Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4LogicalVolume << 26 // >> 27 // $Id: G4LogicalVolume.hh 78050 2013-12-03 08:17:33Z gcosmo $ >> 28 // >> 29 // >> 30 // class G4LogicalVolume 27 // 31 // 28 // Class description: 32 // Class description: 29 // 33 // 30 // Represents a leaf node or unpositioned subt 34 // Represents a leaf node or unpositioned subtree in the geometry hierarchy. 31 // Logical volumes are named, and may have dau 35 // Logical volumes are named, and may have daughters ascribed to them. 32 // They are responsible for retrieval of the p 36 // They are responsible for retrieval of the physical and tracking attributes 33 // of the physical volume that it represents: 37 // of the physical volume that it represents: solid, material, magnetic field, 34 // and optionally, user limits, sensitive dete 38 // and optionally, user limits, sensitive detectors, regions, biasing weights. 35 // 39 // 36 // Get and Set functionality is provided for a 40 // Get and Set functionality is provided for all attributes, but note that 37 // most set functions should not be used when 41 // most set functions should not be used when the geometry is `closed'. 38 // As a further development, `Guard' checks c 42 // As a further development, `Guard' checks can be added to ensure 39 // only legal operations at tracking time. 43 // only legal operations at tracking time. 40 // 44 // 41 // On construction, solid, material and name m 45 // On construction, solid, material and name must be specified. 42 // 46 // 43 // Daughters are ascribed and managed by means 47 // Daughters are ascribed and managed by means of a simple 44 // GetNoDaughters,Get/SetDaughter(n),AddDaught 48 // GetNoDaughters,Get/SetDaughter(n),AddDaughter interface. 45 // 49 // 46 // Smart voxels as used for tracking optimisat 50 // Smart voxels as used for tracking optimisation. They're also an attribute. 47 // 51 // 48 // Logical volumes self register to the logica 52 // Logical volumes self register to the logical volume Store on construction, 49 // and deregister on destruction. 53 // and deregister on destruction. 50 // 54 // 51 // NOTE: This class is currently *NOT* subclas 55 // NOTE: This class is currently *NOT* subclassed, since not meant to 52 // act as a base class. Therefore, the d 56 // act as a base class. Therefore, the destructor is NOT virtual. 53 // 57 // 54 // Data members: 58 // Data members: 55 // 59 // 56 // std::vector<G4VPhysicalVolume*> fDaughte 60 // std::vector<G4VPhysicalVolume*> fDaughters 57 // - Vector of daughters. Given initial siz 61 // - Vector of daughters. Given initial size of 0. 58 // G4FieldManager* fFieldManager 62 // G4FieldManager* fFieldManager 59 // - Pointer (possibly 0) to (magnetic or o 63 // - Pointer (possibly 0) to (magnetic or other) field manager object. 60 // G4Material* fMaterial 64 // G4Material* fMaterial 61 // - Pointer to material at this node. 65 // - Pointer to material at this node. 62 // G4String fName 66 // G4String fName 63 // - Name of logical volume. 67 // - Name of logical volume. 64 // G4VSensitiveDetector *fSensitiveDetector 68 // G4VSensitiveDetector *fSensitiveDetector 65 // - Pointer (possibly 0) to `Hit' object. 69 // - Pointer (possibly 0) to `Hit' object. 66 // G4VSolid* fSolid 70 // G4VSolid* fSolid 67 // - Pointer to solid. 71 // - Pointer to solid. 68 // G4UserLimits* fUserLimits 72 // G4UserLimits* fUserLimits 69 // - Pointer (possibly 0) to user Step limi 73 // - Pointer (possibly 0) to user Step limit object for this node. 70 // G4SmartVoxelHeader* fVoxel 74 // G4SmartVoxelHeader* fVoxel 71 // - Pointer (possibly 0) to optimisation i 75 // - Pointer (possibly 0) to optimisation info objects. 72 // G4bool fOptimise 76 // G4bool fOptimise 73 // - Flag to identify if optimisation shoul 77 // - Flag to identify if optimisation should be applied or not. 74 // G4bool fRootRegion 78 // G4bool fRootRegion 75 // - Flag to identify if the logical volume 79 // - Flag to identify if the logical volume is a root region. 