Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4MagInt_Driver implementation << 27 // 23 // 28 // V.Grichine, 07.10.1996 - Created << 24 // $Id: G4MagIntegratorDriver.cc,v 1.41 2003/10/31 14:35:55 gcosmo Exp $ 29 // W.Wander, 28.01.1998 - Added ability for lo << 25 // GEANT4 tag $Name: geant4-06-00-patch-01 $ 30 // J.Apostolakis, 08.11.2001 - Respect minimum << 26 // >> 27 // >> 28 // >> 29 // Implementation for class G4MagInt_Driver >> 30 // Tracking in space dependent magnetic field >> 31 // >> 32 // History of major changes: >> 33 // 8 Nov 01 J. Apostolakis: Respect minimum step in AccurateAdvance >> 34 // 27 Jul 99 J. Apostolakis: Ensured that AccurateAdvance does not loop >> 35 // due to very small eps & step size (precision) >> 36 // 28 Jan 98 W. Wander: Added ability for low order integrators >> 37 // 7 Oct 96 V. Grichine First version 31 // ------------------------------------------- 38 // -------------------------------------------------------------------- 32 39 33 #include <iomanip> << 34 << 35 #include "globals.hh" 40 #include "globals.hh" 36 #include "G4SystemOfUnits.hh" << 41 #include "geomdefs.hh" // for kCarTolerance 37 #include "G4GeometryTolerance.hh" << 42 #include <iomanip> 38 #include "G4MagIntegratorDriver.hh" 43 #include "G4MagIntegratorDriver.hh" 39 #include "G4FieldTrack.hh" 44 #include "G4FieldTrack.hh" 40 45 41 #ifdef G4DEBUG_FIELD << 46 // Stepsize can increase by no more than 5.0 42 #include "G4DriverReporter.hh" << 47 // and decrease by no more than 1/10. = 0.1 43 #endif << 48 // >> 49 const G4double G4MagInt_Driver::max_stepping_increase = 5.0; >> 50 const G4double G4MagInt_Driver::max_stepping_decrease = 0.1; 44 51 45 // ------------------------------------------- << 52 // The (default) maximum number of steps is Base divided by the order of Stepper >> 53 // >> 54 const G4int G4MagInt_Driver::fMaxStepBase = 250; // Was 5000 >> 55 >> 56 #ifndef G4NO_FIELD_STATISTICS >> 57 #define G4FLD_STATS 1 >> 58 #endif 46 59 47 // Constructor 60 // Constructor 48 // 61 // 49 G4MagInt_Driver::G4MagInt_Driver( G4double 62 G4MagInt_Driver::G4MagInt_Driver( G4double hminimum, 50 G4MagIntegra << 63 G4MagIntegratorStepper *pItsStepper, 51 G4int << 64 G4int numComponents, 52 G4int << 65 G4int statisticsVerbose) 53 : fNoIntegrationVariables(numComponents), 66 : fNoIntegrationVariables(numComponents), >> 67 fMinNoVars(12), 54 fNoVars( std::max( fNoIntegrationVariables 68 fNoVars( std::max( fNoIntegrationVariables, fMinNoVars )), >> 69 fVerboseLevel(0), >> 70 fNoTotalSteps(0), fNoBadSteps(0), fNoSmallSteps(0), fNoInitialSmallSteps(0), >> 71 fDyerr_max(0.0), fDyerr_mx2(0.0), >> 72 fDyerrPos_smTot(0.0), fDyerrPos_lgTot(0.0), fDyerrVel_lgTot(0.0), >> 73 fSumH_sm(0.0), fSumH_lg(0.0), 55 fStatisticsVerboseLevel(statisticsVerbose) 74 fStatisticsVerboseLevel(statisticsVerbose) 56 { 75 { 57 // In order to accomodate "Laboratory Time", << 76 // In order to accomodate "Laboratory Time", which is [7], fMinNoVars=8 is required. 58 // is required. For proper time of flight an << 77 // For proper time of flight and spin, fMinNoVars must be 12 59 << 60 RenewStepperAndAdjust( pStepper ); << 61 fMinimumStep = hminimum; << 62 78 63 fMaxNoSteps = fMaxStepBase / pIntStepper->In << 79 // fNoVars= std::max( fNoVars, fMinNoVars ); >> 80 RenewStepperAndAdjust( pItsStepper ); >> 81 fMinimumStep= hminimum; >> 82 fMaxNoSteps = fMaxStepBase / pIntStepper->IntegratorOrder(); 64 #ifdef G4DEBUG_FIELD 83 #ifdef G4DEBUG_FIELD 65 fVerboseLevel=2; << 84 fVerboseLevel=2; 66 #endif 85 #endif 67 86 68 if( (fVerboseLevel > 0) || (fStatisticsVerbo << 87 if( (fVerboseLevel > 0) || (fStatisticsVerboseLevel > 1) ){ 69 { << 88 G4cout << "MagIntDriver version: Accur-Adv: invE_nS, QuickAdv-2sqrt with Statistics " 70 G4cout << "MagIntDriver version: Accur-Adv << 71 << "invE_nS, QuickAdv-2sqrt with St << 72 #ifdef G4FLD_STATS 89 #ifdef G4FLD_STATS 73 << " enabled " << 90 << " enabled " 74 #else 91 #else 75 << " disabled " << 92 << " disabled " 76 #endif 93 #endif 77 << G4endl; << 94 << G4endl; 78 } << 95 } 79 } 96 } 80 97 81 // ------------------------------------------- << 82 << 83 // Destructor 98 // Destructor 84 // 99 // 85 G4MagInt_Driver::~G4MagInt_Driver() 100 G4MagInt_Driver::~G4MagInt_Driver() 86 { 101 { 87 if( fStatisticsVerboseLevel > 1 ) << 102 if( fStatisticsVerboseLevel > 1 ){ 88 { << 103 PrintStatisticsReport() ; 89 PrintStatisticsReport(); << 104 } 90 } << 105 // Future: for default verbose level, print an understandable summary 91 } 106 } 92 107 93 // ------------------------------------------- << 108 >> 109 // To add much printing for debugging purposes, uncomment this: >> 110 // #define G4DEBUG_FIELD 1 94 111 95 G4bool 112 G4bool 96 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& 113 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& y_current, 97 G4double << 114 G4double hstep, 98 G4double << 115 G4double eps, 99 G4double << 116 G4double hinitial ) 100 { << 117 // const G4double dydx[6], // We could may add this ?? 101 // Runge-Kutta driver with adaptive stepsize << 118 102 // values at y_current over hstep x2 with ac << 119 // Runge-Kutta driver with adaptive stepsize control. Integrate starting 103 // On output ystart is replaced by values at << 120 // values at y_current over hstep x2 with accuracy eps. 104 // interval. RightHandSide is the right-hand << 121 // On output ystart is replaced by values at the end of the integration 105 // The source is similar to odeint routine f << 122 // interval. >> 123 // RightHandSide is the right-hand side of ODE system. >> 124 // The source is similar to odeint routine from NRC p.721-722 . 