Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4Mag_SpinEqRhs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4Mag_SpinEqRhs.cc (Version 11.3.0) and /geometry/magneticfield/src/G4Mag_SpinEqRhs.cc (Version 3.0)


  1 //                                                  1 //
  2 // ******************************************* << 
  3 // * License and Disclaimer                    << 
  4 // *                                           << 
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                                  2 //
 26 // G4Mag_SpinEqRhs implementation              <<   3 //  This is the standard right-hand side for equation of motion.
                                                   >>   4 //        This version of the right-hand side includes
                                                   >>   5 //        the three components of the particle's spin.
                                                   >>   6 //
                                                   >>   7 //            J. Apostolakis, February 8th, 1999
                                                   >>   8 //            P. Gumplinger,  February 8th, 1999
 27 //                                                  9 //
 28 // Created: J.Apostolakis, P.Gumplinger - 08.0 << 
 29 // ------------------------------------------- << 
 30                                                << 
 31 #include "G4Mag_SpinEqRhs.hh"                      10 #include "G4Mag_SpinEqRhs.hh"
 32 #include "G4PhysicalConstants.hh"              << 
 33 #include "G4SystemOfUnits.hh"                  << 
 34 #include "G4MagneticField.hh"                  << 
 35 #include "G4ThreeVector.hh"                        11 #include "G4ThreeVector.hh"
 36                                                <<  12 #include "globals.hh"
 37 G4Mag_SpinEqRhs::G4Mag_SpinEqRhs( G4MagneticFi << 
 38   : G4Mag_EqRhs( MagField )                    << 
 39 {                                              << 
 40 }                                              << 
 41                                                << 
 42 G4Mag_SpinEqRhs::~G4Mag_SpinEqRhs() = default; << 
 43                                                    13 
 44 void                                               14 void
 45 G4Mag_SpinEqRhs::SetChargeMomentumMass(G4Charg <<  15 G4Mag_SpinEqRhs::SetChargeMomentumMass(G4double particleCharge, // in e+ units
 46                                        G4doubl     16                                        G4double MomentumXc,
 47                                        G4doubl <<  17                                        G4double mass)
 48 {                                                  18 {
 49    G4Mag_EqRhs::SetChargeMomentumMass( particl <<  19    //  To set fCof_val 
 50                                                <<  20    G4Mag_EqRhs::SetChargeMomentumMass(particleCharge, MomentumXc, mass);
 51    charge = particleCharge.GetCharge();        << 
 52    mass      = particleMass;                   << 
 53    magMoment = particleCharge.GetMagneticDipol << 
 54    spin      = particleCharge.GetSpin();       << 
 55                                                << 
 56    omegac = (eplus/mass)*c_light;              << 
 57                                                << 
 58    G4double muB = 0.5*eplus*hbar_Planck/(mass/ << 
 59                                                    21 
 60    G4double g_BMT;                             <<  22    omegac = 0.105658387*GeV/mass * 2.837374841e-3*(rad/cm/kilogauss);
 61    if ( spin != 0. )                           <<  23    anomaly = 1.165923e-3;
 62    {                                           <<  24    ParticleCharge = particleCharge;
 63      g_BMT = (std::abs(magMoment)/muB)/spin;   << 
 64    }                                           << 
 65    else                                        << 
 66    {                                           << 
 67      g_BMT = 2.;                               << 
 68    }                                           << 
 69                                                << 
 70    anomaly = (g_BMT - 2.)/2.;                  << 
 71                                                    25 
 72    G4double E = std::sqrt(sqr(MomentumXc)+sqr( <<  26    // for testing only
 73    beta  = MomentumXc/E;                       <<  27    anomaly = 0.0; 
 74    gamma = E/mass;                             << 
 75 }                                                  28 }
 76                                                    29 
 77 void                                               30 void
 78 G4Mag_SpinEqRhs::EvaluateRhsGivenB( const G4do     31 G4Mag_SpinEqRhs::EvaluateRhsGivenB( const G4double y[],
 79                                     const G4do <<  32                   const G4double B[3],
 80                                           G4do <<  33             G4double dydx[] ) const
 81 {                                                  34 {
 82    G4double momentum_mag_square = sqr(y[3]) +  <<  35    G4double velocity_mag_square = sqr(y[3]) + sqr(y[4]) + sqr(y[5]);
 83    G4double inv_momentum_magnitude = 1.0 / std <<  36    G4double inv_velocity_magnitude = 1.0 / sqrt( velocity_mag_square );
 84    G4double cof = FCof()*inv_momentum_magnitud << 
 85                                                << 
 86    dydx[0] = y[3] * inv_momentum_magnitude;    << 