76 // G4double fSmartless 80 // G4double fSmartless 77 // - Quality for optimisation, average numb 81 // - Quality for optimisation, average number of voxels to be spent 78 // per content. 82 // per content. 79 // const G4VisAttributes* fVisAttributes 83 // const G4VisAttributes* fVisAttributes 80 // - Pointer (possibly 0) to visualization 84 // - Pointer (possibly 0) to visualization attributes. 81 // G4Region* fRegion 85 // G4Region* fRegion 82 // - Pointer to the cuts region (if any) 86 // - Pointer to the cuts region (if any) 83 // G4MaterialCutsCouple* fCutsCouple 87 // G4MaterialCutsCouple* fCutsCouple 84 // - Pointer (possibly 0) to associated pro 88 // - Pointer (possibly 0) to associated production cuts. 85 // G4double fBiasWeight 89 // G4double fBiasWeight 86 // - Weight used in the event biasing techn 90 // - Weight used in the event biasing technique. 87 // 91 // 88 // Following data members has been moved to G4 92 // Following data members has been moved to G4Region - M.Asai (Aug/18/2005) 89 // G4FastSimulationManager* fFastSimulation 93 // G4FastSimulationManager* fFastSimulationManager 90 // - Pointer (possibly 0) to G4FastSimulati 94 // - Pointer (possibly 0) to G4FastSimulationManager object. 91 // G4bool fIsEnvelope 95 // G4bool fIsEnvelope 92 // - Flags if the Logical Volume is an enve 96 // - Flags if the Logical Volume is an envelope for a FastSimulationManager. 93 97 >> 98 // History: 94 // 15.01.13 G.Cosmo, A.Dotti: Modified for thr 99 // 15.01.13 G.Cosmo, A.Dotti: Modified for thread-safety for MT 95 // 12.11.04 G.Cosmo: Added GetMass() method fo 100 // 12.11.04 G.Cosmo: Added GetMass() method for computing mass of the tree 96 // 24.09.02 G.Cosmo: Added flags and accessors 101 // 24.09.02 G.Cosmo: Added flags and accessors for region cuts handling 97 // 17.05.02 G.Cosmo: Added IsToOptimise() meth 102 // 17.05.02 G.Cosmo: Added IsToOptimise() method and related flag 98 // 18.04.01 G.Cosmo: Migrated to STL vector 103 // 18.04.01 G.Cosmo: Migrated to STL vector 99 // 12.02.99 S.Giani: Added user defined optimi 104 // 12.02.99 S.Giani: Added user defined optimisation quality >> 105 // 09.11.98 J.Apostolakis: Changed G4MagneticField to G4FieldManager 100 // 09.11.98 M.Verderi, J.Apostolakis: Added Bi 106 // 09.11.98 M.Verderi, J.Apostolakis: Added BiasWeight member and accessors 101 // 10.20.97 P.M.DeFreitas, J.Apostolakis: Adde << 107 // 10.20.97 P.M.DeFreitas: Added pointer to a FastSimulation 102 // 11.07.95 P.Kent: Initial version << 108 // J.Apostolakis: & flag to indicate if it is an Envelope for it >> 109 // 19.11.96 J.Allison: Replaced G4Visible with explicit const G4VisAttributes* >> 110 // 19.08.96 P.Kent: Split -> hh/icc/cc files; G4VSensitiveDetector change >> 111 // 11.07.95 P.Kent: Initial version. 103 // ------------------------------------------- 112 // ------------------------------------------------------------------------ 104 #ifndef G4LOGICALVOLUME_HH 113 #ifndef G4LOGICALVOLUME_HH 105 #define G4LOGICALVOLUME_HH 1 << 114 #define G4LOGICALVOLUME_HH 106 115 107 #include <vector> 116 #include <vector> 108 #include <memory> << 109 117 110 #include "G4Types.hh" 118 #include "G4Types.hh" 111 #include "G4Region.hh" // Required b 119 #include "G4Region.hh" // Required by inline methods 112 #include "G4VPhysicalVolume.hh" // Need opera 120 #include "G4VPhysicalVolume.hh" // Need operator == for vector fdaughters 113 #include "G4GeomSplitter.hh" // Needed for 121 #include "G4GeomSplitter.hh" // Needed for MT RW data splitting 114 #include "G4Threading.hh" << 115 122 116 // Forward declarations 123 // Forward declarations 117 // 124 // 118 class G4FieldManager; 125 class G4FieldManager; 119 class G4Material; 126 class G4Material; 120 class G4VSensitiveDetector; 127 class G4VSensitiveDetector; 121 class G4VSolid; 128 class G4VSolid; 122 class G4UserLimits; 129 class G4UserLimits; 123 class G4SmartVoxelHeader; 130 class G4SmartVoxelHeader; >> 131 class G4VisAttributes; 124 class G4FastSimulationManager; 132 class G4FastSimulationManager; 125 class G4MaterialCutsCouple; 