106 125 107 G4int nstp, i; << 126 { 108 G4double x, hnext, hdid, h; << 127 G4int nstp, i, no_warnings=0;; >> 128 G4double x, hnext, hdid, h ; 109 129 110 #ifdef G4DEBUG_FIELD 130 #ifdef G4DEBUG_FIELD 111 G4int no_warnings = 0; << 131 static G4int dbg=1; 112 static G4int dbg = 1; << 132 static G4int nStpPr=50; // For debug printing of long integrations 113 static G4int nStpPr = 50; // For debug pri << 114 G4double ySubStepStart[G4FieldTrack::ncompSV 133 G4double ySubStepStart[G4FieldTrack::ncompSVEC]; 115 G4FieldTrack yFldTrkStart(y_current); 134 G4FieldTrack yFldTrkStart(y_current); 116 #endif 135 #endif 117 136 118 G4double y[G4FieldTrack::ncompSVEC] = {0., 0 << 137 G4double y[G4FieldTrack::ncompSVEC], dydx[G4FieldTrack::ncompSVEC]; 119 G4double dydx[G4FieldTrack::ncompSVEC] = {0. << 138 G4double ystart[G4FieldTrack::ncompSVEC], yEnd[G4FieldTrack::ncompSVEC]; 120 G4double ystart[G4FieldTrack::ncompSVEC] = { << 121 G4double yEnd[G4FieldTrack::ncompSVEC] = {0. << 122 G4double x1, x2; 139 G4double x1, x2; 123 G4bool succeeded = true; << 140 G4bool succeeded = true, lastStepSucceeded; 124 << 125 G4double startCurveLength; << 126 141 127 const G4int nvar = fNoVars; << 142 G4int noFullIntegr=0, noSmallIntegr = 0 ; >> 143 static G4int noGoodSteps =0 ; // Bad = chord > curve-len >> 144 const int nvar= fNoVars; 128 145 129 G4FieldTrack yStartFT(y_current); 146 G4FieldTrack yStartFT(y_current); 130 147 131 // Ensure that hstep > 0 << 148 // Assume that hstep > 0 132 // << 133 if( hstep <= 0.0 ) << 134 { << 135 if( hstep == 0.0 ) << 136 { << 137 std::ostringstream message; << 138 message << "Proposed step is zero; hstep << 139 G4Exception("G4MagInt_Driver::AccurateAd << 140 "GeomField1001", JustWarning << 141 return succeeded; << 142 } << 143 << 144 std::ostringstream message; << 145 message << "Invalid run condition." << G4e << 146 << "Proposed step is negative; hst << 147 << "Requested step cannot be negat << 148 G4Exception("G4MagInt_Driver::AccurateAdva << 149 "GeomField0003", EventMustBeAb << 150 return false; << 151 } << 152 149 153 y_current.DumpToArray( ystart ); 150 y_current.DumpToArray( ystart ); 154 << 151 x1= y_current.GetCurveLength(); 155 startCurveLength= y_current.GetCurveLength() << 156 x1= startCurveLength; << 157 x2= x1 + hstep; 152 x2= x1 + hstep; 158 153 159 if ( (hinitial > 0.0) && (hinitial < hstep) << 154 if( (hinitial > 0.0) 160 && (hinitial > perMillion * hstep) ) << 155 && (hinitial < hstep) 161 { << 156 && (hinitial > perMillion * hstep) ){ 162 h = hinitial; 157 h = hinitial; 163 } << 158 }else{ 164 else // Initial Step size "h" defaults to << 159 // Initial Step size "h" defaults to the full interval 165 { << 166 h = hstep; 160 h = hstep; 167 } 161 } 168 162 169 x = x1; 163 x = x1; 170 164 171 for ( i=0; i<nvar; ++i) { y[i] = ystart[i]; << 165 for(i=0;i<nvar;i++) y[i] = ystart[i] ; 172 << 173 G4bool lastStep= false; << 174 nstp = 1; << 175 166 176 do << 167 G4bool lastStep= false; 177 { << 168 nstp=1; 178 G4ThreeVector StartPos( y[0], y[1], y[2] ) << 169 // G4double lastStepThreshold = std::min( eps * hstep, Hmin() ); 179 << 170 180 #ifdef G4DEBUG_FIELD << 171 do{ 181 G4double xSubStepStart= x; << 172 G4ThreeVector StartPos( y[0], y[1], y[2] ); 182 for (i=0; i<nvar; ++i) { ySubStepStart[i] << 173 # ifdef G4DEBUG_FIELD 183 yFldTrkStart.LoadFromArray(y, fNoIntegrati << 174 for(i=0;i<nvar;i++) ySubStepStart[i] = y[i] ; 184 yFldTrkStart.SetCurveLength(x); << 175 yFldTrkStart.LoadFromArray(y); 185 #endif << 176 yFldTrkStart.SetCurveLength(x); 186 << 177 # endif 187 pIntStepper->RightHandSide( y, dydx ); << 178 188 ++fNoTotalSteps; << 179 pIntStepper->RightHandSide( y, dydx ); 189 << 180 190 // Perform the Integration << 181 if( x+h > x2 ) { 191 // << 182 h = x2 - x ; // When stepsize overshoots, decrease it! 192 if( h > fMinimumStep ) << 183 if( h < eps * hstep) { 193 { << 184 lastStep = true; // Avoid numerous small last steps 194 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; << 185 } 195 //-------------------------------------- << 186 } 196 #ifdef G4DEBUG_FIELD << 187 197 if (dbg>2) << 188 fNoTotalSteps++; 198 { << 189 // Perform the Integration 199 // PrintStatus( ySubStepStart, xSubSt << 190 // 200 G4DriverReporter::PrintStatus( ySubSte << 191 if( h > fMinimumStep ){ 201 } << 192 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; >> 193 //-------------------------------------- >> 194 lastStepSucceeded= (hdid == h); >> 195 #ifdef G4DEBUG_FIELD >> 196 if(dbg>2) PrintStatus( ySubStepStart, x1, y, x, h, nstp); // Only 202 #endif 197 #endif 203 } << 198 }else{ 204 else << 199 G4FieldTrack yFldTrk( G4ThreeVector(0,0,0), 205 { << 200 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 206 G4FieldTrack yFldTrk( G4ThreeVector(0,0, << 201 G4double dchord_step, dyerr, dyerr_len; // Must figure what to do with these 207 G4ThreeVector(0,0, << 202 yFldTrk.LoadFromArray(y); 208 G4double dchord_step, dyerr, dyerr_len; << 203 yFldTrk.SetCurveLength( x ); 209 yFldTrk.LoadFromArray(y, fNoIntegrationV << 204 210 yFldTrk.SetCurveLength( x ); << 205 QuickAdvance( yFldTrk, dydx, h, dchord_step, dyerr_len ); 211 << 206 //----------------------------------------------------- 212 QuickAdvance( yFldTrk, dydx, h, dchord_s << 207 // #ifdef G4DEBUG_FIELD 213 //-------------------------------------- << 208 // if(dbg>1) OneGoodStep(y,dydx,x,h,2*eps,hdid,hnext) ; >> 209 // if(dbg>1) PrintStatus( ystart, x1, y, x, h, -nstp); 214 210 215 yFldTrk.DumpToArray(y); << 211 yFldTrk.DumpToArray(y); 216 212 217 #ifdef G4FLD_STATS 213 #ifdef G4FLD_STATS 218 ++fNoSmallSteps; << 214 fNoSmallSteps++; 219 if ( dyerr_len > fDyerr_max ) { fDyerr_ << 215 if( dyerr_len > fDyerr_max) fDyerr_max= dyerr_len; 220 fDyerrPos_smTot += dyerr_len; << 216 fDyerrPos_smTot += dyerr_len; 221 fSumH_sm += h; // Length total for 'sma << 217 fSumH_sm += h; // Length total for 'small' steps 222 if (nstp==1) { ++fNoInitialSmallSteps; << 218 if(nstp<=1) fNoInitialSmallSteps++; 223 #endif 219 #endif 224 #ifdef G4DEBUG_FIELD 220 #ifdef G4DEBUG_FIELD 225 if (dbg>1) << 221 if(dbg>1) { 226 { << 222 if(fNoSmallSteps<2) PrintStatus( ySubStepStart, x1, y, x, h, -nstp); 227 if(fNoSmallSteps<2) { PrintStatus(ySub << 223 G4cout << "Another sub-min step, no " << fNoSmallSteps 228 G4cout << "Another sub-min step, no " << 224 << " of " << fNoTotalSteps << " this time " << nstp << G4endl; 229 << " of " << fNoTotalSteps << " << 225 PrintStatus( ySubStepStart, x1, y, x, h, nstp); // Only this 230 PrintStatus( ySubStepStart, x1, y, x, << 226 G4cout << " dyerr= " << dyerr_len << " relative = " << dyerr_len / h 231 G4cout << " dyerr= " << dyerr_len << " << 227 << " epsilon= " << eps << " hstep= " << hstep 232 << " epsilon= " << eps << " hst << 228 << " h= " << h << " hmin= " << fMinimumStep 233 << " h= " << h << " hmin= " << << 229 << G4endl; 234 } << 230 } 235 #endif << 231 #endif 236 if( h == 0.0 ) << 232 dyerr = dyerr_len / h; 237 { << 233 hdid= h; 238 G4Exception("G4MagInt_Driver::Accurate << 234 x += hdid; 239 "GeomField0003", FatalExce << 235 // Compute suggested new step 240 "Integration Step became Z << 236 hnext= ComputeNewStepSize( dyerr/eps, h); 241 } << 237 // .. hnext= ComputeNewStepSize_WithinLimits( dyerr/eps, h); 242 dyerr = dyerr_len / h; << 238 lastStepSucceeded= (dyerr<= eps); 243 hdid = h; << 239 } 244 x += hdid; << 245 << 246 // Compute suggested new step << 247 hnext = ComputeNewStepSize( dyerr/eps, h << 248 } << 249 240 250 G4ThreeVector EndPos( y[0], y[1], y[2] ); << 241 if(lastStepSucceeded) noFullIntegr++ ; else noSmallIntegr++ ; >> 242 G4ThreeVector EndPos( y[0], y[1], y[2] ); 251 243 252 #ifdef G4DEBUG_FIELD 244 #ifdef G4DEBUG_FIELD 253 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) << 245 if(dbg && (nstp>nStpPr)) { 254 { << 246 G4cout << "hdid=" << std::setw(12) << hdid << " " 255 if( nstp==nStpPr ) { G4cout << "***** M << 247 << "hnext=" << std::setw(12) << hnext << " " << G4endl; 256 G4cout << "MagIntDrv: " ; << 248 PrintStatus( ystart, x1, y, x, h, (nstp==nStpPr) ? -nstp: nstp); 257 G4cout << "hdid=" << std::setw(12) << h << 249 } 258 << "hnext=" << std::setw(12) << h << 259 << "hstep=" << std::setw(12) << h << 260 << G4endl; << 261 PrintStatus( ystart, x1, y, x, h, (nstp= << 262 } << 263 #endif 250 #endif 264 251 265 // Check the endpoint << 252 // Check the endpoint 266 G4double endPointDist= (EndPos-StartPos).m << 253 G4double endPointDist= (EndPos-StartPos).mag(); 267 if ( endPointDist >= hdid*(1.+perMillion) << 254 if( endPointDist >= hdid*(1.+perMillion) ){ 268 { << 255 fNoBadSteps ++; 269 ++fNoBadSteps; << 256 // Issue a warning only for gross differences - 270 << 257 // we understand how small difference occur. 271 // Issue a warning only for gross differ << 258 if( endPointDist >= hdid*(1.+perThousand) ){ 272 // we understand how small difference oc << 259 #ifdef G4DEBUG_FIELD 273 if ( endPointDist >= hdid*(1.+perThousan << 260 if(dbg){ 274 { << 261 WarnEndPointTooFar ( endPointDist, hdid, eps, dbg ); 275 #ifdef G4DEBUG_FIELD << 262 G4cerr << " Total steps: bad " << fNoBadSteps << " good " << noGoodSteps << " current h= " << hdid << G4endl; 276 if (dbg) << 263 // G4cerr << "Mid:EndPtFar> "; 277 { << 264 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 278 WarnEndPointTooFar ( endPointDist, h << 265 // Potentially add as arguments: <dydx> - as Initial Force 279 G4cerr << " Total steps: bad " << << 266 } 280 << " current h= " << hdid << << 267 #endif 281 PrintStatus( ystart, x1, y, x, hstep << 268 no_warnings++; 282 } << 269 } 283 ++no_warnings; << 270 } else { // ie (!dbg) 284 #endif << 271 noGoodSteps ++; 285 } << 272 } 286 } << 273 // #endif 287 << 274 288 // Avoid numerous small last steps << 275 // Check the proposed next stepsize 289 if( (h < eps * hstep) || (h < fSmallestFra << 276 if(fabs(hnext) <= Hmin()) 290 { << 277 { 291 // No more integration -- the next step << 292 lastStep = true; << 293 } << 294 else << 295 { << 296 // Check the proposed next stepsize << 297 if(std::fabs(hnext) <= Hmin()) << 298 { << 299 #ifdef G4DEBUG_FIELD 278 #ifdef G4DEBUG_FIELD 300 // If simply a very small interval is 279 // If simply a very small interval is being integrated, do not warn 301 if( (x < x2 * (1-eps) ) && // T << 280 if( (x < x2 * (1-eps) ) && // The last step can be small: it's OK 302 (std::fabs(hstep) > Hmin()) ) // a << 281 (fabs(hstep) > Hmin()) // and if we are asked, it's OK 303 { << 282 // && (hnext < hstep * PerThousand ) 304 if(dbg>0) << 283 ){ 305 { << 284 if(dbg>0){ 306 WarnSmallStepSize( hnext, hstep, h << 285 // Issue WARNING 307 PrintStatus( ystart, x1, y, x, hst << 286 WarnSmallStepSize( hnext, hstep, h, x-x1, nstp ); 308 } << 287 // G4cerr << "Mid:SmallStep> "; 309 ++no_warnings; << 288 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 310 } << 289 } 311 #endif << 290 no_warnings++; >> 291 } >> 292 #endif >> 293 // else >> 294 // succeeded = false; // Meaningful only if we break out of the loop. >> 295 // >> 296 // lastStep = true; // Make this the last step ... Dubious now >> 297 312 // Make sure that the next step is at 298 // Make sure that the next step is at least Hmin. 313 h = Hmin(); 299 h = Hmin(); 314 } << 300 }else{ 315 else << 301 h = hnext ; 316 { << 302 } 317 h = hnext; << 303 318 } << 304 }while ( ((nstp++)<=fMaxNoSteps) 319 << 305 && (x < x2) // Have we reached the end ? 