if necessary 158 // if necessary 120 159 121 if ( sCode != 0 ) << 160 if ( sCode ) 122 { 161 { 123 if ( (sCode & 0x01) != 0 ) // Clip ag << 162 if ( sCode & 0x01 ) // Clip against fxAxisMin 124 { 163 { 125 z1 += (fxAxisMin-x1)*(z2-z1)/(x2-x1) 164 z1 += (fxAxisMin-x1)*(z2-z1)/(x2-x1); 126 y1 += (fxAxisMin-x1)*(y2-y1)/(x2-x1) 165 y1 += (fxAxisMin-x1)*(y2-y1)/(x2-x1); 127 x1 = fxAxisMin; 166 x1 = fxAxisMin; 128 } 167 } 129 else if ( (sCode & 0x02) != 0 ) // Cli << 168 else if ( sCode & 0x02 ) // Clip against fxAxisMax 130 { 169 { 131 z1 += (fxAxisMax-x1)*(z2-z1)/(x2-x1) 170 z1 += (fxAxisMax-x1)*(z2-z1)/(x2-x1); 132 y1 += (fxAxisMax-x1)*(y2-y1)/(x2-x1) 171 y1 += (fxAxisMax-x1)*(y2-y1)/(x2-x1); 133 x1 = fxAxisMax ; 172 x1 = fxAxisMax ; 134 } 173 } 135 else if ( (sCode & 0x04) != 0 ) // Cl << 174 else if ( sCode & 0x04 ) // Clip against fyAxisMin 136 { 175 { 137 x1 += (fyAxisMin-y1)*(x2-x1)/(y2-y1) 176 x1 += (fyAxisMin-y1)*(x2-x1)/(y2-y1); 138 z1 += (fyAxisMin-y1)*(z2-z1)/(y2-y1) 177 z1 += (fyAxisMin-y1)*(z2-z1)/(y2-y1); 139 y1 = fyAxisMin; 178 y1 = fyAxisMin; 140 } 179 } 141 else if ( (sCode & 0x08) != 0 ) // Cl << 180 else if ( sCode & 0x08 ) // Clip against fyAxisMax 142 { 181 { 143 x1 += (fyAxisMax-y1)*(x2-x1)/(y2-y1) 182 x1 += (fyAxisMax-y1)*(x2-x1)/(y2-y1); 144 z1 += (fyAxisMax-y1)*(z2-z1)/(y2-y1) 183 z1 += (fyAxisMax-y1)*(z2-z1)/(y2-y1); 145 y1 = fyAxisMax; 184 y1 = fyAxisMax; 146 } 185 } 147 else if ( (sCode & 0x10) != 0 ) // Cl << 186 else if ( sCode & 0x10 ) // Clip against fzAxisMin 148 { 187 { 149 x1 += (fzAxisMin-z1)*(x2-x1)/(z2-z1) 188 x1 += (fzAxisMin-z1)*(x2-x1)/(z2-z1); 150 y1 += (fzAxisMin-z1)*(y2-y1)/(z2-z1) 189 y1 += (fzAxisMin-z1)*(y2-y1)/(z2-z1); 151 z1 = fzAxisMin; 190 z1 = fzAxisMin; 152 } 191 } 153 else if ( (sCode & 0x20) != 0 ) // Cl << 192 else if ( sCode & 0x20 ) // Clip against fzAxisMax 154 { 193 { 155 x1 += (fzAxisMax-z1)*(x2-x1)/(z2-z1) 194 x1 += (fzAxisMax-z1)*(x2-x1)/(z2-z1); 156 y1 += (fzAxisMax-z1)*(y2-y1)/(z2-z1) 195 y1 += (fzAxisMax-z1)*(y2-y1)/(z2-z1); 157 z1 = fzAxisMax; 196 z1 = fzAxisMax; 158 } 197 } 159 } 198 } 160 if ( eCode != 0 ) // Clip 2nd end: repe << 199 if ( eCode ) // Clip 2nd end: repeat of 1st, but 1<>2 161 { 200 { 162 if ( (eCode & 0x01) != 0 ) // Clip ag << 201 if ( eCode & 0x01 ) // Clip against fxAxisMin 163 { 202 { 164 z2 += (fxAxisMin-x2)*(z1-z2)/(x1-x2) 203 z2 += (fxAxisMin-x2)*(z1-z2)/(x1-x2); 165 y2 += (fxAxisMin-x2)*(y1-y2)/(x1-x2) 204 y2 += (fxAxisMin-x2)*(y1-y2)/(x1-x2); 166 x2 = fxAxisMin; 205 x2 = fxAxisMin; 167 } 206 } 168 else if ( (eCode & 0x02) != 0 ) // Cl << 207 else if ( eCode & 0x02 ) // Clip against fxAxisMax 169 { 208 { 170 z2 += (fxAxisMax-x2)*(z1-z2)/(x1-x2) 