Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4AffineTransform.icc,v 1.6 2002/01/08 12:38:05 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-05-01 $ >> 26 // >> 27 // 26 // G4AffineTransformation Inline implementatio 28 // G4AffineTransformation Inline implementation 27 // 29 // 28 // ------------------------------------------- << 29 30 30 inline G4AffineTransform::G4AffineTransform() << 31 inline G4AffineTransform::G4AffineTransform() : 31 : rxx(1),rxy(0),rxz(0), << 32 rxx(1),rxy(0),rxz(0), 32 ryx(0),ryy(1),ryz(0), << 33 ryx(0),ryy(1),ryz(0), 33 rzx(0),rzy(0),rzz(1), << 34 rzx(0),rzy(0),rzz(1), 34 tx(0),ty(0),tz(0) << 35 tx(0),ty(0),tz(0) 35 {} 36 {} 36 37 37 inline G4AffineTransform::G4AffineTransform(co << 38 inline G4AffineTransform::G4AffineTransform(const G4ThreeVector& tlate) : 38 : rxx(1),rxy(0),rxz(0), << 39 rxx(1),rxy(0),rxz(0), 39 ryx(0),ryy(1),ryz(0), << 40 ryx(0),ryy(1),ryz(0), 40 rzx(0),rzy(0),rzz(1), << 41 rzx(0),rzy(0),rzz(1), 41 tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) << 42 tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) 42 {} 43 {} 43 44 44 inline G4AffineTransform::G4AffineTransform(co << 45 inline G4AffineTransform::G4AffineTransform(const G4RotationMatrix& rot) : 45 : rxx(rot.xx()),rxy(rot.xy()),rxz(rot.xz()), << 46 rxx(rot.xx()),rxy(rot.xy()),rxz(rot.xz()), 46 ryx(rot.yx()),ryy(rot.yy()),ryz(rot.yz()), << 47 ryx(rot.yx()),ryy(rot.yy()),ryz(rot.yz()), 47 rzx(rot.zx()),rzy(rot.zy()),rzz(rot.zz()), << 48 rzx(rot.zx()),rzy(rot.zy()),rzz(rot.zz()), 48 tx(0),ty(0),tz(0) << 49 tx(0),ty(0),tz(0) 49 {} 50 {} 50 51 51 inline G4AffineTransform::G4AffineTransform( c 52 inline G4AffineTransform::G4AffineTransform( const G4RotationMatrix& rot, 52 c << 53 const G4ThreeVector& tlate ) : 53 : rxx(rot.xx()),rxy(rot.xy()),rxz(rot.xz()), << 54 rxx(rot.xx()),rxy(rot.xy()),rxz(rot.xz()), 54 ryx(rot.yx()),ryy(rot.yy()),ryz(rot.yz()), << 55 ryx(rot.yx()),ryy(rot.yy()),ryz(rot.yz()), 55 rzx(rot.zx()),rzy(rot.zy()),rzz(rot.zz()), << 56 rzx(rot.zx()),rzy(rot.zy()),rzz(rot.zz()), 56 tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) << 57 tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) 57 {} 58 {} 58 59 59 inline G4AffineTransform::G4AffineTransform( c << 60 inline G4AffineTransform::G4AffineTransform( const G4RotationMatrix *rot, 60 c << 61 const G4ThreeVector& tlate) : 61 : tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) << 62 tx(tlate.x()),ty(tlate.y()),tz(tlate.z()) 62 { << 63 { 63 if (rot != nullptr) << 64 if (rot) 64 { << 65 { 65 rxx=rot->xx();rxy=rot->xy();rxz=rot->xz(); << 66 rxx=rot->xx();rxy=rot->xy();rxz=rot->xz(); 66 ryx=rot->yx();ryy=rot->yy();ryz=rot->yz(); << 67 ryx=rot->yx();ryy=rot->yy();ryz=rot->yz(); 67 rzx=rot->zx();rzy=rot->zy();rzz=rot->zz(); << 68 rzx=rot->zx();rzy=rot->zy();rzz=rot->zz(); 68 } << 69 } 69 else 70 else 70 { << 71 { 71 rxx=1; rxy=0; rxz=0; << 72 rxx=1; rxy=0; rxz=0; 72 ryx=0; ryy=1; ryz=0; << 