Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // 26 // G4LogicalVolume << 8 // $Id: G4LogicalVolume.hh,v 1.6 2000/11/01 15:39:32 gcosmo Exp $ >> 9 // GEANT4 tag $Name: geant4-03-01 $ >> 10 // >> 11 // >> 12 // class G4LogicalVolume 27 // 13 // 28 // Class description: 14 // Class description: 29 // 15 // 30 // Represents a leaf node or unpositioned subt 16 // Represents a leaf node or unpositioned subtree in the geometry hierarchy. 31 // Logical volumes are named, and may have dau 17 // Logical volumes are named, and may have daughters ascribed to them. 32 // They are responsible for retrieval of the p 18 // They are responsible for retrieval of the physical and tracking attributes 33 // of the physical volume that it represents: 19 // of the physical volume that it represents: solid, material, magnetic field, 34 // and optionally, user limits, sensitive dete << 20 // and optionally, user limits, sensitive detectors. 35 // 21 // 36 // Get and Set functionality is provided for a 22 // Get and Set functionality is provided for all attributes, but note that 37 // most set functions should not be used when 23 // most set functions should not be used when the geometry is `closed'. 38 // As a further development, `Guard' checks c 24 // As a further development, `Guard' checks can be added to ensure 39 // only legal operations at tracking time. 25 // only legal operations at tracking time. 40 // 26 // 41 // On construction, solid, material and name m 27 // On construction, solid, material and name must be specified. 42 // 28 // 43 // Daughters are ascribed and managed by means 29 // Daughters are ascribed and managed by means of a simple 44 // GetNoDaughters,Get/SetDaughter(n),AddDaught << 30 // GetNoDaughters,Get&SetDaughter(n),AddDaughter interface. 45 // 31 // 46 // Smart voxels as used for tracking optimisat << 32 // Smart voxels as used for tracking optimisation are also an attribute. 47 // 33 // 48 // Logical volumes self register to the logica 34 // Logical volumes self register to the logical volume Store on construction, 49 // and deregister on destruction. 35 // and deregister on destruction. 50 // 36 // 51 // NOTE: This class is currently *NOT* subclas 37 // NOTE: This class is currently *NOT* subclassed, since not meant to 52 // act as a base class. Therefore, the d 38 // act as a base class. Therefore, the destructor is NOT virtual. 53 // 39 // 54 // Data members: 40 // Data members: 55 // 41 // 56 // std::vector<G4VPhysicalVolume*> fDaughte << 42 // G4RWTPtrOrderedVector<G4VPhysicalVolume> fDaughters 57 // - Vector of daughters. Given initial siz 43 // - Vector of daughters. Given initial size of 0. 58 // G4FieldManager* fFieldManager << 44 // G4FieldManager *fFieldManager 59 // - Pointer (possibly 0) to (magnetic or o << 45 // - Pointer (possibly NULL) to (magnetic or other) field manager object. 60 // G4Material* fMaterial << 46 // G4Material *fMaterial 61 // - Pointer to material at this node. 47 // - Pointer to material at this node. 62 // G4String fName 48 // G4String fName 63 // - Name of logical volume. 49 // - Name of logical volume. 64 // G4VSensitiveDetector *fSensitiveDetector 50 // G4VSensitiveDetector *fSensitiveDetector 65 // - Pointer (possibly 0) to `Hit' object. << 51 // - Pointer (possibly NULL) to `Hit' object. 66 // G4VSolid* fSolid << 52 // G4VSolid *fSolid 67 // - Pointer to solid. 53 // - Pointer to solid. 68 // G4UserLimits* fUserLimits << 54 // G4UserLimits *fUserLimits 69 // - Pointer (possibly 0) to user Step limi << 55 // - Pointer (possibly NULL) to user Step limit object for this node. 70 // G4SmartVoxelHeader* fVoxel << 56 // G4SmartVoxelHeader *fVoxel 71 // - Pointer (possibly 0) to optimisation i << 57 // - Pointer (possibly NULL) to optimisation info objects. 72 // G4bool fOptimise << 73 // - Flag to identify if optimisation shoul << 74 // G4bool fRootRegion << 75 // - Flag to identify if the logical volume << 76 // G4double fSmartless 58 // G4double fSmartless 77 // - Quality for optimisation, average numb 59 // - Quality for optimisation, average number of voxels to be spent 78 // per content. 