133 class G4MaterialCutsCouple; 126 class G4VisAttributes; << 127 134 128 class G4LVData 135 class G4LVData 129 { 136 { 130 // Encapsulates the fields associated to the 137 // Encapsulates the fields associated to the class 131 // G4LogicalVolume that may not be read-only 138 // G4LogicalVolume that may not be read-only. 132 139 133 public: 140 public: 134 << 135 G4LVData(); 141 G4LVData(); 136 void initialize() << 142 void initialize() { 137 { << 143 fSolid = 0; 138 fSolid = nullptr; << 144 fSensitiveDetector = 0; 139 fSensitiveDetector = nullptr; << 145 fFieldManager = 0; 140 fFieldManager = nullptr; << 146 fMaterial = 0; 141 fMaterial = nullptr; << 147 fMass = 0.0; 142 fMass = 0.0; << 148 fCutsCouple = 0; 143 fCutsCouple = nullptr; << 144 } 149 } 145 150 146 public: 151 public: 147 152 148 G4VSolid* fSolid = nullptr; << 153 G4VSolid* fSolid; 149 // Pointer to solid. 154 // Pointer to solid. 150 G4VSensitiveDetector* fSensitiveDetector = << 155 G4VSensitiveDetector* fSensitiveDetector; 151 // Pointer to sensitive detector. 156 // Pointer to sensitive detector. 152 G4FieldManager* fFieldManager = nullptr; << 157 G4FieldManager* fFieldManager; 153 // Pointer (possibly nullptr) to (magnet << 158 // Pointer (possibly 0) to (magnetic or other) field manager object. 154 G4Material* fMaterial = nullptr; << 159 G4Material* fMaterial; 155 // Pointer to material at this node. 160 // Pointer to material at this node. 156 G4double fMass = 0.0; << 161 G4double fMass; 157 // Mass of the logical volume tree. 162 // Mass of the logical volume tree. 158 G4MaterialCutsCouple* fCutsCouple = nullpt << 163 G4MaterialCutsCouple* fCutsCouple; 159 // Pointer (possibly nullptr) to associa << 164 // Pointer (possibly 0) to associated production cuts. 160 }; 165 }; 161 166 162 // The type G4LVManager is introduced to encap 167 // The type G4LVManager is introduced to encapsulate the methods used by 163 // both the master thread and worker threads t 168 // both the master thread and worker threads to allocate memory space for 164 // the fields encapsulated by the class G4LVDa 169 // the fields encapsulated by the class G4LVData. When each thread 165 // initializes the value for these fields, it 170 // initializes the value for these fields, it refers to them using a macro 166 // definition defined below. For every G4Logic 171 // definition defined below. For every G4LogicalVolume instance, there is 167 // a corresponding G4LVData instance. All G4LV 172 // a corresponding G4LVData instance. All G4LVData instances are organized 168 // by the class G4LVManager as an array. 173 // by the class G4LVManager as an array. 169 // The field "int instanceID" is added to the 174 // The field "int instanceID" is added to the class G4LogicalVolume. 170 // The value of this field in each G4LogicalVo 175 // The value of this field in each G4LogicalVolume instance is the subscript 171 // of the corresponding G4LVData instance. 176 // of the corresponding G4LVData instance. 172 // In order to use the class G4LVManager, we a 177 // In order to use the class G4LVManager, we add a static member in the class 173 // G4LogicalVolume as follows: "static G4LVMan 178 // G4LogicalVolume as follows: "static G4LVManager subInstanceManager". 174 // For the master thread, the array for G4LVDa 179 // For the master thread, the array for G4LVData instances grows dynamically 175 // along with G4LogicalVolume instances are cr 180 // along with G4LogicalVolume instances are created. For each worker thread, 176 // it copies the array of G4LVData instances f 181 // it copies the array of G4LVData instances from the master thread. 177 // In addition, it invokes a method similiar t 182 // In addition, it invokes a method similiar to the constructor explicitly 178 // to achieve the partial effect for each inst 183 // to achieve the partial effect for each instance in the array. 