73 ryx=0; ryy=1; ryz=0; 73 rzx=0; rzy=0; rzz=1; << 74 rzx=0; rzy=0; rzz=1; 74 } << 75 } 75 } 76 } 76 77 77 inline << 78 inline 78 G4AffineTransform:: 79 G4AffineTransform:: 79 G4AffineTransform( const G4double prxx,const G 80 G4AffineTransform( const G4double prxx,const G4double prxy,const G4double prxz, 80 const G4double pryx,const G << 81 const G4double pryx,const G4double pryy,const G4double pryz, 81 const G4double przx,const G << 82 const G4double przx,const G4double przy,const G4double przz, 82 const G4double ptx,const G4 << 83 const G4double ptx,const G4double pty,const G4double ptz) : 83 : rxx(prxx),rxy(prxy),rxz(prxz), << 84 rxx(prxx),rxy(prxy),rxz(prxz), 84 ryx(pryx),ryy(pryy),ryz(pryz), << 85 ryx(pryx),ryy(pryy),ryz(pryz), 85 rzx(przx),rzy(przy),rzz(przz), << 86 rzx(przx),rzy(przy),rzz(przz), 86 tx(ptx),ty(pty),tz(ptz) << 87 tx(ptx),ty(pty),tz(ptz) 87 {} 88 {} 88 89 89 inline G4AffineTransform& << 90 inline G4AffineTransform G4AffineTransform::operator * (const G4AffineTransform& tf) const 90 G4AffineTransform::operator = (const G4AffineT << 91 { 91 { 92 if (this == &rhs) { return *this; } << 92 return G4AffineTransform( 93 rxx = rhs.rxx; rxy = rhs.rxy; rxz = rhs.rxz; << 93 rxx*tf.rxx+rxy*tf.ryx+rxz*tf.rzx, 94 ryx = rhs.ryx; ryy = rhs.ryy; ryz = rhs.ryz; << 94 rxx*tf.rxy+rxy*tf.ryy+rxz*tf.rzy, 95 rzx = rhs.rzx; rzy = rhs.rzy; rzz = rhs.rzz; << 95 rxx*tf.rxz+rxy*tf.ryz+rxz*tf.rzz, 96 tx = rhs.tx; ty = rhs.ty; tz = rhs.tz; << 96 97 return *this; << 97 ryx*tf.rxx+ryy*tf.ryx+ryz*tf.rzx, 98 } << 98 ryx*tf.rxy+ryy*tf.ryy+ryz*tf.rzy, 99 << 99 ryx*tf.rxz+ryy*tf.ryz+ryz*tf.rzz, 100 inline G4AffineTransform << 100 101 G4AffineTransform::operator * (const G4AffineT << 101 rzx*tf.rxx+rzy*tf.ryx+rzz*tf.rzx, 102 { << 102 rzx*tf.rxy+rzy*tf.ryy+rzz*tf.rzy, 103 return G4AffineTransform(rxx*tf.rxx+rxy*tf.r << 103 rzx*tf.rxz+rzy*tf.ryz+rzz*tf.rzz, 104 rxx*tf.rxy+rxy*tf.r << 104 105 rxx*tf.rxz+rxy*tf.r << 105 tx*tf.rxx+ty*tf.ryx+tz*tf.rzx+tf.tx, 106 << 106 tx*tf.rxy+ty*tf.ryy+tz*tf.rzy+tf.ty, 107 ryx*tf.rxx+ryy*tf.r << 107 tx*tf.rxz+ty*tf.ryz+tz*tf.rzz+tf.tz); 108 ryx*tf.rxy+ryy*tf.r << 108 } 109 ryx*tf.rxz+ryy*tf.r << 109 110 << 110 inline G4AffineTransform& G4AffineTransform::operator *= (const G4AffineTransform& tf) 111 rzx*tf.rxx+rzy*tf.r << 111 { 112 rzx*tf.rxy+rzy*tf.r << 112 // Use temporaries for `in place' compound transform computation 113 rzx*tf.rxz+rzy*tf.r << 113 114 << 114 G4double nrxx=rxx*tf.rxx+rxy*tf.ryx+rxz*tf.rzx; 115 tx*tf.rxx+ty*tf.ryx << 115 G4double nrxy=rxx*tf.rxy+rxy*tf.ryy+rxz*tf.rzy; 116 tx*tf.rxy+ty*tf.ryy << 116 G4double nrxz=rxx*tf.rxz+rxy*tf.ryz+rxz*tf.rzz; 117 tx*tf.rxz+ty*tf.ryz << 117 >> 118 G4double nryx=ryx*tf.rxx+ryy*tf.ryx+ryz*tf.rzx; >> 119 G4double nryy=ryx*tf.rxy+ryy*tf.ryy+ryz*tf.rzy; >> 120 G4double nryz=ryx*tf.rxz+ryy*tf.ryz+ryz*tf.rzz; >> 121 >> 122 G4double nrzx=rzx*tf.rxx+rzy*tf.ryx+rzz*tf.rzx; >> 123 G4double