60 // per content. 79 // const G4VisAttributes* fVisAttributes 61 // const G4VisAttributes* fVisAttributes 80 // - Pointer (possibly 0) to visualization << 62 // - Pointer (possibly NULL) to visualization attributes. 81 // G4Region* fRegion << 63 // G4FastSimulationManager *fFastSimulationManager 82 // - Pointer to the cuts region (if any) << 64 // - Pointer (possibly NULL) to G4FastSimulationManager object. 83 // G4MaterialCutsCouple* fCutsCouple << 84 // - Pointer (possibly 0) to associated pro << 85 // G4double fBiasWeight << 86 // - Weight used in the event biasing techn << 87 // << 88 // Following data members has been moved to G4 << 89 // G4FastSimulationManager* fFastSimulation << 90 // - Pointer (possibly 0) to G4FastSimulati << 91 // G4bool fIsEnvelope 65 // G4bool fIsEnvelope 92 // - Flags if the Logical Volume is an enve 66 // - Flags if the Logical Volume is an envelope for a FastSimulationManager. >> 67 // G4double fBiasWeight >> 68 // - Weight used in the event biasing technique. 93 69 94 // 15.01.13 G.Cosmo, A.Dotti: Modified for thr << 70 // History: 95 // 12.11.04 G.Cosmo: Added GetMass() method fo << 96 // 24.09.02 G.Cosmo: Added flags and accessors << 97 // 17.05.02 G.Cosmo: Added IsToOptimise() meth << 98 // 18.04.01 G.Cosmo: Migrated to STL vector << 99 // 12.02.99 S.Giani: Added user defined optimi 71 // 12.02.99 S.Giani: Added user defined optimisation quality 100 // 09.11.98 M.Verderi, J.Apostolakis: Added Bi << 72 // 09.11.98 J. Apostolakis: Changed G4MagneticField to G4FieldManager 101 // 10.20.97 P.M.DeFreitas, J.Apostolakis: Adde << 73 // 09.11.98 M. Verderi & JA. : added BiasWeight member and Get/Set methods 102 // 11.07.95 P.Kent: Initial version << 74 // 10.20.97 P. MoraDeFreitas : added pointer to a FastSimulation 103 // ------------------------------------------- << 75 // (J.Apostolakis) & flag to indicate if it is an Envelope for it 104 #ifndef G4LOGICALVOLUME_HH << 76 // 19.11.96 J.Allison Replaced G4Visible with explicit const G4VisAttributes*. 105 #define G4LOGICALVOLUME_HH 1 << 77 // 19.08.96 P.Kent Split -> hh/icc/cc files; G4VSensitiveDetector change >> 78 // 11.07.95 P.Kent Initial version. 106 79 107 #include <vector> << 80 #ifndef G4LOGICALVOLUME_HH 108 #include <memory> << 81 #define G4LOGICALVOLUME_HH 109 82 110 #include "G4Types.hh" << 83 #include "globals.hh" 111 #include "G4Region.hh" // Required b << 84 #include "G4VPhysicalVolume.hh" // Need operator == for vector fdaughters 112 #include "G4VPhysicalVolume.hh" // Need opera << 85 #include "g4rw/tpordvec.h" 113 #include "G4GeomSplitter.hh" // Needed for << 86 #include <assert.h> 114 #include "G4Threading.hh" << 115 87 116 // Forward declarations 88 // Forward declarations 117 // << 118 class G4FieldManager; 89 class G4FieldManager; 119 class G4Material; 90 class G4Material; 120 class G4VSensitiveDetector; 91 class G4VSensitiveDetector; 121 class G4VSolid; 92 class G4VSolid; 122 class G4UserLimits; 93 class G4UserLimits; 123 class G4SmartVoxelHeader; 94 class G4SmartVoxelHeader; 124 class G4FastSimulationManager; << 125 class G4MaterialCutsCouple; << 126 class G4VisAttributes; 95 class G4VisAttributes; 127 << 96 class G4FastSimulationManager; 128 class G4LVData << 129 { << 130 // Encapsulates the fields associated to the << 131 // G4LogicalVolume that may not be read-only << 132 << 133 public: << 134 << 135 G4LVData(); << 136 void initialize() << 137 { << 138 fSolid = nullptr; << 139 fSensitiveDetector = nullptr; << 140 fFieldManager = nullptr; << 141 fMaterial = nullptr; << 142 fMass = 0.0; << 143 fCutsCouple = nullptr; << 144 } << 145 << 146 public: << 147 << 148 G4VSolid* fSolid = nullptr; << 149 // Pointer to solid. << 150 G4VSensitiveDetector* fSensitiveDetector = << 151 // Pointer to sensitive detector. << 152 G4FieldManager* fFieldManager = nullptr; << 153 // Pointer (possibly nullptr) to (magnet << 154 G4Material* fMaterial = nullptr; << 155 // Pointer to material at this node. << 156 G4double fMass = 0.0; << 157 // Mass of the logical volume tree. << 158 G4MaterialCutsCouple* fCutsCouple = nullpt << 159 // Pointer (possibly nullptr) to associa << 160 }; << 161 << 162 // The type G4LVManager is introduced to encap << 163 // both the master thread and worker threads t << 164 // the fields encapsulated by the class G4LVDa << 165 // initializes the value for these fields, it << 166 // definition defined below. For every G4Logic << 167 // a corresponding G4LVData instance. All G4LV << 168 // by the class G4LVManager as an array. << 169 // The field "int instanceID" is added to the << 170 // The value of this field in each G4LogicalVo << 171 // of the corresponding G4LVData instance. << 172 // In order to use the class G4LVManager, we a << 173 // G4LogicalVolume as follows: "static G4LVMan << 174 // For the master thread, the array for G4LVDa << 175 // along with G4LogicalVolume instances are cr << 176 // it copies the array of G4LVData instances f << 177 // In addition, it invokes a method similiar t << 178 // to achieve the partial effect for each inst << 179 // << 180 using G4LVManager = G4GeomSplitter<G4LVData>; << 181 97 182 class G4LogicalVolume 98 class G4LogicalVolume 183 { 99 { 184 public: << 100 public: // with description 185 << 101 186 G4LogicalVolume(G4VSolid* pSolid, << 102 G4LogicalVolume(G4VSolid *pSolid, G4Material *pMaterial, 187 G4Material* pMaterial, << 103 const G4String& name, 188 const G4String& name, << 104 G4FieldManager *pFieldMgr=0, 189 G4FieldManager* pFieldMgr << 105 G4VSensitiveDetector *pSDetector=0, 190 G4VSensitiveDetector* pSDe << 106 G4UserLimits *pULimits=0); 191 G4UserLimits* pULimits = n << 107 // Constructor. The solid and material pointer must be non null. The 192 G4bool optimise = true); << 108 // parameters for field, detector and user limits are optional. 193 // Constructor. The solid and material p << 194 // The parameters for field, detector an << 195 // The volume also enters itself into th 109 // The volume also enters itself into the logical volume Store. 196 // Optimisation of the geometry (voxelis << 197 // hierarchy is applied by default. For << 198 // the hierarchy, optimisation is -alway << 199 110 200 virtual ~G4LogicalVolume(); << 111 ~G4LogicalVolume(); 201 // Destructor. Removes the logical volum 112 // Destructor. Removes the logical volume from the logical volume Store. 202 // This class is NOT meant to act as bas << 113 // NOT virtual, since not meant to act as base class. 203 // circumstances of extended types used << 204 114 205 G4LogicalVolume(const G4LogicalVolume&) = << 115 inline G4String GetName() const; 206 G4LogicalVolume& operator=(const G4Logical << 116 inline void SetName(const G4String& pName); 207 // Copy-constructor and assignment opera << 208 << 209 inline const G4String& GetName() const; << 210 void SetName(const G4String& pName); << 211 // Returns and sets the name of the logi 117 // Returns and sets the name of the logical volume. 212 118 213 inline std::size_t GetNoDaughters() const; << 119 inline G4int GetNoDaughters() const; 214 // Returns the number of daughters (0 to 120 // Returns the number of daughters (0 to n). 215 inline G4VPhysicalVolume* GetDaughter(cons << 121 inline G4VPhysicalVolume* GetDaughter(const G4int i) const; 216 // Returns the ith daughter. Note number << 122 // Return the ith daughter. Note numbering starts from 0, 217 // and no bounds checking is performed. 123 // and no bounds checking is performed. 218 void AddDaughter(G4VPhysicalVolume* p); << 124 inline void AddDaughter(G4VPhysicalVolume* p); 219 // Adds the volume p as a daughter of th << 125 // Add the volume p as a daughter of the current logical volume. 220 inline G4bool IsDaughter(const G4VPhysical 126 inline G4bool IsDaughter(const G4VPhysicalVolume* p) const; 221 // Returns true if the volume p is a dau << 127 // Returns true is the volume p is a daughter of the current 222 // logical volume. 128 // logical volume. 223 G4bool IsAncestor(const G4VPhysicalVolume* << 129 inline void RemoveDaughter(const G4VPhysicalVolume* p); 224 // Returns true if the volume p is part << 130 // Remove the volume p from the List of daughter of the current 225 // volumes established by the current lo << 226 // recursively the volume tree. << 227 void RemoveDaughter(const G4VPhysicalVolum << 228 // Removes the volume p from the List of << 229 // logical volume. 