Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4Mag_SpinEqRhs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4Mag_SpinEqRhs.cc (Version 11.3.0) and /geometry/magneticfield/src/G4Mag_SpinEqRhs.cc (Version 10.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4Mag_SpinEqRhs implementation              << 
 27 //                                                 26 //
 28 // Created: J.Apostolakis, P.Gumplinger - 08.0 <<  27 // $Id: G4Mag_SpinEqRhs.cc 78728 2014-01-20 12:57:20Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // This is the standard right-hand side for equation of motion.
                                                   >>  30 // This version of the right-hand side includes the three components
                                                   >>  31 // of the particle's spin.
                                                   >>  32 //
                                                   >>  33 //            J. Apostolakis, February 8th, 1999
                                                   >>  34 //            P. Gumplinger,  February 8th, 1999
                                                   >>  35 //            D. Cote-Ahern, P. Gumplinger,  April 11th, 2001
                                                   >>  36 //
 29 // -------------------------------------------     37 // --------------------------------------------------------------------
 30                                                    38 
 31 #include "G4Mag_SpinEqRhs.hh"                      39 #include "G4Mag_SpinEqRhs.hh"
 32 #include "G4PhysicalConstants.hh"                  40 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 34 #include "G4MagneticField.hh"                      42 #include "G4MagneticField.hh"
 35 #include "G4ThreeVector.hh"                        43 #include "G4ThreeVector.hh"
 36                                                    44 
 37 G4Mag_SpinEqRhs::G4Mag_SpinEqRhs( G4MagneticFi     45 G4Mag_SpinEqRhs::G4Mag_SpinEqRhs( G4MagneticField* MagField )
 38   : G4Mag_EqRhs( MagField )                    <<  46   : G4Mag_EqRhs( MagField ), charge(0.), mass(0.), magMoment(0.),
                                                   >>  47     spin(0.), omegac(0.), anomaly(0.0011659208), beta(0.), gamma(0.)
 39 {                                                  48 {
 40 }                                                  49 }
 41                                                    50 
 42 G4Mag_SpinEqRhs::~G4Mag_SpinEqRhs() = default; <<  51 G4Mag_SpinEqRhs::~G4Mag_SpinEqRhs()
                                                   >>  52 {
                                                   >>  53 }
 43                                                    54 
 44 void                                               55 void
 45 G4Mag_SpinEqRhs::SetChargeMomentumMass(G4Charg     56 G4Mag_SpinEqRhs::SetChargeMomentumMass(G4ChargeState particleCharge,
 46                                        G4doubl     57                                        G4double MomentumXc,
 47                                        G4doubl     58                                        G4double particleMass)
 48 {                                                  59 {
 49    G4Mag_EqRhs::SetChargeMomentumMass( particl     60    G4Mag_EqRhs::SetChargeMomentumMass( particleCharge, MomentumXc, mass);
 50                                                    61 
 51    charge = particleCharge.GetCharge();            62    charge = particleCharge.GetCharge();
 52    mass      = particleMass;                       63    mass      = particleMass;
 53    magMoment = particleCharge.GetMagneticDipol     64    magMoment = particleCharge.GetMagneticDipoleMoment();
 54    spin      = particleCharge.GetSpin();           65    spin      = particleCharge.GetSpin();
 55                                                    66 
 56    omegac = (eplus/mass)*c_light;                  67    omegac = (eplus/mass)*c_light;
 57                                                    68 
 58    G4double muB = 0.5*eplus*hbar_Planck/(mass/     69    G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared);
 59                                                    70 
 60    G4double g_BMT;                                 71    G4double g_BMT;
 61    if ( spin != 0. )                           <<  72    if ( spin != 0. ) g_BMT = (magMoment/muB)/spin;
 62    {                                           <<  73    else g_BMT = 2.;
 63      g_BMT = (std::abs(magMoment)/muB)/spin;   << 
 64    }                                           << 
 65    else                                        << 
 66    {                                           << 
 67      g_BMT = 2.;                               << 
 68    }                                           << 
 69                                                    74 
 70    anomaly = (g_BMT - 2.)/2.;                      75    anomaly = (g_BMT - 2.)/2.;
 71                                                    76 
 72    G4double E = std::sqrt(sqr(MomentumXc)+sqr(     77    G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
 73    beta  = MomentumXc/E;                           78    beta  = MomentumXc/E;
 74    gamma = E/mass;                                 79    gamma = E/mass;
 75 }                                                  80 }