nrzy=rzx*tf.rxy+rzy*tf.ryy+rzz*tf.rzy; >> 124 G4double nrzz=rzx*tf.rxz+rzy*tf.ryz+rzz*tf.rzz; >> 125 >> 126 G4double ntx=tx*tf.rxx+ty*tf.ryx+tz*tf.rzx+tf.tx; >> 127 G4double nty=tx*tf.rxy+ty*tf.ryy+tz*tf.rzy+tf.ty; >> 128 G4double ntz=tx*tf.rxz+ty*tf.ryz+tz*tf.rzz+tf.tz; >> 129 >> 130 tx=ntx; ty=nty; tz=ntz; >> 131 rxx=nrxx; rxy=nrxy; rxz=nrxz; >> 132 ryx=nryx; ryy=nryy; ryz=nryz; >> 133 rzx=nrzx; rzy=nrzy; rzz=nrzz; >> 134 >> 135 return *this; >> 136 } >> 137 >> 138 inline G4AffineTransform& G4AffineTransform::Product(const G4AffineTransform& tf1, >> 139 const G4AffineTransform& tf2) >> 140 { >> 141 rxx=tf1.rxx*tf2.rxx + tf1.rxy*tf2.ryx + tf1.rxz*tf2.rzx; >> 142 rxy=tf1.rxx*tf2.rxy + tf1.rxy*tf2.ryy + tf1.rxz*tf2.rzy; >> 143 rxz=tf1.rxx*tf2.rxz + tf1.rxy*tf2.ryz + tf1.rxz*tf2.rzz; >> 144 >> 145 ryx=tf1.ryx*tf2.rxx + tf1.ryy*tf2.ryx + tf1.ryz*tf2.rzx; >> 146 ryy=tf1.ryx*tf2.rxy + tf1.ryy*tf2.ryy + tf1.ryz*tf2.rzy; >> 147 ryz=tf1.ryx*tf2.rxz + tf1.ryy*tf2.ryz + tf1.ryz*tf2.rzz; >> 148 >> 149 rzx=tf1.rzx*tf2.rxx + tf1.rzy*tf2.ryx + tf1.rzz*tf2.rzx; >> 150 rzy=tf1.rzx*tf2.rxy + tf1.rzy*tf2.ryy + tf1.rzz*tf2.rzy; >> 151 rzz=tf1.rzx*tf2.rxz + tf1.rzy*tf2.ryz + tf1.rzz*tf2.rzz; >> 152 >> 153 tx=tf1.tx*tf2.rxx + tf1.ty*tf2.ryx + tf1.tz*tf2.rzx + tf2.tx; >> 154 ty=tf1.tx*tf2.rxy + tf1.ty*tf2.ryy + tf1.tz*tf2.rzy + tf2.ty; >> 155 tz=tf1.tx*tf2.rxz + tf1.ty*tf2.ryz + tf1.tz*tf2.rzz + tf2.tz; >> 156 >> 157 return *this; 118 } 158 } 119 159 120 inline G4AffineTransform& 160 inline G4AffineTransform& 121 G4AffineTransform::operator *= (const G4Affine << 161 G4AffineTransform::InverseProduct( const G4AffineTransform& tf1, >> 162 const G4AffineTransform& tf2) 122 { 163 { 123 // Use temporaries for `in place' compound t << 164 G4double itf2tx = - tf2.tx*tf2.rxx - tf2.ty*tf2.rxy - tf2.tz*tf2.rxz; 124 // << 165 G4double itf2ty = - tf2.tx*tf2.ryx - tf2.ty*tf2.ryy - tf2.tz*tf2.ryz; 125 G4double nrxx=rxx*tf.rxx+rxy*tf.ryx+rxz*tf.r << 166 G4double itf2tz = - tf2.tx*tf2.rzx - tf2.ty*tf2.rzy - tf2.tz*tf2.rzz; 126 G4double nrxy=rxx*tf.rxy+rxy*tf.ryy+rxz*tf.r << 167 127 G4double nrxz=rxx*tf.rxz+rxy*tf.ryz+rxz*tf.r << 168 rxx=tf1.rxx*tf2.rxx+tf1.rxy*tf2.rxy+tf1.rxz*tf2.rxz; 128 << 169 rxy=tf1.rxx*tf2.ryx+tf1.rxy*tf2.ryy+tf1.rxz*tf2.ryz; 129 G4double nryx=ryx*tf.rxx+ryy*tf.ryx+ryz*tf.r << 170 rxz=tf1.rxx*tf2.rzx+tf1.rxy*tf2.rzy+tf1.rxz*tf2.rzz; 130 G4double nryy=ryx*tf.rxy+ryy*tf.ryy+ryz*tf.r << 171 131 G4double nryz=ryx*tf.rxz+ryy*tf.ryz+ryz*tf.r << 172 ryx=tf1.ryx*tf2.rxx+tf1.ryy*tf2.rxy+tf1.ryz*tf2.rxz; 132 << 173 ryy=tf1.ryx*tf2.ryx+tf1.ryy*tf2.ryy+tf1.ryz*tf2.ryz; 133 G4double nrzx=rzx*tf.rxx+rzy*tf.ryx+rzz*tf.r << 174 ryz=tf1.ryx*tf2.rzx+tf1.ryy*tf2.rzy+tf1.ryz*tf2.rzz; 134 G4double nrzy=rzx*tf.rxy+rzy*tf.ryy+rzz*tf.r << 135 G4double nrzz=rzx*tf.rxz+rzy*tf.ryz+rzz*tf.r << 136 << 137 G4double ntx=tx*tf.rxx+ty*tf.ryx+tz*tf.rzx+t << 138 G4double nty=tx*tf.rxy+ty*tf.ryy+tz*tf.rzy+t << 139 G4double ntz=tx*tf.rxz+ty*tf.ryz+tz*tf.rzz+t << 140 << 141 tx=ntx; ty=nty; tz=ntz; << 142 rxx=nrxx; rxy=nrxy; rxz=nrxz; << 143 ryx=nryx; ryy=nryy; ryz=nryz; << 144 rzx=nrzx; rzy=nrzy; rzz=nrzz; << 145 175 146 return *this; << 176 rzx=tf1.rzx*tf2.rxx+tf1.rzy*tf2.rxy+tf1.rzz*tf2.rxz; >> 177 rzy=tf1.rzx*tf2.ryx+tf1.rzy*tf2.ryy+tf1.rzz*tf2.ryz; >> 178 rzz=tf1.rzx*tf2.rzx+tf1.rzy*tf2.rzy+tf1.rzz*tf2.rzz; >> 179 >> 180 tx=tf1.tx*tf2.rxx+tf1.ty*tf2.rxy+tf1.tz*tf2.rxz+itf2tx; >> 181 ty=tf1.tx*tf2.ryx+tf1.ty*tf2.ryy+tf1.tz*tf2.ryz+itf2ty; >> 182 tz=tf1.tx*tf2.rzx+tf1.ty*tf2.rzy+tf1.tz*tf2.rzz+itf2tz; >> 183 >> 184 return *this; 147 } 185 } 148 186 149 inline G4AffineTransform& << 187 inline 150 G4AffineTransform::Product( const G4AffineTran << 188 G4ThreeVector G4AffineTransform::TransformPoint(const G4ThreeVector& vec) const 151 const G4AffineTran << 152 { 189 { 153 rxx = tf1.rxx*tf2.rxx + tf1.rxy*tf2.ryx + tf << 190 return G4ThreeVector( vec.x()*rxx + vec.y()*ryx + vec.z()*rzx + tx, 154 rxy = tf1.rxx*tf2.rxy + tf1.rxy*tf2.ryy + tf << 191 vec.x()*rxy + vec.y()*ryy + vec.z()*rzy + ty, 155 rxz = tf1.rxx*tf2.rxz + tf1.rxy*tf2.ryz + tf << 192 vec.x()*rxz + vec.y()*ryz + vec.z()*rzz + tz ); 156 << 157 ryx = tf1.ryx*tf2.rxx + tf1.ryy*tf2.ryx + tf << 158 ryy = tf1.ryx*tf2.rxy + tf1.ryy*tf2.ryy + tf << 159 ryz = tf1.ryx*tf2.rxz + tf1.ryy*tf2.ryz + tf << 160 << 161 rzx = tf1.rzx*tf2.rxx + tf1.rzy*tf2.ryx + tf << 162 rzy = tf1.rzx*tf2.rxy + tf1.rzy*tf2.ryy + tf << 163 rzz = tf1.rzx*tf2.rxz + tf1.rzy*tf2.ryz + tf << 164 << 165 tx = tf1.tx*tf2.rxx + tf1.ty*tf2.ryx + tf1.t << 166 ty = tf1.tx*tf2.rxy + tf1.ty*tf2.ryy + tf1.t << 167 tz = tf1.tx*tf2.rxz + tf1.ty*tf2.ryz + tf1.t << 168 << 169 return *this; << 170 } 193 } 171 194 172 inline G4AffineTransform& << 195 inline 173 G4AffineTransform::InverseProduct( const G4Aff << 196 G4ThreeVector G4AffineTransform::TransformAxis(const G4ThreeVector& axis) const 174 const G4Aff << 175 { 197 { 176 if ((tf2.rxx + tf2.ryy + tf2.rzz) == 3.) << 198 return G4ThreeVector( axis.x()*rxx + axis.y()*ryx + axis.z()*rzx, 177 { << 199 axis.x()*rxy + axis.y()*ryy + axis.z()*rzy, 178 rxx = tf1.rxx; << 200 axis.x()*rxz + axis.y()*ryz + axis.z()*rzz ); 179 rxy = tf1.rxy; << 201 180 rxz = tf1.rxz; << 181 << 182 ryx = tf1.ryx; << 183 ryy = tf1.ryy; << 184 ryz = tf1.ryz; << 185 << 186 rzx = tf1.rzx; << 187 rzy = tf1.rzy; << 188 rzz = tf1.rzz; << 189 << 190 tx = tf1.tx - tf2.tx; << 191 ty = tf1.ty - tf2.ty; << 192 tz = tf1.tz - tf2.tz; << 193 } << 194 else << 195 { << 196 G4double tf1rxx = tf1.rxx, tf1rxy = tf1.rx << 197 rxx = tf1rxx*tf2.rxx + tf1rxy*tf2.rxy + tf << 198 rxy = tf1rxx*tf2.ryx + tf1rxy*tf2.ryy + tf << 199 rxz = tf1rxx*tf2.rzx + tf1rxy*tf2.rzy + tf << 200 << 201 G4double tf1ryx = tf1.ryx, tf1ryy = tf1.ry << 202 ryx = tf1ryx*tf2.rxx + tf1ryy*tf2.rxy + tf << 203 ryy = tf1ryx*tf2.ryx + tf1ryy*tf2.ryy + tf << 204 ryz = tf1ryx*tf2.rzx + tf1ryy*tf2.rzy + tf << 205 << 206 G4double tf1rzx = tf1.rzx, tf1rzy = tf1.rz << 207 rzx = tf1rzx*tf2.rxx + tf1rzy*tf2.rxy + tf << 208 rzy = tf1rzx*tf2.ryx + tf1rzy*tf2.ryy + tf << 209 rzz = tf1rzx*tf2.rzx + tf1rzy*tf2.rzy + tf << 210 << 211 G4double tf1_2tx = tf1.tx - tf2.tx; << 212 G4double tf1_2ty = tf1.ty - tf2.ty; << 213 G4double tf1_2tz = tf1.tz - tf2.tz; << 214 tx = tf1_2tx*tf2.rxx + tf1_2ty*tf2.rxy + t << 215 ty = tf1_2tx*tf2.ryx + tf1_2ty*tf2.ryy + t << 216 tz = tf1_2tx*tf2.rzx + tf1_2ty*tf2.rzy + t << 217 } << 218 return *this; << 219 } << 220 << 221 inline G4ThreeVector << 222 G4AffineTransform::TransformPoint(const G4Thre << 223 { << 224 G4double vecx = vec.x(), vecy = vec.y(), vec << 225 return { vecx*rxx + vecy*ryx + vecz*rzx + tx << 226 vecx*rxy + vecy*ryy + vecz*rzy + ty << 227 vecx*rxz + vecy*ryz + vecz*rzz + tz << 228 } << 229 << 230 inline G4ThreeVector << 231 G4AffineTransform::InverseTransformPoint(const << 232 { << 233 G4double vecx = vec.x()-tx, vecy = vec.y()-t << 234 return { vecx*rxx + vecy*rxy + vecz*rxz, << 235 vecx*ryx + vecy*ryy + vecz*ryz, << 236 vecx*rzx + vecy*rzy + vecz*rzz }; << 237 } << 238 << 239 inline G4ThreeVector << 240 G4AffineTransform::TransformAxis(const G4Three << 241 { << 242 G4double axisx = axis.x(), axisy = axis.y(), << 243 return { axisx*rxx + axisy*ryx + axisz*rzx, << 244 axisx*rxy + axisy*ryy + axisz*rzy, << 245 axisx*rxz + axisy*ryz + axisz*rzz } << 246 } << 247 << 248 inline G4ThreeVector << 249 G4AffineTransform::InverseTransformAxis(const << 250 { << 251 G4double axisx = axis.x(), axisy = axis.y(), << 252 return { axisx*rxx + axisy*rxy + axisz*rxz, << 253 axisx*ryx + axisy*ryy + axisz*ryz, << 254 axisx*rzx + axisy*rzy + axisz*rzz } << 255 } 202 } 256 203 257 inline 204 inline 258 void G4AffineTransform::ApplyPointTransform(G4 205 void G4AffineTransform::ApplyPointTransform(G4ThreeVector& vec) const 259 { 206 { 260 G4double vecx = vec.x(), vecy = vec.y(), vec << 207 G4double x = vec.x()*rxx + vec.y()*ryx + vec.z()*rzx + tx; 261 vec.setX( vecx*rxx + vecy*ryx + vecz*rzx + t << 208 G4double y = vec.x()*rxy + vec.y()*ryy + vec.z()*rzy + ty; 262 vec.setY( vecx*rxy + vecy*ryy + vecz*rzy + t << 209 G4double z = vec.x()*rxz + vec.y()*ryz + vec.z()*rzz + tz; 263 vec.setZ( vecx*rxz + vecy*ryz + vecz*rzz + t << 210 >> 211 vec.setX(x); >> 212 vec.setY(y); >> 213 vec.setZ(z); 264 } 214 } 265 215 266 inline 216 inline 267 void G4AffineTransform::ApplyAxisTransform(G4T 217 void G4AffineTransform::ApplyAxisTransform(G4ThreeVector& axis) const 268 { 218 { 269 G4double axisx = axis.x(), axisy = axis.y(), << 219 G4double x = axis.x()*rxx + axis.y()*ryx + axis.z()*rzx; 270 axis.setX( axisx*rxx + axisy*ryx + axisz*rzx << 220 G4double y = axis.x()*rxy + axis.y()*ryy + axis.z()*rzy; 271 axis.setY( axisx*rxy + axisy*ryy + axisz*rzy << 221 G4double z = axis.x()*rxz + axis.y()*ryz + axis.z()*rzz; 272 axis.setZ( axisx*rxz + axisy*ryz + axisz*rzz << 222 >> 223 axis.setX(x); >> 224 axis.setY(y); >> 225 