131 // logical volume. 230 void ClearDaughters(); << 132 231 // Clears the list of daughters. Used by << 133 inline G4VSolid* GetSolid() const; 232 // the geometry tree is cleared, since m << 134 inline void SetSolid(G4VSolid *pSolid); 233 G4int TotalVolumeEntities() const; << 234 // Returns the total number of physical << 235 // in the tree represented by the curren << 236 inline EVolume CharacteriseDaughters() con << 237 // Characterise the daughters of this lo << 238 inline EVolume DeduceDaughtersType() const << 239 // Used by CharacteriseDaughters(). << 240 << 241 G4VSolid* GetSolid() const; << 242 void SetSolid(G4VSolid* pSolid); << 243 // Gets and sets the current solid. 135 // Gets and sets the current solid. 244 136 245 G4Material* GetMaterial() const; << 137 inline G4Material* GetMaterial() const; 246 void SetMaterial(G4Material* pMaterial); << 138 inline void SetMaterial(G4Material *pMaterial); 247 // Gets and sets the current material. 139 // Gets and sets the current material. 248 void UpdateMaterial(G4Material* pMaterial) << 140 249 // Sets material and corresponding Mater << 141 inline G4FieldManager* GetFieldManager() const; 250 // This method is invoked by G4Navigator << 251 // material parameterization. << 252 G4double GetMass(G4bool forced = false, G4 << 253 G4Material* parMaterial = << 254 // Returns the mass of the logical volum << 255 // estimated geometrical volume of each << 256 // to the logical volume and (by default << 257 // NOTE: the computation may require a c << 258 // depending from the complexity o << 259 // The returned value is cached an << 260 // calls (default), unless recompu << 261 // 'true' for the boolean argument << 262 // be forced if the geometry setup << 263 // call. By setting the 'propagate << 264 // method returns the mass of the << 265 // (subtracted for the volume occu << 266 // An optional argument to specify << 267 void ResetMass(); << 268 // Ensure that cached value of Mass is i << 269 // state, e.g. change of size of Solid, << 270 // or the addition/deletion << 271 << 272 G4FieldManager* GetFieldManager() const; << 273 // Gets current FieldManager. 142 // Gets current FieldManager. 274 void SetFieldManager(G4FieldManager* pFiel << 143 void SetFieldManager(G4FieldManager *pFieldMgr, G4bool forceToAllDaughters); 275 // Sets FieldManager and propagates it: 144 // Sets FieldManager and propagates it: 276 // i) only to daughters with G4FieldMan << 145 // i) only to daughters with G4FieldManager = 0 277 // if forceToAllDaughters=false 146 // if forceToAllDaughters=false 278 // ii) to all daughters 147 // ii) to all daughters 279 // if forceToAllDaughters=true 148 // if forceToAllDaughters=true 280 149 281 G4VSensitiveDetector* GetSensitiveDetector << 150 inline G4VSensitiveDetector* GetSensitiveDetector() const; 282 // Gets current SensitiveDetector. 151 // Gets current SensitiveDetector. 283 void SetSensitiveDetector(G4VSensitiveDete << 152 inline void SetSensitiveDetector(G4VSensitiveDetector *pSDetector); 284 // Sets SensitiveDetector (can be nullpt << 153 // Sets SensitiveDetector (can be NULL). 285 154 286 inline G4UserLimits* GetUserLimits() const 155 inline G4UserLimits* GetUserLimits() const; 287 inline void SetUserLimits(G4UserLimits *pU 156 inline void SetUserLimits(G4UserLimits *pULimits); 288 // Gets and sets current UserLimits. 157 // Gets and sets current UserLimits. 289 158 290 inline G4SmartVoxelHeader* GetVoxelHeader( 159 inline G4SmartVoxelHeader* GetVoxelHeader() const; 291 inline void SetVoxelHeader(G4SmartVoxelHea 160 inline void SetVoxelHeader(G4SmartVoxelHeader *pVoxel); 292 // Gets and sets current VoxelHeader. 161 // Gets and sets current VoxelHeader. 293 162 294 inline G4double GetSmartless() const; << 163 inline G4double GetSmartless(); 295 inline void SetSmartless(G4double s); 164 inline void SetSmartless(G4double s); 296 // Gets and sets user defined optimisati 165 // Gets and sets user defined optimisation quality. 