 87    dydx[1] = y[4] * inv_momentum_magnitude;    << 
 88    dydx[2] = y[5] * inv_momentum_magnitude;    << 
 89                                                << 
 90    if (charge == 0.)                           << 
 91    {                                           << 
 92       dydx[3] = 0.;                            << 
 93       dydx[4] = 0.;                            << 
 94       dydx[5] = 0.;                            << 
 95    }                                           << 
 96    else                                        << 
 97    {                                           << 
 98       dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ;  << 
 99       dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ;  << 
100       dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ;  << 
101    }                                           << 
102                                                    37 
103    G4ThreeVector u(y[3], y[4], y[5]);          <<  38    dydx[0] = y[3] * inv_velocity_magnitude;       //  (d/ds)x = Vx/V
104    u *= inv_momentum_magnitude;                <<  39    dydx[1] = y[4] * inv_velocity_magnitude;       //  (d/ds)y = Vy/V
                                                   >>  40    dydx[2] = y[5] * inv_velocity_magnitude;       //  (d/ds)z = Vz/V
                                                   >>  41    dydx[3] = FCof()*(y[4]*B[2] - y[5]*B[1]) ;   // Ax = a*(Vy*Bz - Vz*By)
                                                   >>  42    dydx[4] = FCof()*(y[5]*B[0] - y[3]*B[2]) ;   // Ay = a*(Vz*Bx - Vx*Bz)
                                                   >>  43    dydx[5] = FCof()*(y[3]*B[1] - y[4]*B[0]) ;   // Az = a*(Vx*By - Vy*Bx)
                                                   >>  44 
                                                   >>  45    G4double beta_squared = velocity_mag_square/c_squared;
                                                   >>  46    G4double beta  = sqrt(beta_squared);
                                                   >>  47   
                                                   >>  48    G4double gamma;
                                                   >>  49 
                                                   >>  50    if (beta < 1.0){
                                                   >>  51       gamma = 1. / sqrt( 1. - beta_squared);
                                                   >>  52    } else {
                                                   >>  53       beta = 1.0; 
                                                   >>  54       gamma = DBL_MAX; 
                                                   >>  55    }
                                                   >>  56 
                                                   >>  57    G4ThreeVector u;
                                                   >>  58    u.setX(inv_velocity_magnitude*y[3]);
                                                   >>  59    u.setY(inv_velocity_magnitude*y[4]);
                                                   >>  60    u.setZ(inv_velocity_magnitude*y[5]);
105                                                    61 
106    G4ThreeVector BField(B[0],B[1],B[2]);           62    G4ThreeVector BField(B[0],B[1],B[2]);
107                                                    63 
108    G4double udb = anomaly*beta*gamma/(1.+gamma     64    G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 
109    G4double ucb = (anomaly+1./gamma)/beta;         65    G4double ucb = (anomaly+1./gamma)/beta;
110                                                    66 
111    // Initialise the values of dydx that we do << 
112    dydx[6] = dydx[7] = dydx[8] = 0.0;          << 
113                                                << 
114    G4ThreeVector Spin(y[9],y[10],y[11]);           67    G4ThreeVector Spin(y[9],y[10],y[11]);
115                                                    68 
116    G4double pcharge;                           <<  69    G4ThreeVector dSpin;
117    if (charge == 0.)                           << 
118    {                                           << 
119      pcharge = 1.;                             << 
120    }                                           << 
121    else                                        << 
122    {                                           << 
123      pcharge = charge;                         << 
124    }                                           << 
125                                                    70 
126    G4ThreeVector dSpin(0.,0.,0.);              <<  71    dSpin = ParticleCharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u)));
127    if (Spin.mag2() != 0.)                      << 
128    {                                           << 
129      dSpin = pcharge*omegac*(ucb*(Spin.cross(B << 
130    }                                           << 
131                                                    72 
132    dydx[9] = dSpin.x();                        <<  73    dydx[ 9] = dSpin.x();
133    dydx[10] = dSpin.y();                           74    dydx[10] = dSpin.y();
134    dydx[11] = dSpin.z();                           75    dydx[11] = dSpin.z();
135                                                    76 
136    return;                                     <<  77    return ;
137 }                                                  78 }
138                                                    79