axis.setZ(z); 273 } 226 } 274 227 275 inline 228 inline 276 G4AffineTransform G4AffineTransform::Inverse() 229 G4AffineTransform G4AffineTransform::Inverse() const 277 { 230 { 278 G4double ttx = -tx, tty = -ty, ttz = -tz; << 231 return G4AffineTransform( rxx, ryx, rzx, 279 return G4AffineTransform( rxx, ryx, rzx, << 232 rxy, ryy, rzy, 280 rxy, ryy, rzy, << 233 rxz, ryz, rzz, 281 rxz, ryz, rzz, << 234 282 ttx*rxx + tty*rxy << 235 -tx*rxx - ty*rxy - tz*rxz, 283 ttx*ryx + tty*ryy << 236 -tx*ryx - ty*ryy - tz*ryz, 284 ttx*rzx + tty*rzy << 237 -tx*rzx - ty*rzy - tz*rzz ); 285 } 238 } 286 239 287 inline 240 inline 288 G4AffineTransform& G4AffineTransform::Invert() 241 G4AffineTransform& G4AffineTransform::Invert() 289 { 242 { 290 G4double ttx = -tx, tty = -ty, ttz = -tz; << 243 G4double v1 = -tx*rxx - ty*rxy - tz*rxz; 291 tx = ttx*rxx + tty*rxy + ttz*rxz; << 244 G4double v2 = -tx*ryx - ty*ryy - tz*ryz; 292 ty = ttx*ryx + tty*ryy + ttz*ryz; << 245 G4double v3 = -tx*rzx - ty*rzy - tz*rzz; 293 tz = ttx*rzx + tty*rzy + ttz*rzz; << 246 294 << 247 tx=v1; ty=v2; tz=v3; 295 G4double tmp1=ryx; ryx=rxy; rxy=tmp1; << 248 296 G4double tmp2=rzx; rzx=rxz; rxz=tmp2; << 249 G4double tmp1=ryx; ryx=rxy; rxy=tmp1; 297 G4double tmp3=rzy; rzy=ryz; ryz=tmp3; << 250 G4double tmp2=rzx; rzx=rxz; rxz=tmp2; >> 251 G4double tmp3=rzy; rzy=ryz; ryz=tmp3; >> 252 >> 253 return *this; 298 254 299 return *this; << 300 } 255 } 301 256 302 inline 257 inline 303 G4AffineTransform& G4AffineTransform::operator 258 G4AffineTransform& G4AffineTransform::operator +=(const G4ThreeVector& tlate) 304 { 259 { 305 tx += tlate.x(); << 260 tx += tlate.x(); 306 ty += tlate.y(); << 261 ty += tlate.y(); 307 tz += tlate.z(); << 262 tz += tlate.z(); 308 << 263 309 return *this; << 264 return *this; 310 } 265 } 311 266 312 inline 267 inline 313 G4AffineTransform& G4AffineTransform::operator 268 G4AffineTransform& G4AffineTransform::operator -=(const G4ThreeVector& tlate) 314 { 269 { 315 tx -= tlate.x(); << 270 tx -= tlate.x(); 316 ty -= tlate.y(); << 271 ty -= tlate.y(); 317 tz -= tlate.z(); << 272 tz -= tlate.z(); 318 << 273 319 return *this; << 274 return *this; 320 } 275 } 321 276 322 inline 277 inline 323 G4bool G4AffineTransform::operator == (const G 278 G4bool G4AffineTransform::operator == (const G4AffineTransform& tf) const 324 { 279 { 325 return tx==tf.tx&&ty==tf.ty&&tz==tf.tz&& << 280 return (tx==tf.tx&&ty==tf.ty&&tz==tf.tz&& 326 rxx==tf.rxx&&rxy==tf.rxy&&rxz==tf.rxz << 281 rxx==tf.rxx&&rxy==tf.rxy&&rxz==tf.rxz&& 327 ryx==tf.ryx&&ryy==tf.ryy&&ryz==tf.ryz << 282 ryx==tf.ryx&&ryy==tf.ryy&&ryz==tf.ryz&& 328 rzx==tf.rzx&&rzy==tf.rzy&&rzz==tf.rzz << 283 rzx==tf.rzx&&rzy==tf.rzy&&rzz==tf.rzz) ? true : false; 329 } 284 } 330 << 331 inline 285 inline 332 G4bool G4AffineTransform::operator != (const G 286 G4bool G4AffineTransform::operator != (const G4AffineTransform& tf) const 333 { 287 { 334 return tx!=tf.tx||ty!=tf.ty||tz!