297 166 298 inline G4bool IsToOptimise() const; << 167 G4bool operator == ( const G4LogicalVolume& lv) const; 299 // Replies if geometry optimisation (vox << 168 // Equality defined by address only- return true if objects are at 300 // applied for this volume hierarchy. << 169 // same address, else false. 301 inline void SetOptimisation(G4bool optim); << 170 302 // Specifies if to apply or not geometry << 171 inline const G4VisAttributes* GetVisAttributes () const; 303 // volume hierarchy. Note that for param << 172 inline void SetVisAttributes (const G4VisAttributes* pVA); 304 // hierarchy, optimisation is always app << 173 inline void SetVisAttributes (const G4VisAttributes& VA); 305 << 306 inline G4bool IsRootRegion() const; << 307 // Replies if the logical volume represe << 308 inline void SetRegionRootFlag(G4bool rreg) << 309 // Sets/unsets the volume as a root regi << 310 inline G4bool IsRegion() const; << 311 // Replies if the logical volume is part << 312 inline void SetRegion(G4Region* reg); << 313 // Sets/unsets the volume as cuts region << 314 inline G4Region* GetRegion() const; << 315 // Return the region to which the volume << 316 inline void PropagateRegion(); << 317 // Propagates region pointer to daughter << 318 << 319 const G4MaterialCutsCouple* GetMaterialCut << 320 void SetMaterialCutsCouple(G4MaterialCutsC << 321 // Accessors for production cuts. << 322 << 323 G4bool operator == (const G4LogicalVolume& << 324 // Equality defined by address only. << 325 // Returns true if objects are at same a << 326 << 327 const G4VisAttributes* GetVisAttributes () << 328 void SetVisAttributes (const G4VisAttribut << 329 void SetVisAttributes (const G4VisAttribut << 330 // Gets and sets visualization attribute 174 // Gets and sets visualization attributes. 331 // Arguments are converted to shared_ptr << 332 175 >> 176 inline void BecomeEnvelopeForFastSimulation(G4FastSimulationManager* ); >> 177 // Makes this an Envelope for given FastSimulationManager. >> 178 // Ensures that all its daughter volumes get it too - unless they >> 179 // have one already. >> 180 void ClearEnvelopeForFastSimulation(G4LogicalVolume* motherLV= 0); >> 181 // Erase volume's Envelope status and propagate the FastSimulationManager >> 182 // of its mother volume to itself and its daughters. 333 inline G4FastSimulationManager* GetFastSim 183 inline G4FastSimulationManager* GetFastSimulationManager () const; 334 // Gets current FastSimulationManager po << 184 // Gets current FastSimulationManager pointer. 335 185 336 inline void SetBiasWeight (G4double w); 186 inline void SetBiasWeight (G4double w); 337 inline G4double GetBiasWeight() const; 187 inline G4double GetBiasWeight() const; 338 // Sets and gets bias weight. 188 // Sets and gets bias weight. 339 189 340 public: << 190 private: 341 << 342 G4LogicalVolume(__void__&); << 343 // Fake default constructor for usage re << 344 // persistency for clients requiring pre << 345 // persistifiable objects. << 346 << 347 virtual G4bool IsExtended() const; << 348 // Return true if it is not a base-class << 349 << 350 inline G4FieldManager* GetMasterFieldManag << 351 // Gets current FieldManager for the mas << 352 inline G4VSensitiveDetector* GetMasterSens << 353 // Gets current SensitiveDetector for th << 354 inline G4VSolid* GetMasterSolid() const; << 355 // Gets current Solid for the master thr << 356 << 357 inline G4int GetInstanceID() const; << 358 // Returns the instance ID. << 359 << 360 static const G4LVManager& GetSubInstanceMa << 361 // Returns the private data instance man << 362 << 363 static void Clean(); << 364 // Clear memory allocated by sub-instanc << 365 << 366 inline void Lock(); << 367 // Set lock identifier for final deletio << 368 << 369 void InitialiseWorker(G4LogicalVolume* ptr << 370 G4VSolid* pSolid, G4 << 371 // This method is similar to the constru << 372 // thread to achieve the partial effect << 373 << 374 void TerminateWorker(G4LogicalVolume* ptrM << 375 // This method is similar to the destruc << 376 // thread to achieve