179 // 184 // 180 using G4LVManager = G4GeomSplitter<G4LVData>; << 185 typedef G4GeomSplitter<G4LVData> G4LVManager; 181 186 182 class G4LogicalVolume 187 class G4LogicalVolume 183 { 188 { 184 public: << 189 typedef std::vector<G4VPhysicalVolume*> G4PhysicalVolumeList; >> 190 >> 191 public: // with description 185 192 186 G4LogicalVolume(G4VSolid* pSolid, 193 G4LogicalVolume(G4VSolid* pSolid, 187 G4Material* pMaterial, 194 G4Material* pMaterial, 188 const G4String& name, 195 const G4String& name, 189 G4FieldManager* pFieldMgr << 196 G4FieldManager* pFieldMgr=0, 190 G4VSensitiveDetector* pSDe << 197 G4VSensitiveDetector* pSDetector=0, 191 G4UserLimits* pULimits = n << 198 G4UserLimits* pULimits=0, 192 G4bool optimise = true); << 199 G4bool optimise=true); 193 // Constructor. The solid and material p 200 // Constructor. The solid and material pointer must be non null. 194 // The parameters for field, detector an 201 // The parameters for field, detector and user limits are optional. 195 // The volume also enters itself into th 202 // The volume also enters itself into the logical volume Store. 196 // Optimisation of the geometry (voxelis 203 // Optimisation of the geometry (voxelisation) for the volume 197 // hierarchy is applied by default. For 204 // hierarchy is applied by default. For parameterised volumes in 198 // the hierarchy, optimisation is -alway 205 // the hierarchy, optimisation is -always- applied. 199 206 200 virtual ~G4LogicalVolume(); << 207 ~G4LogicalVolume(); 201 // Destructor. Removes the logical volum 208 // Destructor. Removes the logical volume from the logical volume Store. 202 // This class is NOT meant to act as bas << 209 // NOT virtual, since not meant to act as base class. 203 // circumstances of extended types used << 204 << 205 G4LogicalVolume(const G4LogicalVolume&) = << 206 G4LogicalVolume& operator=(const G4Logical << 207 // Copy-constructor and assignment opera << 208 210 209 inline const G4String& GetName() const; << 211 inline G4String GetName() const; 210 void SetName(const G4String& pName); << 212 inline void SetName(const G4String& pName); 211 // Returns and sets the name of the logi 213 // Returns and sets the name of the logical volume. 212 214 213 inline std::size_t GetNoDaughters() const; << 215 inline G4int GetNoDaughters() const; 214 // Returns the number of daughters (0 to 216 // Returns the number of daughters (0 to n). 215 inline G4VPhysicalVolume* GetDaughter(cons << 217 inline G4VPhysicalVolume* GetDaughter(const G4int i) const; 216 // Returns the ith daughter. Note number 218 // Returns the ith daughter. Note numbering starts from 0, 217 // and no bounds checking is performed. 219 // and no bounds checking is performed. 218 void AddDaughter(G4VPhysicalVolume* p); << 220 inline void AddDaughter(G4VPhysicalVolume* p); 219 // Adds the volume p as a daughter of th 221 // Adds the volume p as a daughter of the current logical volume. 220 inline G4bool IsDaughter(const G4VPhysical 222 inline G4bool IsDaughter(const G4VPhysicalVolume* p) const; 221 // Returns true if the volume p is a dau 223 // Returns true if the volume p is a daughter of the current 222 // logical volume. 224 // logical volume. 223 G4bool IsAncestor(const G4VPhysicalVolume* 225 G4bool IsAncestor(const G4VPhysicalVolume* p) const; 224 // Returns true if the volume p is part 226 // Returns true if the volume p is part of the hierarchy of 225 // volumes established by the current lo 227 // volumes established by the current logical volume. Scans 226 // recursively the volume tree. 228 // recursively the volume tree. 227 void RemoveDaughter(const G4VPhysicalVolum << 229 inline void RemoveDaughter(const G4VPhysicalVolume* p); 228 // Removes the volume p from the List of 230 // Removes the volume p from the List of daughter of the current 229 // logical volume. 231 // logical volume. 230 void ClearDaughters(); << 232 inline void ClearDaughters(); 231 // Clears the list of daughters. Used by 233 // Clears the list of daughters. Used by the phys-volume store when 232 // the geometry tree is cleared, since m 234 // the geometry tree is cleared, since modified at run-time. 233 G4int TotalVolumeEntities() const; 235 G4int TotalVolumeEntities() const; 234 // Returns the total number of physical 236 // Returns the total number of physical volumes (replicated or placed) 235 // in the tree represented by the curren 237 // in the tree represented by the current logical volume. 