=tf.tz|| << 288 return (tx!=tf.tx||ty!=tf.ty||tz!=tf.tz|| 335 rxx!=tf.rxx||rxy!=tf.rxy||rxz!=tf.rxz << 289 rxx!=tf.rxx||rxy!=tf.rxy||rxz!=tf.rxz|| 336 ryx!=tf.ryx||ryy!=tf.ryy||ryz!=tf.ryz << 290 ryx!=tf.ryx||ryy!=tf.ryy||ryz!=tf.ryz|| 337 rzx!=tf.rzx||rzy!=tf.rzy||rzz!=tf.rzz << 291 rzx!=tf.rzx||rzy!=tf.rzy||rzz!=tf.rzz) ? true : false; 338 } 292 } 339 293 340 inline 294 inline 341 G4double G4AffineTransform::operator [] (const 295 G4double G4AffineTransform::operator [] (const G4int n) const 342 { 296 { 343 G4double v = 0.0; << 297 G4double v = 0.0; 344 switch(n) << 298 switch(n) 345 { << 299 { 346 case 0: << 300 case 0: 347 v=rxx; << 301 v=rxx; 348 break; << 302 break; 349 case 1: << 303 case 1: 350 v=rxy; << 304 v=rxy; 351 break; << 305 break; 352 case 2: << 306 case 2: 353 v=rxz; << 307 v=rxz; 354 break; << 308 break; 355 case 4: << 309 case 4: 356 v=ryx; << 310 v=ryx; 357 break; << 311 break; 358 case 5: << 312 case 5: 359 v=ryy; << 313 v=ryy; 360 break; << 314 break; 361 case 6: << 315 case 6: 362 v=ryz; << 316 v=ryz; 363 break; << 317 break; 364 case 8: << 318 case 8: 365 v=rzx; << 319 v=rzx; 366 break; << 320 break; 367 case 9: << 321 case 9: 368 v=rzy; << 322 v=rzy; 369 break; << 323 break; 370 case 10: << 324 case 10: 371 v=rzz; << 325 v=rzz; 372 break; << 326 break; 373 case 12: << 327 case 12: 374 v=tx; << 328 v=tx; 375 break; << 329 break; 376 case 13: << 330 case 13: 377 v=ty; << 331 v=ty; 378 break; << 332 break; 379 case 14: << 333 case 14: 380 v=tz; << 334 v=tz; 381 break; << 335 break; 382 case 3: << 336 case 3: 383 case 7: << 337 case 7: 384 case 11: << 338 case 11: 385 break; << 339 break; 386 case 15: << 340 case 15: 387 v=1.0; << 341 v=1.0; 388 break; << 342 break; 389 } << 343 } 390 return v; << 344 return v; 391 } 345 } 392 346 393 inline 347 inline 394 G4bool G4AffineTransform::IsRotated() const 348 G4bool G4AffineTransform::IsRotated() const 395 { 349 { 396 return !(rxx==1.0 && ryy==1.0 && rzz==1.0); << 350 return (rxx==1.0 && ryy==1.0 && rzz==1.0) ? false : true; 397 } 351 } 398 352 399 inline 353 inline 400 G4bool G4AffineTransform::IsTranslated() const 354 G4bool G4AffineTransform::IsTranslated() const 401 { 355 { 402 return (tx != 0.0) || (ty != 0.0) || (tz != << 356 return (tx || ty || tz) ? true:false; 403 } << 404 << 405 inline G4RotationMatrix G4AffineTransform::Net << 406 { << 407 return G4Rep3x3(rxx,rxy,rxz, << 408 ryx,ryy,ryz, << 409 rzx,rzy,rzz); << 410 } 357 } 411 358 412 inline G4RotationMatrix G4AffineTransform::Inv << 359 inline G4RotationMatrix G4AffineTransform::NetRotation() const { 413 { << 360 G4RotationMatrix m; 414 return G4Rep3x3(rxx,ryx,rzx, << 361 return m.rotateAxes(G4ThreeVector(rxx,ryx,rzx), 415 rxy,ryy,rzy, << 362 G4ThreeVector(rxy,ryy,rzy), 416 rxz,ryz,rzz); << 363 G4ThreeVector(rxz,ryz,rzz)); 417 } 364 } 418 365 419 inline 366 inline 420 G4ThreeVector G4AffineTransform::NetTranslatio 367 G4ThreeVector G4AffineTransform::NetTranslation() const 