320 // Ensure that the next step does not o << 306 // --> a better test might be x-x2 > an_epsilon 321 if ( x+h > x2 ) << 307 && (!lastStep) 322 { // When stepsize oversh << 308 ); 323 h = x2 - x ; // Must cope with diffi << 324 } // issues if hstep << x << 325 << 326 if ( h == 0.0 ) << 327 { << 328 // Cannot progress - accept this as la << 329 lastStep = true; << 330 #ifdef G4DEBUG_FIELD << 331 if (dbg>2) << 332 { << 333 int prec= G4cout.precision(12); << 334 G4cout << "Warning: G4MagIntegratorD << 335 << G4endl << 336 << " Integration step 'h' be << 337 << h << " due to roundoff. " << 338 << " Calculated as difference << 339 << " Forcing termination of << 340 G4cout.precision(prec); << 341 } << 342 #endif << 343 } << 344 } << 345 } while ( ((++nstp)<=fMaxNoSteps) && (x < x2 << 346 // Loop checking, 07.10.2016, J. Apostolakis << 347 309 348 // Have we reached the end ? << 310 succeeded= (x>=x2); // If it was a "forced" last step 349 // --> a better test might be x-x2 > an_e << 350 311 351 succeeded = (x>=x2); // If it was a "forced << 312 for(i=0;i<nvar;i++) yEnd[i] = y[i] ; 352 << 353 for (i=0; i<nvar; ++i) { yEnd[i] = y[i]; } << 354 313 355 // Put back the values. 314 // Put back the values. 356 y_current.LoadFromArray( yEnd, fNoIntegratio << 315 y_current.LoadFromArray( yEnd ); 357 y_current.SetCurveLength( x ); 316 y_current.SetCurveLength( x ); 358 317 359 if(nstp > fMaxNoSteps) << 318 if(nstp > fMaxNoSteps){ 360 { << 319 no_warnings++; 361 succeeded = false; << 320 succeeded = false; 362 #ifdef G4DEBUG_FIELD << 321 #ifdef G4DEBUG_FIELD 363 ++no_warnings; << 322 if(dbg){ 364 if (dbg) << 323 WarnTooManyStep( x1, x2, x ); // Issue WARNING 365 { << 324 PrintStatus( yEnd, x1, y, x, hstep, -nstp); 366 WarnTooManyStep( x1, x2, x ); // Issue << 325 } 367 PrintStatus( yEnd, x1, y, x, hstep, -nst << 368 } << 369 #endif 326 #endif 370 } 327 } 371 328 372 #ifdef G4DEBUG_FIELD 329 #ifdef G4DEBUG_FIELD 373 if( dbg && no_warnings ) << 330 if( dbg && no_warnings ){ 374 { << 331 G4cerr << "G4MagIntegratorDriver exit status: no-steps " << nstp <<G4endl; 375 G4cerr << "G4MagIntegratorDriver exit stat << 332 PrintStatus( yEnd, x1, y, x, hstep, nstp); 376 PrintStatus( yEnd, x1, y, x, hstep, nstp); << 377 } 333 } 378 #endif 334 #endif 379 335 380 return succeeded; 336 return succeeded; 381 } // end of AccurateAdvance ................. << 382 337 383 // ------------------------------------------- << 338 } // end of AccurateAdvance ........................... 384 339 385 void 340 void 386 G4MagInt_Driver::WarnSmallStepSize( G4double h 341 G4MagInt_Driver::WarnSmallStepSize( G4double hnext, G4double hstep, 387 G4double h << 342 G4double h, G4double xDone, 388 G4int nstp << 343 G4int nstp) 389 { 344 { 390 static G4ThreadLocal G4int noWarningsIssued << 345 static G4int noWarningsIssued =0; 391 const G4int maxNoWarnings = 10; // Number << 346 const G4int maxNoWarnings = 10; // Number of verbose warnings 392 std::ostringstream message; << 347 if( (noWarningsIssued < maxNoWarnings) || fVerboseLevel > 10 ){ 393 if( (noWarningsIssued < maxNoWarnings) || fV << 348 G4cerr<< " Warning (G4MagIntegratorDriver::AccurateAdvance): The stepsize for the " 394 { << 349 << " next iteration=" << hnext << " is too small " 395 message << "The stepsize for the next iter << 350 << "- in Step number " << nstp << "." << G4endl; 396 << ", is too small - in Step numbe << 351 G4cerr << " The minimum for the driver is " << Hmin() << G4endl ; 397 << "The minimum for the driver is << 352 G4cerr << " Requested integr. length was " << hstep << " ." << G4endl ; 398 << "Requested integr. length was " << 353 G4cerr << " The size of this sub-step was " << h << " ." << G4endl ; 399 << "The size of this sub-step was << 354 G4cerr << " The integrations has already gone " << xDone << G4endl ; 400 << "The integrations has already g << 355 }else{ 401 } << 356 G4cerr<< " G4MagInt_Driver: Too small 'next' step " << hnext 402 else << 357 << " step-no " << nstp ; // << G4setw(4) 403 { << 358 G4cerr << " this sub-step " << h 404 message << "Too small 'next' step " << hne << 359 << " req_tot_len " << hstep 405 << ", step-no: " << nstp << G4endl << 360 << " done " << xDone 406 << ", this sub-step: " << h << 361 << " min " << Hmin() 407 << ", req_tot_len: " << hstep << 362 << G4endl ; 408 << ", done: " << xDone << ", min: << 409 } 363 } 410 G4Exception("G4MagInt_Driver::WarnSmallStepS << 364 noWarningsIssued++; 411 JustWarning, message); << 412 ++noWarningsIssued; << 413 } 365 } 414 366 415 // ------------------------------------------- << 416 << 417 void 367 void 418 G4MagInt_Driver::WarnTooManyStep( G4double x1s 368 G4MagInt_Driver::WarnTooManyStep( G4double x1start, 419 G4double x2e << 369 G4double x2end, 420 G4double xCu << 370 G4double xCurrent) 421 { 371 { 422 std::ostringstream message; << 372 G4cerr << " Warning (G4MagIntegratorDriver): The number of steps " 423 message << "The number of steps used in the << 373 << "used in the Integration driver (Runge-Kutta) is too many. " 424 << " (Runge-Kutta) is too many." << << 374 << G4endl ; 425 << "Integration of the interval was << 375 G4cerr << "Integration of the interval was not completed - only a " 426 << "Only a " << (xCurrent-x1start)* << 376 << (xCurrent-x1start)*100/(x2end-x1start) 427 << " % fraction of it was done."; << 377 <<" % fraction of it was Done." << G4endl; 428 G4Exception("G4MagInt_Driver::WarnTooManySt << 429 JustWarning, message); << 430 } 378 } 431 379 432 // ------------------------------------------- << 