 76                                                    81 
 77 void                                               82 void
 78 G4Mag_SpinEqRhs::EvaluateRhsGivenB( const G4do     83 G4Mag_SpinEqRhs::EvaluateRhsGivenB( const G4double y[],
 79                                     const G4do     84                                     const G4double B[3],
 80                                           G4do     85                                           G4double dydx[] ) const
 81 {                                                  86 {
 82    G4double momentum_mag_square = sqr(y[3]) +      87    G4double momentum_mag_square = sqr(y[3]) + sqr(y[4]) + sqr(y[5]);
 83    G4double inv_momentum_magnitude = 1.0 / std     88    G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
 84    G4double cof = FCof()*inv_momentum_magnitud     89    G4double cof = FCof()*inv_momentum_magnitude;
 85                                                    90 
 86    dydx[0] = y[3] * inv_momentum_magnitude;        91    dydx[0] = y[3] * inv_momentum_magnitude;       //  (d/ds)x = Vx/V
 87    dydx[1] = y[4] * inv_momentum_magnitude;        92    dydx[1] = y[4] * inv_momentum_magnitude;       //  (d/ds)y = Vy/V
 88    dydx[2] = y[5] * inv_momentum_magnitude;        93    dydx[2] = y[5] * inv_momentum_magnitude;       //  (d/ds)z = Vz/V
 89                                                    94 
 90    if (charge == 0.)                           <<  95    if (charge == 0.) {
 91    {                                           << 
 92       dydx[3] = 0.;                                96       dydx[3] = 0.;
 93       dydx[4] = 0.;                                97       dydx[4] = 0.;
 94       dydx[5] = 0.;                                98       dydx[5] = 0.;
 95    }                                           <<  99    } else {
 96    else                                        << 
 97    {                                           << 
 98       dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ;     100       dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ;   // Ax = a*(Vy*Bz - Vz*By)
 99       dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ;     101       dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ;   // Ay = a*(Vz*Bx - Vx*Bz)
100       dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ;     102       dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ;   // Az = a*(Vx*By - Vy*Bx)
101    }                                              103    }
102                                                   104 
103    G4ThreeVector u(y[3], y[4], y[5]);             105    G4ThreeVector u(y[3], y[4], y[5]);
104    u *= inv_momentum_magnitude;                   106    u *= inv_momentum_magnitude; 
105                                                   107 
106    G4ThreeVector BField(B[0],B[1],B[2]);          108    G4ThreeVector BField(B[0],B[1],B[2]);
107                                                   109 
108    G4double udb = anomaly*beta*gamma/(1.+gamma    110    G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 
109    G4double ucb = (anomaly+1./gamma)/beta;        111    G4double ucb = (anomaly+1./gamma)/beta;
110                                                   112 
111    // Initialise the values of dydx that we do    113    // Initialise the values of dydx that we do not update.
112    dydx[6] = dydx[7] = dydx[8] = 0.0;             114    dydx[6] = dydx[7] = dydx[8] = 0.0;
113                                                   115 
114    G4ThreeVector Spin(y[9],y[10],y[11]);          116    G4ThreeVector Spin(y[9],y[10],y[11]);
115                                                   117 
116    G4double pcharge;                              118    G4double pcharge;
117    if (charge == 0.)                           << 119    if (charge == 0.) pcharge = 1.;
118    {                                           << 120    else pcharge = charge;
119      pcharge = 1.;                             << 
120    }                                           << 
121    else                                        << 
122    {                                           << 
123      pcharge = charge;                         << 
124    }                                           << 
125                                                   121 
126    G4ThreeVector dSpin(0.,0.,0.);                 122    G4ThreeVector dSpin(0.,0.,0.);
127    if (Spin.mag2() != 0.)                      << 123    if (Spin.mag2() != 0.) {
128    {                                           << 124       dSpin = pcharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u)));
129      dSpin = pcharge*omegac*(ucb*(Spin.cross(B << 
130    }                                              125    }
131                                                   126 
132    dydx[9] = dSpin.x();                        << 127    dydx[ 9] = dSpin.x();
133    dydx[10] = dSpin.y();                          128    dydx[10] = dSpin.y();
134    dydx[11] = dSpin.z();                          129    dydx[11] = dSpin.z();
135                                                   130 
136    return;                                     << 131    return ;
137 }                                                 132 }
138                                                   133