236 inline EVolume CharacteriseDaughters() con 238 inline EVolume CharacteriseDaughters() const; 237 // Characterise the daughters of this lo 239 // Characterise the daughters of this logical volume. 238 inline EVolume DeduceDaughtersType() const << 240 239 // Used by CharacteriseDaughters(). << 241 inline G4VSolid* GetSolid() const; 240 << 242 inline void SetSolid(G4VSolid *pSolid); 241 G4VSolid* GetSolid() const; << 242 void SetSolid(G4VSolid* pSolid); << 243 // Gets and sets the current solid. 243 // Gets and sets the current solid. 244 244 245 G4Material* GetMaterial() const; << 245 inline G4Material* GetMaterial() const; 246 void SetMaterial(G4Material* pMaterial); << 246 inline void SetMaterial(G4Material *pMaterial); 247 // Gets and sets the current material. 247 // Gets and sets the current material. 248 void UpdateMaterial(G4Material* pMaterial) << 248 inline void UpdateMaterial(G4Material *pMaterial); 249 // Sets material and corresponding Mater 249 // Sets material and corresponding MaterialCutsCouple. 250 // This method is invoked by G4Navigator 250 // This method is invoked by G4Navigator while it is navigating through 251 // material parameterization. 251 // material parameterization. 252 G4double GetMass(G4bool forced = false, G4 << 252 G4double GetMass(G4bool forced=false, G4bool propagate=true, 253 G4Material* parMaterial = << 253 G4Material* parMaterial=0); 254 // Returns the mass of the logical volum 254 // Returns the mass of the logical volume tree computed from the 255 // estimated geometrical volume of each 255 // estimated geometrical volume of each solid and material associated 256 // to the logical volume and (by default 256 // to the logical volume and (by default) to its daughters. 257 // NOTE: the computation may require a c 257 // NOTE: the computation may require a considerable amount of time, 258 // depending from the complexity o 258 // depending from the complexity of the geometry tree. 259 // The returned value is cached an 259 // The returned value is cached and can be used for successive 260 // calls (default), unless recompu 260 // calls (default), unless recomputation is forced by providing 261 // 'true' for the boolean argument 261 // 'true' for the boolean argument in input. Computation should 262 // be forced if the geometry setup 262 // be forced if the geometry setup has changed after the previous 263 // call. By setting the 'propagate 263 // call. By setting the 'propagate' boolean flag to 'false' the 264 // method returns the mass of the 264 // method returns the mass of the present logical volume only 265 // (subtracted for the volume occu 265 // (subtracted for the volume occupied by the daughter volumes). 266 // An optional argument to specify 266 // An optional argument to specify a material is also provided. 267 void ResetMass(); << 267 void ResetMass(); 268 // Ensure that cached value of Mass is i 268 // Ensure that cached value of Mass is invalidated - due to change in 269 // state, e.g. change of size of Solid, 269 // state, e.g. change of size of Solid, change of type of solid, 270 // or the addition/deletion 270 // or the addition/deletion of a daughter volume. 271 271 272 G4FieldManager* GetFieldManager() const; << 272 inline G4FieldManager* GetFieldManager() const; 273 // Gets current FieldManager. 273 // Gets current FieldManager. 274 void SetFieldManager(G4FieldManager* pFiel << 274 void SetFieldManager(G4FieldManager *pFieldMgr, G4bool forceToAllDaughters); 275 // Sets FieldManager and propagates it: 275 // Sets FieldManager and propagates it: 276 // i) only to daughters with G4FieldMan << 276 // i) only to daughters with G4FieldManager = 0 277 // if forceToAllDaughters=false 277 // if forceToAllDaughters=false 278 // ii) to all daughters 278 // ii) to all daughters 279 // if forceToAllDaughters=true 279 // if forceToAllDaughters=true 280 280 281 G4VSensitiveDetector* GetSensitiveDetector << 281 inline G4VSensitiveDetector* GetSensitiveDetector() const; 282 // Gets current SensitiveDetector. 