the partial effect << 377 191 378 void AssignFieldManager(G4FieldManager* fl << 192 void SetFastSimulationManager (G4FastSimulationManager* pPA, 379 // Set the FieldManager - only at this l << 193 G4bool IsEnvelope); 380 << 194 // Sets the fast simulation manager. Private method called by the 381 static G4VSolid* GetSolid(G4LVData& instLV << 195 // public SetIsEnvelope method with IsEnvelope = TRUE. It is 382 static void SetSolid(G4LVData& instLVdata, << 196 // then called recursivaly to the daughters to propagate the 383 // Optimised Methods - passing thread in << 197 // FastSimulationManager pointer with IsEnvelope = FALSE. 384 << 198 385 G4bool ChangeDaughtersType(EVolume atype); << 199 G4LogicalVolume* FindMotherLogicalVolumeForEnvelope(); 386 // Change the type of the daughters volu << 200 387 // Meant for the user who wants to use t << 201 G4LogicalVolume(const G4LogicalVolume&); 388 // the contents of a volume. << 202 G4LogicalVolume& operator=(const G4LogicalVolume&); 389 // Returns: success (true) or failure (f << 203 // Private copy-constructor and assignment operator. 390 204 391 private: 205 private: 392 206 393 using G4PhysicalVolumeList = std::vector<G << 207 // Data members: 394 208 395 G4GEOM_DLL static G4LVManager subInstanceM << 209 G4RWTPtrOrderedVector<G4VPhysicalVolume> fDaughters; 396 // This new field helps to use the class << 397 << 398 G4PhysicalVolumeList fDaughters; << 399 // Vector of daughters. Given initial si 210 // Vector of daughters. Given initial size of 0. >> 211 G4FieldManager *fFieldManager; >> 212 // Pointer (possibly NULL) to (magnetic or other) field manager object. >> 213 G4Material *fMaterial; >> 214 // Pointer to material at this node. 400 G4String fName; 215 G4String fName; 401 // Name of logical volume. 216 // Name of logical volume. 402 G4UserLimits* fUserLimits = nullptr; << 217 G4VSensitiveDetector *fSensitiveDetector; 403 // Pointer (possibly nullptr) to user St << 218 // Pointer (possibly NULL) to `Hit' object. 404 G4SmartVoxelHeader* fVoxel = nullptr; << 219 G4VSolid *fSolid; 405 // Pointer (possibly nullptr) to optimis << 220 // Pointer to solid. 406 G4double fSmartless = 2.0; << 221 G4UserLimits *fUserLimits; >> 222 // Pointer (possibly NULL) to user Step limit object for this node. >> 223 G4SmartVoxelHeader *fVoxel; >> 224 // Pointer (possibly NULL) to optimisation info objects. >> 225 G4double fSmartless; 407 // Quality for optimisation, average num 226 // Quality for optimisation, average number of voxels to be spent 408 // per content. 227 // per content. 409 G4Region* fRegion = nullptr; << 228 const G4VisAttributes* fVisAttributes; 410 // Pointer to the cuts region (if any). << 229 // Pointer (possibly NULL) to visualization attributes. 411 G4double fBiasWeight = 1.0; << 230 G4FastSimulationManager *fFastSimulationManager; >> 231 // Pointer (possibly NULL) to G4FastSimulationManager object. >> 232 G4bool fIsEnvelope; >> 233 // Flags if the Logical Volume is an envelope for a >> 234 // FastSimulationManager. >> 235 G4double fBiasWeight; 412 // Weight used in the event biasing tech 236 // Weight used in the event biasing technique. 413 std::shared_ptr<const G4VisAttributes> fVi << 414 // Pointer to visualization attributes. << 415 << 416 // Shadow of master pointers. << 417 // Each worker thread can access this fiel << 418 // through these pointers. << 419 // << 420 G4VSolid* fSolid = nullptr; << 421 G4VSensitiveDetector* fSensitiveDetector = << 422 G4FieldManager* fFieldManager = nullptr; << 423 G4LVData* lvdata = nullptr; // For use of << 424 << 425 G4int instanceID; << 426 // This new field is used as instance ID << 427 EVolume fDaughtersVolumeType; << 428 // Are contents of volume placements, re << 429 G4bool fOptimise = true; << 430 // Flag to identify if optimisation shou << 431 G4bool fRootRegion = false; << 432 // Flag to identify if the logical volum << 433 G4bool fLock = false; << 434 // Flag to identify if entity is locked << 435 }; 237 }; 436 238 437 #include "G4LogicalVolume.icc" 239 #include "G4LogicalVolume.icc" 438 240 439 #endif 241 #endif 440 242