433 << 434 void 380 void 435 G4MagInt_Driver::WarnEndPointTooFar (G4double 381 G4MagInt_Driver::WarnEndPointTooFar (G4double endPointDist, 436 G4double << 382 G4double h , 437 G4double << 383 G4double eps, 438 G4int << 384 G4int dbg) 439 { << 385 { 440 static G4ThreadLocal G4double maxRelError = << 386 static G4double maxRelError= 0.0, maxRelError_last_printed=0.0; 441 G4bool isNewMax, prNewMax; << 387 G4bool isNewMax, prNewMax; 442 << 388 443 isNewMax = endPointDist > (1.0 + maxRelError << 389 isNewMax = endPointDist > (1.0 + maxRelError) * h; 444 prNewMax = endPointDist > (1.0 + 1.05 * maxR << 390 prNewMax = endPointDist > (1.0 + 1.05 * maxRelError) * h; 445 if( isNewMax ) { maxRelError= endPointDist / << 391 if( isNewMax ) 446 << 392 maxRelError= endPointDist / h - 1.0; 447 if( (dbg != 0) && (h > G4GeometryTolerance:: << 393 if( prNewMax ) 448 && ( (dbg>1) || prNewMax || (endPoin << 394 maxRelError_last_printed = maxRelError; 449 { << 395 450 static G4ThreadLocal G4int noWarnings = 0; << 396 if( dbg 451 std::ostringstream message; << 397 && (h > kCarTolerance) 452 if( (noWarnings++ < 10) || (dbg>2) ) << 398 && ( (dbg>1) || prNewMax || (endPointDist >= h*(1.+eps) ) ) 453 { << 399 ){ 454 message << "The integration produced an << 400 static G4int noWarnings = 0; 455 << "is further from the start-po << 401 if( (noWarnings ++ < 10) || (dbg>2) ){ 456 << G4endl; << 402 G4cerr << " Warning (G4MagIntegratorDriver): " 457 } << 403 << " The integration produced an endpoint which " << G4endl 458 message << " Distance of endpoints = " << << 404 << " is further from the startpoint than the curve length." << G4endl; 459 << ", curve length = " << h << G4e << 405 460 << " Difference (curveLen-endpDis << 406 G4cerr << " Distance of endpoints = " << endPointDist 461 << ", relative = " << (h-endPointD << 407 << " curve length = " << h 462 << ", epsilon = " << eps; << 408 << " Difference (curveLen-endpDist)= " << (h - endPointDist) 463 G4Exception("G4MagInt_Driver::WarnEndPoint << 409 << " relative = " << (h-endPointDist) / h 464 JustWarning, message); << 410 << " epsilon = " << eps 465 } << 411 << G4endl; >> 412 }else{ >> 413 G4cerr << " Warning:" >> 414 << " dist_e= " << endPointDist >> 415 << " h_step = " << h >> 416 << " Diff (hs-ed)= " << (h - endPointDist) >> 417 << " rel = " << (h-endPointDist) / h >> 418 << " eps = " << eps >> 419 << " (from G4MagInt_Driver)" << G4endl; >> 420 } >> 421 } 466 } 422 } 467 << 468 // ------------------------------------------- 423 // --------------------------------------------------------- 469 424 470 void 425 void 471 G4MagInt_Driver::OneGoodStep( G4double y[ 426 G4MagInt_Driver::OneGoodStep( G4double y[], // InOut 472 const G4double dy << 427 const G4double dydx[], 473 G4double& x << 428 G4double& x, // InOut 474 G4double ht << 429 G4double htry, 475 G4double ep << 430 G4double eps_rel_max, 476 G4double& h << 431 G4double& hdid, // Out 477 G4double& h << 432 G4double& hnext ) // Out 478 433 479 // Driver for one Runge-Kutta Step with monito 434 // Driver for one Runge-Kutta Step with monitoring of local truncation error 480 // to ensure accuracy and adjust stepsize. Inp 435 // to ensure accuracy and adjust stepsize. Input are dependent variable 481 // array y[0,...,5] and its derivative dydx[0, 436 // array y[0,...,5] and its derivative dydx[0,...,5] at the 482 // starting value of the independent variable 437 // starting value of the independent variable x . Also input are stepsize 483 // to be attempted htry, and the required accu 438 // to be attempted htry, and the required accuracy eps. On output y and x 484 // are replaced by their new values, hdid is t 439 // are replaced by their new values, hdid is the stepsize that was actually 485 // accomplished, and hnext is the estimated ne 440 // accomplished, and hnext is the estimated next stepsize. 486 // This is similar to the function rkqs from t 441 // This is similar to the function rkqs from the book: 487 // Numerical Recipes in C: The Art of Scientif 442 // Numerical Recipes in C: The Art of Scientific Computing (NRC), Second 488 // Edition, by William H. Press, Saul A. Teuko 443 // Edition, by William H. Press, Saul A. Teukolsky, William T. 489 // Vetterling, and Brian P. Flannery (Cambridg 444 // Vetterling, and Brian P. Flannery (Cambridge University Press 1992), 490 // 16.2 Adaptive StepSize Control for Runge-Ku 445 // 16.2 Adaptive StepSize Control for Runge-Kutta, p. 719 491 446 492 { 447 { 493 G4double errmax_sq; << 448 // G4double errpos_rel_sq, errvel_rel_sq 494 G4double h, htemp, xnew ; << 449 G4double errmax_sq; >> 450 // G4double errmax; >> 451 G4double h, htemp, xnew ; 495 452 496 G4double yerr[G4FieldTrack::ncompSVEC], ytem << 453 G4double yerr[G4FieldTrack::ncompSVEC], ytemp[G4FieldTrack::ncompSVEC]; 497 454 498 h = htry ; // Set stepsize to the initial tr << 455 h = htry ; // Set stepsize to the initial trial value 499 456 500 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max << 457 // G4double inv_epspos_sq = 1.0 / eps * eps; >> 458 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max*eps_rel_max); 501 459 502 G4double errpos_sq = 0.0; // square of di << 460 G4double errpos_sq=0.0; // square of displacement error 503 G4double errvel_sq = 0.0; // square of mo << 461 G4double errvel_sq=0.0; // square of momentum vector difference 504 G4double errspin_sq = 0.0; // square of sp << 505 462 506 const G4int max_trials=100; << 463 G4int iter; 507 464 508 G4ThreeVector Spin(y[9],y[10],y[11]); << 465 static G4int tot_no_trials=0; 509 G4double spin_mag2 = Spin.mag2(); << 466 const G4int max_trials=100; 510 