282 // Gets current SensitiveDetector. 283 void SetSensitiveDetector(G4VSensitiveDete << 283 inline void SetSensitiveDetector(G4VSensitiveDetector *pSDetector); 284 // Sets SensitiveDetector (can be nullpt << 284 // Sets SensitiveDetector (can be 0). 285 285 286 inline G4UserLimits* GetUserLimits() const 286 inline G4UserLimits* GetUserLimits() const; 287 inline void SetUserLimits(G4UserLimits *pU 287 inline void SetUserLimits(G4UserLimits *pULimits); 288 // Gets and sets current UserLimits. 288 // Gets and sets current UserLimits. 289 289 290 inline G4SmartVoxelHeader* GetVoxelHeader( 290 inline G4SmartVoxelHeader* GetVoxelHeader() const; 291 inline void SetVoxelHeader(G4SmartVoxelHea 291 inline void SetVoxelHeader(G4SmartVoxelHeader *pVoxel); 292 // Gets and sets current VoxelHeader. 292 // Gets and sets current VoxelHeader. 293 293 294 inline G4double GetSmartless() const; 294 inline G4double GetSmartless() const; 295 inline void SetSmartless(G4double s); 295 inline void SetSmartless(G4double s); 296 // Gets and sets user defined optimisati 296 // Gets and sets user defined optimisation quality. 297 297 298 inline G4bool IsToOptimise() const; 298 inline G4bool IsToOptimise() const; 299 // Replies if geometry optimisation (vox 299 // Replies if geometry optimisation (voxelisation) is to be 300 // applied for this volume hierarchy. 300 // applied for this volume hierarchy. 301 inline void SetOptimisation(G4bool optim); 301 inline void SetOptimisation(G4bool optim); 302 // Specifies if to apply or not geometry 302 // Specifies if to apply or not geometry optimisation to this 303 // volume hierarchy. Note that for param 303 // volume hierarchy. Note that for parameterised volumes in the 304 // hierarchy, optimisation is always app 304 // hierarchy, optimisation is always applied. 305 305 306 inline G4bool IsRootRegion() const; 306 inline G4bool IsRootRegion() const; 307 // Replies if the logical volume represe 307 // Replies if the logical volume represents a root region or not. 308 inline void SetRegionRootFlag(G4bool rreg) 308 inline void SetRegionRootFlag(G4bool rreg); 309 // Sets/unsets the volume as a root regi 309 // Sets/unsets the volume as a root region for cuts. 310 inline G4bool IsRegion() const; 310 inline G4bool IsRegion() const; 311 // Replies if the logical volume is part 311 // Replies if the logical volume is part of a cuts region or not. 312 inline void SetRegion(G4Region* reg); 312 inline void SetRegion(G4Region* reg); 313 // Sets/unsets the volume as cuts region 313 // Sets/unsets the volume as cuts region. 314 inline G4Region* GetRegion() const; 314 inline G4Region* GetRegion() const; 315 // Return the region to which the volume 315 // Return the region to which the volume belongs, if any. 316 inline void PropagateRegion(); 316 inline void PropagateRegion(); 317 // Propagates region pointer to daughter 317 // Propagates region pointer to daughters. 318 318 319 const G4MaterialCutsCouple* GetMaterialCut << 319 inline const G4MaterialCutsCouple* GetMaterialCutsCouple() const; 320 void SetMaterialCutsCouple(G4MaterialCutsC << 320 inline void SetMaterialCutsCouple(G4MaterialCutsCouple* cuts); 321 // Accessors for production cuts. 321 // Accessors for production cuts. 322 322 323 G4bool operator == (const G4LogicalVolume& 323 G4bool operator == (const G4LogicalVolume& lv) const; 324 // Equality defined by address only. 324 // Equality defined by address only. 325 // Returns true if objects are at same a 325 // Returns true if objects are at same address, else false. 