209 z2 += (fxAxisMax-x2)*(z1-z2)/(x1-x2); 171 y2 += (fxAxisMax-x2)*(y1-y2)/(x1-x2) 210 y2 += (fxAxisMax-x2)*(y1-y2)/(x1-x2); 172 x2 = fxAxisMax; 211 x2 = fxAxisMax; 173 } 212 } 174 else if ( (eCode & 0x04) != 0 ) // Cl << 213 else if ( eCode & 0x04 ) // Clip against fyAxisMin 175 { 214 { 176 x2 += (fyAxisMin-y2)*(x1-x2)/(y1-y2) 215 x2 += (fyAxisMin-y2)*(x1-x2)/(y1-y2); 177 z2 += (fyAxisMin-y2)*(z1-z2)/(y1-y2) 216 z2 += (fyAxisMin-y2)*(z1-z2)/(y1-y2); 178 y2 = fyAxisMin; 217 y2 = fyAxisMin; 179 } 218 } 180 else if ((eCode&0x08) != 0) // Clip a << 219 else if (eCode&0x08) // Clip against fyAxisMax 181 { 220 { 182 x2 += (fyAxisMax-y2)*(x1-x2)/(y1-y2) 221 x2 += (fyAxisMax-y2)*(x1-x2)/(y1-y2); 183 z2 += (fyAxisMax-y2)*(z1-z2)/(y1-y2) 222 z2 += (fyAxisMax-y2)*(z1-z2)/(y1-y2); 184 y2 = fyAxisMax; 223 y2 = fyAxisMax; 185 } 224 } 186 else if ( (eCode & 0x10) != 0 ) // Cl << 225 else if ( eCode & 0x10 ) // Clip against fzAxisMin 187 { 226 { 188 x2 += (fzAxisMin-z2)*(x1-x2)/(z1-z2) 227 x2 += (fzAxisMin-z2)*(x1-x2)/(z1-z2); 189 y2 += (fzAxisMin-z2)*(y1-y2)/(z1-z2) 228 y2 += (fzAxisMin-z2)*(y1-y2)/(z1-z2); 190 z2 = fzAxisMin; 229 z2 = fzAxisMin; 191 } 230 } 192 else if ( (eCode & 0x20) != 0 ) // Cl << 231 else if ( eCode & 0x20 ) // Clip against fzAxisMax 193 { 232 { 194 x2 += (fzAxisMax-z2)*(x1-x2)/(z1-z2) 233 x2 += (fzAxisMax-z2)*(x1-x2)/(z1-z2); 195 y2 += (fzAxisMax-z2)*(y1-y2)/(z1-z2) 234 y2 += (fzAxisMax-z2)*(y1-y2)/(z1-z2); 196 z2 = fzAxisMax; 235 z2 = fzAxisMax; 197 } 236 } 198 } 237 } >> 238 // G4endl; G4cout<<"x1 = "<<x1<<"\t"<<"x2 = "<<x2<<G4endl<<G4endl; 199 pStart = G4ThreeVector(x1,y1,z1); 239 pStart = G4ThreeVector(x1,y1,z1); 200 pEnd = G4ThreeVector(x2,y2,z2); 240 pEnd = G4ThreeVector(x2,y2,z2); 201 sCode = OutCode(pStart); 241 sCode = OutCode(pStart); 202 eCode = OutCode(pEnd); 242 eCode = OutCode(pEnd); 203 } 243 } 204 remainsAfterClip = sCode == 0 && eCode == << 244 if ( sCode == 0 && eCode == 0 ) remainsAfterClip = true; >> 245 else remainsAfterClip = false; 205 } 246 } 206 return remainsAfterClip; 247 return remainsAfterClip; 207 } 248 } 208 249 209 ////////////////////////////////////////////// 250 //////////////////////////////////////////////////////////////////////////// 210 // 251 // 211 // Calculate the `outcode' for the specified v 252 // Calculate the `outcode' for the specified vector: 212 // The following bits are set: 253 // The following bits are set: 213 // 0 pVec.x()<fxAxisMin && IsXLimited() 254 // 0 pVec.x()<fxAxisMin && IsXLimited() 214 // 1 pVec.x()>fxAxisMax && IsXLimited() 255 // 1 pVec.x()>fxAxisMax && IsXLimited() 215 // 2 pVec.y()<fyAxisMin && IsYLimited() 256 // 2 pVec.y()<fyAxisMin && IsYLimited() 216 // 3 pVec.y()>fyAxisMax && IsYLimited() 257 // 3 pVec.y()>fyAxisMax && IsYLimited() 217 // 4 pVec.z()<fzAxisMin && IsZLimited() 258 // 4 pVec.z()<fzAxisMin && IsZLimited() 218 // 5 pVec.z()>fzAxisMax && IsZLimited() 259 // 5 pVec.z()>fzAxisMax && IsZLimited() 219 // 260 // >> 261 220 G4int G4VoxelLimits::OutCode( const G4ThreeVec 262 G4int G4VoxelLimits::OutCode( const G4ThreeVector& pVec ) const 221 { 263 { 222 G4int code = 0 ; // The outco 264 G4int code = 0 ; // The outcode 223 265 224 if ( IsXLimited() ) 266 if ( IsXLimited() ) 225 { 267 { 226 if ( pVec.x() < fxAxisMin ) code |= 0x01 ; 268 if ( pVec.x() < fxAxisMin ) code |= 0x01 ; 227 if ( pVec.x() > fxAxisMax ) code |= 0x02 ; 269 if ( pVec.x() > fxAxisMax ) code |= 0x02 ; 228 } 270 } 229 if ( IsYLimited() ) 271 if ( IsYLimited() ) 230 { 272 { 231 if ( pVec.y() < fyAxisMin ) code |= 0x04 ; 273 if ( pVec.y() < fyAxisMin ) code |= 0x04 ; 232 if ( pVec.y() > fyAxisMax ) code |= 0x08 ; 274 if ( pVec.y() > fyAxisMax ) code |= 0x08 ; 233 } 275 } 234 if (IsZLimited()) 276 if (IsZLimited()) 235 { 277 { 236 if ( pVec.z() < fzAxisMin ) code |= 0x10 ; 278 if ( pVec.z() < fzAxisMin ) code |= 0x10 ; 237 if ( pVec.z() > fzAxisMax ) code |= 0x20 ; 279 if ( pVec.z() > fzAxisMax ) code |= 0x20 ; 238 } 280 } 239 return code; 281 return code; 240 } 282 } 241 283 242 ////////////////////////////////////////////// 284 /////////////////////////////////////////////////////////////////////////////// 243 285 244 std::ostream& operator << (std::ostream& os, c 286 std::ostream& operator << (std::ostream& os, const G4VoxelLimits& pLim) 245 { 287 { 246 os << "{"; 288 os << "{"; 247 if (pLim.IsXLimited()) 289 if (pLim.IsXLimited()) 248 { 290 { 249 os << "(" << pLim.GetMinXExtent() 291 os << "(" << pLim.GetMinXExtent() 250 << "," << pLim.GetMaxXExtent() 292 << "," << pLim.GetMaxXExtent() << ") "; 251 } 293 } 252 else 294 else 253 { 295 { 254 os << "(-,-) "; 296 os << "(-,-) "; 255 } 297 } 256 if (pLim.IsYLimited()) 298 if (pLim.IsYLimited()) 257 { 299 { 258 os << "(" << pLim.GetMinYExtent() 300 os << "(" << pLim.GetMinYExtent() 259 << "," << pLim.GetMaxYExtent() 301 << "," << pLim.GetMaxYExtent() << ") "; 260 } 302 } 261 else 303 else 262 { 304 { 263 os << "(-,-) "; 305 os << "(-,-) "; 264 } 306 } 265 if (pLim.IsZLimited()) 307 if (pLim.IsZLimited()) 266 { 308 { 267 os << "(" << pLim.GetMinZExtent() 309 os << "(" << pLim.GetMinZExtent() 268 << "," << pLim.GetMaxZExtent() 310 << "," << pLim.GetMaxZExtent() << ")"; 269 } 311 } 270 else 312 else 271 { 313 { 272 os << "(-,-)"; 314 os << "(-,-)"; 273 } 315 } 274 os << "}"; 316 os << "}"; 275 return os; 317 return os; 276 } 318 } 277 319