G4bool hasSpin = (spin_mag2 > 0.0); << 511 << 512 for (G4int iter=0; iter<max_trials; ++iter) << 513 { << 514 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr) << 515 // ******* << 516 G4double eps_pos = eps_rel_max * std::max( << 517 G4double inv_eps_pos_sq = 1.0 / (eps_pos*e << 518 << 519 // Evaluate accuracy << 520 // << 521 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + << 522 errpos_sq *= inv_eps_pos_sq; // Scale rela << 523 << 524 // Accuracy for momentum << 525 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) << 526 G4double sumerr_sq = sqr(yerr[3]) + sqr(y << 527 if( magvel_sq > 0.0 ) << 528 { << 529 errvel_sq = sumerr_sq / magvel_sq; << 530 } << 531 else << 532 { << 533 std::ostringstream message; << 534 message << "Found case of zero momentum << 535 << "- iteration= " << iter << " << 536 G4Exception("G4MagInt_Driver::OneGoodSt << 537 "GeomField1001", JustWarnin << 538 errvel_sq = sumerr_sq; << 539 } << 540 errvel_sq *= inv_eps_vel_sq; << 541 errmax_sq = std::max( errpos_sq, errvel_sq << 542 467 543 if( hasSpin ) << 468 for (iter=0; iter<max_trials ;iter++) 544 { << 469 { 545 // Accuracy for spin << 470 tot_no_trials++; 546 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[ << 471 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr); 547 / spin_mag2; // ( sqr(y[9 << 472 // ******* 548 errspin_sq *= inv_eps_vel_sq; << 473 G4double eps_pos = eps_rel_max * std::max(h, fMinimumStep); 549 errmax_sq = std::max( errmax_sq, errspin << 474 G4double inv_eps_pos_sq = 1.0 / (eps_pos*eps_pos); 550 } << 475 >> 476 // Evaluate accuracy >> 477 // >> 478 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + sqr(yerr[2]) ; >> 479 // errpos_sq /= eps_pos*eps_pos; // Scale to tolerance >> 480 errpos_sq *= inv_eps_pos_sq; // Scale relative to required tolerance >> 481 >> 482 // Accuracy for momentum >> 483 errvel_sq = (sqr(yerr[3]) + sqr(yerr[4]) + sqr(yerr[5]) ) >> 484 / (sqr(y[3]) + sqr(y[4]) + sqr(y[5]) ); >> 485 // errvel_sq /= eps_rel_max*eps_rel_max; >> 486 errvel_sq *= inv_eps_vel_sq; >> 487 >> 488 errmax_sq = std::max( errpos_sq, errvel_sq ); // Square of maximum error >> 489 // errmax = sqrt( errmax_sq ); >> 490 if(errmax_sq <= 1.0 ) break ; // Step succeeded. >> 491 >> 492 // Step failed; compute the size of retrial Step. >> 493 htemp = GetSafety()*h* pow( errmax_sq, 0.5*GetPshrnk() ); >> 494 >> 495 if(htemp >= 0.1*h) h = htemp ; // Truncation error too large, >> 496 else h = 0.1*h ; // reduce stepsize, but no more >> 497 // than a factor of 10 >> 498 xnew = x + h ; >> 499 if(xnew == x) { >> 500 G4cerr<<"G4MagIntegratorDriver::OneGoodStep: Stepsize underflow in Stepper "<<G4endl ; >> 501 G4cerr<<" Step's start x=" << x << " and end x= " << xnew >> 502 << " are equal !! " << G4endl >> 503 <<" Due to step-size= " << h >> 504 << " . Note that input step was " << htry << G4endl; >> 505 break; >> 506 } >> 507 } >> 508 // tot_no_trials+= (iter+1); 551 509 552 if ( errmax_sq <= 1.0 ) { break; } // Ste << 510 #ifdef G4FLD_STATS >> 511 // Sum of squares of position error // and momentum dir (underestimated) >> 512 fSumH_lg += h; >> 513 fDyerrPos_lgTot += errpos_sq; // + errvel_last_sq * h * h ; >> 514 fDyerrVel_lgTot += errvel_sq * h * h; >> 515 #endif 553 516 554 // Step failed; compute the size of retria << 517 // Compute size of next Step 555 htemp = GetSafety() * h * std::pow( errmax << 518 if(errmax_sq > errcon*errcon) >> 519 hnext = GetSafety()*h*pow(errmax_sq, 0.5*GetPgrow()) ; >> 520 else hnext = max_stepping_increase*h ; >> 521 // No more than a factor of 5 increase 556 522 557 if (htemp >= 0.1*h) { h = htemp; } // Tr << 523 x += (hdid = h) ; 558 else { h = 0.1*h; } // re << 559 // th << 560 xnew = x + h; << 561 if(xnew == x) << 562 { << 563 std::ostringstream message; << 564 message << "Stepsize underflow in Steppe << 565 << "- Step's start x=" << x << " << 566 << " are equal !! " << G4endl << 567 << " Due to step-size= " << h << 568 << ". Note that input step was " << 569 G4Exception("G4MagInt_Driver::OneGoodSte << 570 "GeomField1001", JustWarning << 571 break; << 572 } << 573 } << 574 524 575 // Compute size of next Step << 525 int i; 576 if (errmax_sq > errcon*errcon) << 526 const int nvar= fNoIntegrationVariables; 577 { << 527 for(i=0;i<nvar;i++) y[i] = ytemp[i] ; 578 hnext = GetSafety()*h*std::pow(errmax_sq, << 579 } << 580 else << 581 { << 582 hnext = max_stepping_increase*h ; // No mo << 583 } << 584 x += (hdid = h); << 585 528 586 for(G4int k=0; k<fNoIntegrationVariables; ++ << 529 return ; 587 530 588 return; << 531 } // end of OneGoodStep ............................. 589 } << 590 532 591 //-------------------------------------------- 533 //---------------------------------------------------------------------- 592 534 >> 535 #ifdef QUIK_ADVANCE_NEW2 593 // QuickAdvance just tries one Step - it does 536 // QuickAdvance just tries one Step - it does not ensure accuracy 594 // 537 // 595 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr << 538 // This original interface does not return individual element errors 596 const G4double << 539 // It is kept only for compatibility, and will be obsolete as of G4 6.0 597 G4double << 540 // 598 G4double& << 541 G4bool G4MagInt_Driver::QuickAdvance( 599 G4double& << 542 G4FieldTrack& y_posvel, // INOUT 600 G4double& << 543 const G4double dydx[], 601 { << 544 G4double hstep, // In 602 G4Exception("G4MagInt_Driver::QuickAdvance() << 545 G4double& dchord_step, 603 FatalException, "Not yet impleme << 546 G4double& dyerr ) 604 << 547 { 605 // Use the parameters of this method, to ple << 548 G4double dyerr_pos_sq=0.0, dyerr_mom_rel_sq=0.0; // dyerr_ener_sq=0.0; 