326 326 327 const G4VisAttributes* GetVisAttributes () << 327 inline const G4VisAttributes* GetVisAttributes () const; 328 void SetVisAttributes (const G4VisAttribut << 328 inline void SetVisAttributes (const G4VisAttributes* pVA); 329 void SetVisAttributes (const G4VisAttribut << 329 void SetVisAttributes (const G4VisAttributes& VA); 330 // Gets and sets visualization attribute << 330 // Gets and sets visualization attributes. A copy of 'VA' on the heap 331 // Arguments are converted to shared_ptr << 331 // will be made in the case the call with a const reference is used. 332 332 333 inline G4FastSimulationManager* GetFastSim 333 inline G4FastSimulationManager* GetFastSimulationManager () const; 334 // Gets current FastSimulationManager po 334 // Gets current FastSimulationManager pointer if exists, otherwise null. 335 335 336 inline void SetBiasWeight (G4double w); 336 inline void SetBiasWeight (G4double w); 337 inline G4double GetBiasWeight() const; 337 inline G4double GetBiasWeight() const; 338 // Sets and gets bias weight. 338 // Sets and gets bias weight. 339 339 340 public: << 340 public: // without description 341 341 342 G4LogicalVolume(__void__&); 342 G4LogicalVolume(__void__&); 343 // Fake default constructor for usage re 343 // Fake default constructor for usage restricted to direct object 344 // persistency for clients requiring pre 344 // persistency for clients requiring preallocation of memory for 345 // persistifiable objects. 345 // persistifiable objects. 346 346 347 virtual G4bool IsExtended() const; << 348 // Return true if it is not a base-class << 349 << 350 inline G4FieldManager* GetMasterFieldManag 347 inline G4FieldManager* GetMasterFieldManager() const; 351 // Gets current FieldManager for the mas 348 // Gets current FieldManager for the master thread. 352 inline G4VSensitiveDetector* GetMasterSens 349 inline G4VSensitiveDetector* GetMasterSensitiveDetector() const; 353 // Gets current SensitiveDetector for th 350 // Gets current SensitiveDetector for the master thread. 354 inline G4VSolid* GetMasterSolid() const; 351 inline G4VSolid* GetMasterSolid() const; 355 // Gets current Solid for the master thr 352 // Gets current Solid for the master thread. 356 353 357 inline G4int GetInstanceID() const; 354 inline G4int GetInstanceID() const; 358 // Returns the instance ID. 355 // Returns the instance ID. 359 << 360 static const G4LVManager& GetSubInstanceMa 356 static const G4LVManager& GetSubInstanceManager(); 361 // Returns the private data instance man << 357 >> 358 // Sets the private data instance manager - in order to use a particular Workspace 362 359 363 static void Clean(); << 360 // static const G4LVManager* GetSubInstanceManagerPtr(); 364 // Clear memory allocated by sub-instanc << 361 // static const G4LVManager SetSubInstanceManager(G4LVManager* subInstanceManager); >> 362 // Revised Implementation - to enable Workspaces which can used by different >> 363 // threads at different times (only one thread or task can use a workspace at a time. ) 365 364 366 inline void Lock(); 365 inline void Lock(); 367 // Set lock identifier for final deletio 366 // Set lock identifier for final deletion of entity. 368 367 369 void InitialiseWorker(G4LogicalVolume* ptr << 368 void InitialiseWorker(G4LogicalVolume *ptrMasterObject, 370 G4VSolid* pSolid, G4 369 G4VSolid* pSolid, G4VSensitiveDetector* pSDetector); 371 // This method is similar to the constru 370 // This method is similar to the constructor. It is used by each worker 372 // thread to achieve the partial effect 371 // thread to achieve the partial effect as that of the master thread. 373 372 374 void TerminateWorker(G4LogicalVolume* ptrM << 373 void TerminateWorker(G4LogicalVolume *ptrMasterObject); 375 // This method is similar to the destruc 374 // This method is similar to the destructor. It is used by each worker 376 // thread to achieve the partial effect 375 // thread to achieve the partial effect as that of the master thread. 