421 { 368 { 422 return {tx,ty,tz}; << 369 return G4ThreeVector(tx,ty,tz); 423 } << 424 << 425 inline << 426 G4ThreeVector G4AffineTransform::InverseNetTra << 427 { << 428 G4double ttx = -tx, tty = -ty, ttz = -tz; << 429 G4double invtx = ttx*rxx + tty*rxy + ttz*rxz << 430 G4double invty = ttx*ryx + tty*ryy + ttz*ryz << 431 G4double invtz = ttx*rzx + tty*rzy + ttz*rzz << 432 return {invtx,invty,invtz}; << 433 } 370 } 434 371 435 inline 372 inline 436 void G4AffineTransform::SetNetRotation(const G 373 void G4AffineTransform::SetNetRotation(const G4RotationMatrix& rot) 437 { 374 { 438 rxx=rot.xx(); << 375 rxx=rot.xx(); 439 rxy=rot.xy(); << 376 rxy=rot.xy(); 440 rxz=rot.xz(); << 377 rxz=rot.xz(); 441 ryx=rot.yx(); << 378 ryx=rot.yx(); 442 ryy=rot.yy(); << 379 ryy=rot.yy(); 443 ryz=rot.yz(); << 380 ryz=rot.yz(); 444 rzx=rot.zx(); << 381 rzx=rot.zx(); 445 rzy=rot.zy(); << 382 rzy=rot.zy(); 446 rzz=rot.zz(); << 383 rzz=rot.zz(); 447 } 384 } 448 385 449 inline 386 inline 450 void G4AffineTransform::SetNetTranslation(cons 387 void G4AffineTransform::SetNetTranslation(const G4ThreeVector& tlate) 451 { 388 { 452 tx=tlate.x(); << 389 tx=tlate.x(); 453 ty=tlate.y(); << 390 ty=tlate.y(); 454 tz=tlate.z(); << 391 tz=tlate.z(); 455 } << 456 << 457 inline << 458 G4AffineTransform::operator G4Transform3D () c << 459 { << 460 return G4Transform3D(NetRotation().inverse() << 461 } << 462 << 463 inline << 464 std::ostream& operator << (std::ostream& os, c << 465 { << 466 std::streamsize oldPrec = os.precision(6); << 467 G4double DeviationTolerance = 1.0e-05; << 468 << 469 G4double diagDeviation = 0.0; << 470 G4double offdDeviationUL = 0.0; << 471 G4double offdDeviationDR = 0.0; << 472 G4double offdDeviation = 0.0; << 473 << 474 os << " Transformation: " << G4endl; << 475 << 476 // double a = std::max ( 1, 2, 3 ) ; << 477 << 478 G4bool UnitTr = ! transf.IsRotated(); << 479 diagDeviation = std::max( std::fabs( transf[ << 480 std::fabs( transf[ << 481 diagDeviation = std::max( diagDeviation, << 482 std::fabs( transf[ << 483 << 484 offdDeviationUL = std::max( std::fabs( trans << 485 std::fabs( trans << 486 offdDeviationUL = std::max( offdDeviationUL, << 487 std::fabs( trans << 488 << 489 offdDeviationDR = std::max( std::fabs( trans << 490 std::fabs( trans << 491 offdDeviationDR = std::max( offdDeviationDR, << 492 std::fabs( trans << 493 offdDeviation = std::max( offdDeviationUL, o << 494 << 495 if( UnitTr || std::max(diagDeviation, offdDe << 496 { << 497 os << " UNIT Rotation " << G4endl; << 498 } << 499 else << 500 { << 501 os << "rx/x,y,z: " << 502 << transf[0] << " " << transf[1] << " << 503 << "ry/x,y,z: " << 504 << transf[4] << " " << transf[5] << " << 505 << "rz/x,y,z: " << 506 << transf[8] << " " << transf[9] << " << 507 } << 508 << 509 os << "tr/x,y,z: " << transf[12] << " " << << 510 << G4endl; << 511 << 512 os.precision(oldPrec); << 513 << 514 return os; << 515 } 392 } 516 393