606 // << 549 G4double dyerr_pos; 607 dchord_step = dyerr_pos_sq = hstep * hstep * << 550 608 dyerr_mom_rel_sq = y_posvel.GetPosition().ma << 551 QuickAdvance( y_posvel, dydx, hstep, 609 return true; << 552 dchord_step, dyerr_pos_sq, dyerr_mom_rel_sq); >> 553 // , dyerr_ener_sq ); >> 554 ... >> 555 // Calculate dyerr from the above -- as at the end of the func below 610 } 556 } >> 557 #endif 611 558 612 //-------------------------------------------- 559 //---------------------------------------------------------------------- >> 560 // QuickAdvance just tries one Step - it does not ensure accuracy >> 561 // >> 562 G4bool G4MagInt_Driver::QuickAdvance( >> 563 G4FieldTrack& y_posvel, // INOUT >> 564 const G4double dydx[], >> 565 G4double hstep, // In >> 566 G4double& dchord_step, >> 567 G4double& dyerr_pos_sq, >> 568 G4double& dyerr_mom_rel_sq >> 569 // G4double& dyerr_ener_sq // Future >> 570 ) >> 571 { >> 572 G4Exception("G4MagInt_Driver::QuickAdvance()", "NotImplemented", >> 573 FatalException, "Not yet implemented."); >> 574 >> 575 // Use the parameters of this method, to please compiler >> 576 dchord_step = dyerr_pos_sq = hstep * hstep * dydx[0]; >> 577 dyerr_mom_rel_sq = y_posvel.GetPosition().mag2(); >> 578 return true; >> 579 } >> 580 >> 581 G4bool G4MagInt_Driver::QuickAdvance( >> 582 G4FieldTrack& y_posvel, // INOUT >> 583 const G4double dydx[], >> 584 G4double hstep, // In >> 585 G4double& dchord_step, >> 586 G4double& dyerr ) >> 587 { >> 588 G4double dyerr_pos_sq, dyerr_mom_rel_sq; >> 589 G4double yerr_vec[G4FieldTrack::ncompSVEC], yarrin[G4FieldTrack::ncompSVEC], yarrout[G4FieldTrack::ncompSVEC]; >> 590 G4double s_start; >> 591 // G4double dyerr_len=0.0; // , dyerr_vel, vel_mag; >> 592 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_mag_sq; >> 593 >> 594 static G4int no_call=0; >> 595 no_call ++; >> 596 >> 597 // Move data into array >> 598 y_posvel.DumpToArray( yarrin ); // yarrin <== y_posvel >> 599 s_start = y_posvel.GetCurveLength(); 613 600 614 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr << 601 // Do an Integration Step 615 const G4double << 602 pIntStepper-> Stepper(yarrin, dydx, hstep, yarrout, yerr_vec) ; 616 G4double << 603 // ******* 617 G4double& << 618 G4double& << 619 { << 620 G4double dyerr_pos_sq, dyerr_mom_rel_sq; << 621 G4double yerr_vec[G4FieldTrack::ncompSVEC], << 622 yarrin[G4FieldTrack::ncompSVEC], ya << 623 G4double s_start; << 624 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_m << 625 << 626 // Move data into array << 627 y_posvel.DumpToArray( yarrin ); // yar << 628 s_start = y_posvel.GetCurveLength(); << 629 << 630 // Do an Integration Step << 631 pIntStepper-> Stepper(yarrin, dydx, hstep, y << 632 << 633 // Estimate curve-chord distance << 634 dchord_step= pIntStepper-> DistChord(); << 635 << 636 // Put back the values. yarrout ==> y_posve << 637 y_posvel.LoadFromArray( yarrout, fNoIntegrat << 638 y_posvel.SetCurveLength( s_start + hstep ); << 639 << 640 #ifdef G4DEBUG_FIELD << 641 if(fVerboseLevel>2) << 642 { << 643 G4cout << "G4MagIntDrv: Quick Advance" << << 644 PrintStatus( yarrin, s_start, yarrout, s_s << 645 } << 646 #endif << 647 604 648 // A single measure of the error << 605 // Estimate curve-chord distance 649 // TO-DO : account for energy, spin, << 606 dchord_step= pIntStepper-> DistChord(); 650 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout << 607 // ********* 651 inv_vel_mag_sq = 1.0 / vel_mag_sq; << 608 652 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_v << 609 // Put back the values. 653 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_v << 610 y_posvel.LoadFromArray( yarrout ); // yarrout ==> y_posvel 654 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_ma << 611 y_posvel.SetCurveLength( s_start + hstep ); 655 << 612 656 // Calculate also the change in the momentum << 613 // A single measure of the error 657 // G4double veloc_square = y_posvel.GetVeloc << 614 // TO-DO : account for energy, spin, ... ? 658 // ... << 615 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout[4])+sqr(yarrout[5]) ); >> 616 inv_vel_mag_sq = 1.0 / vel_mag_sq; >> 617 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_vec[1])+sqr(yerr_vec[2])); >> 618 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); >> 619 >> 620 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_mag_sq; >> 621 >> 622 //// Calculate also the change in the momentum squared also ??? >> 623 // G4double veloc_square = y_posvel.GetVelocity().mag2(); >> 624 // ... 659 625 660 #ifdef RETURN_A_NEW_STEP_LENGTH 626 #ifdef RETURN_A_NEW_STEP_LENGTH 661 // The following step cannot be done here be << 627 // The following step cannot be done here because "eps" is not known. 662 dyerr_len = std::sqrt( dyerr_len_sq ); << 628 dyerr_len = sqrt( dyerr_len_sq ); 663 dyerr_len_sq /= eps ; << 629 dyerr_len_sq /= eps ; 664 630 665 // Look at the velocity deviation ? << 631 // Look at the velocity deviation ? 