377 376 378 void AssignFieldManager(G4FieldManager* fl << 377 inline void AssignFieldManager( G4FieldManager *fldMgr); 379 // Set the FieldManager - only at this l 378 // Set the FieldManager - only at this level (do not push down hierarchy) 380 379 381 static G4VSolid* GetSolid(G4LVData& instLV << 380 // Optimised Methods - passing thread instance of worker data 382 static void SetSolid(G4LVData& instLVdata, << 381 inline static G4VSolid* GetSolid(G4LVData &instLVdata) ; // const; 383 // Optimised Methods - passing thread in << 382 inline static void SetSolid(G4LVData &instLVdata, G4VSolid *pSolid); 384 << 385 G4bool ChangeDaughtersType(EVolume atype); << 386 // Change the type of the daughters volu << 387 // Meant for the user who wants to use t << 388 // the contents of a volume. << 389 // Returns: success (true) or failure (f << 390 383 391 private: 384 private: 392 385 393 using G4PhysicalVolumeList = std::vector<G << 386 G4LogicalVolume(const G4LogicalVolume&); >> 387 G4LogicalVolume& operator=(const G4LogicalVolume&); >> 388 // Private copy-constructor and assignment operator. 394 389 395 G4GEOM_DLL static G4LVManager subInstanceM << 390 private: 396 // This new field helps to use the class << 391 >> 392 // Data members: 397 393 398 G4PhysicalVolumeList fDaughters; 394 G4PhysicalVolumeList fDaughters; 399 // Vector of daughters. Given initial si 395 // Vector of daughters. Given initial size of 0. 400 G4String fName; 396 G4String fName; 401 // Name of logical volume. 397 // Name of logical volume. 402 G4UserLimits* fUserLimits = nullptr; << 398 // Pointer (possibly 0) to `Hit' object. 403 // Pointer (possibly nullptr) to user St << 399 404 G4SmartVoxelHeader* fVoxel = nullptr; << 400 G4UserLimits* fUserLimits; 405 // Pointer (possibly nullptr) to optimis << 401 // Pointer (possibly 0) to user Step limit object for this node. 406 G4double fSmartless = 2.0; << 402 G4SmartVoxelHeader* fVoxel; >> 403 // Pointer (possibly 0) to optimisation info objects. >> 404 G4bool fOptimise; >> 405 // Flag to identify if optimisation should be applied or not. >> 406 G4bool fRootRegion; >> 407 // Flag to identify if the logical volume is a root region. >> 408 G4bool fLock; >> 409 // Flag to identify if entity is locked for final deletion. >> 410 G4double fSmartless; 407 // Quality for optimisation, average num 411 // Quality for optimisation, average number of voxels to be spent 408 // per content. 412 // per content. 409 G4Region* fRegion = nullptr; << 413 const G4VisAttributes* fVisAttributes; 410 // Pointer to the cuts region (if any). << 414 // Pointer (possibly 0) to visualization attributes. 411 G4double fBiasWeight = 1.0; << 415 G4Region* fRegion; >> 416 // Pointer to the cuts region (if any) >> 417 G4double fBiasWeight; 412 // Weight used in the event biasing tech 418 // Weight used in the event biasing technique. 413 std::shared_ptr<const G4VisAttributes> fVi << 419 414 // Pointer to visualization attributes. << 420 G4bool fChangedState; >> 421 // Invalidates any estimations from previous state >> 422 >> 423 G4int instanceID; >> 424 // This new field is used as instance ID. >> 425 G4GEOM_DLL static G4LVManager subInstanceManager; >> 426 // This new field helps to use the class G4LVManager introduced above. 415 427 416 // Shadow of master pointers. 428 // Shadow of master pointers. 417 // Each worker thread can access this fiel 429 // Each worker thread can access this field from the master thread 418 // through these pointers. 430 // through these pointers. 419 // 431 // 420 G4VSolid* fSolid = nullptr; << 432 G4VSolid* fSolid; 421 G4VSensitiveDetector* fSensitiveDetector = << 433 G4VSensitiveDetector* fSensitiveDetector; 422 G4FieldManager* fFieldManager = nullptr; << 434 G4FieldManager* fFieldManager; 423 G4LVData* lvdata = nullptr; // For use of << 424 << 425 G4int instanceID; << 426 // This new field is used as instance ID << 427 EVolume fDaughtersVolumeType; << 428 // Are contents of volume placements, re << 429 G4bool fOptimise = true; << 430 // Flag to identify if optimisation shou << 431 G4bool fRootRegion = false; << 432 // Flag to identify if the logical volum << 433 G4bool fLock = false; << 434 // Flag to identify if entity is locked << 435 }; 435 }; 436 436 437 #include "G4LogicalVolume.icc" 437 #include "G4LogicalVolume.icc" 438 438 439 #endif 439 #endif 440 440