666 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(ye << 632 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 667 633 668 // Set suggested new step << 634 // Set suggested new step 669 hstep = ComputeNewStepSize( dyerr_len, hstep << 635 hstep= ComputeNewStepSize( dyerr_len, hstep); 670 #endif 636 #endif 671 637 672 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr( << 638 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr(hstep) ) ) { 673 { << 639 dyerr = sqrt(dyerr_pos_sq); 674 dyerr = std::sqrt(dyerr_pos_sq); << 640 }else{ 675 } << 641 // Scale it to the current step size - for now 676 else << 642 dyerr = sqrt(dyerr_mom_rel_sq) * hstep; 677 { << 643 } 678 // Scale it to the current step size - for << 679 dyerr = std::sqrt(dyerr_mom_rel_sq) * hste << 680 } << 681 644 682 return true; << 645 return true; 683 } 646 } 684 647 685 // ------------------------------------------- << 686 << 687 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 648 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 688 G4bool G4MagInt_Driver::QuickAdvance(G4double << 649 G4bool G4MagInt_Driver::QuickAdvance( 689 const G4double << 650 G4double yarrin[], // IN 690 G4double << 651 const G4double dydx[], 691 G4double << 652 G4double hstep, // In 692 G4double << 653 G4double yarrout[], 693 G4double << 654 G4double& dchord_step, >> 655 G4double& dyerr ) // in length 694 { 656 { 695 G4Exception("G4MagInt_Driver::QuickAdvance() << 657 G4Exception("G4MagInt_Driver::QuickAdvance()", "NotImplemented", 696 FatalException, "Not yet impleme << 658 FatalException, "Not yet implemented."); 697 dyerr = dchord_step = hstep * yarrin[0] * dy << 659 698 yarrout[0]= yarrin[0]; << 660 dyerr = dchord_step = hstep * yarrin[0] * dydx[0]; >> 661 yarrout[0]= yarrin[0]; 699 } 662 } 700 #endif 663 #endif 701 664 702 // ------------------------------------------- 665 // -------------------------------------------------------------------------- 703 << 666 // This method computes new step sizes - but does not limit changes to 704 // This method computes new step sizes - but d << 667 // within certain factors 705 // within certain factors << 706 // 668 // 707 G4double G4MagInt_Driver:: << 669 708 ComputeNewStepSize_WithoutReductionLimit(G4dou << 670 G4double 709 G4double hstepCurrent) // << 671 G4MagInt_Driver::ComputeNewStepSize( >> 672 G4double errMaxNorm, // max error (normalised) >> 673 G4double hstepCurrent) // current step size 710 { 674 { 711 G4double hnew; 675 G4double hnew; 712 676 713 // Compute size of next Step for a failed st 677 // Compute size of next Step for a failed step 714 if(errMaxNorm > 1.0 ) << 678 if(errMaxNorm > 1.0 ) { 715 { << 679 716 // Step failed; compute the size of retria 680 // Step failed; compute the size of retrial Step. 717 hnew = GetSafety()*hstepCurrent*std::pow(e << 681 hnew = GetSafety()*hstepCurrent*pow(errMaxNorm,GetPshrnk()) ; 718 } << 682 }else if(errMaxNorm > 0.0 ){ 719 else if(errMaxNorm > 0.0 ) << 720 { << 721 // Compute size of next Step for a success 683 // Compute size of next Step for a successful step 722 hnew = GetSafety()*hstepCurrent*std::pow(e << 684 hnew = GetSafety()*hstepCurrent*pow(errMaxNorm,GetPgrow()) ; 723 } << 685 }else { 724 else << 725 { << 726 // if error estimate is zero (possible) or 686 // if error estimate is zero (possible) or negative (dubious) 727 hnew = max_stepping_increase * hstepCurren 687 hnew = max_stepping_increase * hstepCurrent; 728 } 688 } 729 689 730 return hnew; 690 return hnew; 731 } 691 } 732 692 733 // ------------------------------------------- << 693 // ----------------------------------------------------------------------------- 734 << 694 // This method computes new step sizes limiting changes within certain factors 735 G4double << 736 G4MagInt_Driver::ComputeNewStepSize( << 737 G4double errMaxNorm << 738 G4double hstepCurre << 739 { << 740 // Legacy behaviour: << 741 return ComputeNewStepSize_WithoutReductionL << 742 // 'Improved' behaviour - at least more con << 743 // return ComputeNewStepSize_WithinLimits( << 744 } << 745 << 746 // This method computes new step sizes limitin << 747 // 695 // 748 // It shares its logic with AccurateAdvance. << 696 // It shares its logic with AccurateAdvance. 749 // They are kept separate currently for optimi << 697 // They are kept separate currently for optimisation. 750 // << 698 751 G4double 699 G4double 752 G4MagInt_Driver::ComputeNewStepSize_WithinLimi 700 G4MagInt_Driver::ComputeNewStepSize_WithinLimits( 753 G4double errMaxNorm 701 G4double errMaxNorm, // max error (normalised) 754 G4double hstepCurre << 702 G4double hstepCurrent) // current step size 755 { 703 { 756 G4double hnew; 704 G4double hnew; 757 705 758 // Compute size of next Step for a failed st 706 // Compute size of next Step for a failed step 759 if (errMaxNorm > 1.0 ) << 707 if(errMaxNorm > 1.0 ) { 760 { << 708 761 // Step failed; compute the size of retria 709 // Step failed; compute the size of retrial Step. 762 hnew = GetSafety()*hstepCurrent*std::pow(e << 710 hnew = GetSafety()*hstepCurrent*pow(errMaxNorm,GetPshrnk()) ; 763 711 764 if (hnew < max_stepping_decrease*hstepCurr << 712 if(hnew < max_stepping_decrease*hstepCurrent) 765 { << 713 hnew = max_stepping_decrease*hstepCurrent ; 766 hnew = max_stepping_decrease*hstepCurren << 767 // reduce stepsize, b 714 // reduce stepsize, but no more 768 // than this factor ( 715 // than this factor (value= 1/10) 769 } << 716 }else{ 770 } << 771 else << 772 { << 773 // Compute size of next Step for a success 717 // Compute size of next Step for a successful step 774 if (errMaxNorm > errcon) << 718 if(errMaxNorm > errcon) hnew = GetSafety()*hstepCurrent*pow(errMaxNorm,GetPgrow()) ; 775 { hnew = GetSafety()*hstepCurrent*std::po << 719 else hnew = max_stepping_increase * hstepCurrent ; 776 else // No more than a factor of 5 increa << 720 // No more than a factor of 5 increase 777 { hnew = max_stepping_increase * hstepCur << 778 } 721 } >> 722 779 return hnew; 723 return hnew; 780 } 724 } 781 725 782 // ------------------------------------------- << 783 726 784 void G4MagInt_Driver::PrintStatus( const G4dou << 727 785 G4dou << 728 void G4MagInt_Driver::PrintStatus( const G4double* StartArr, 786 const G4dou << 729 G4double xstart, 787 G4dou << 730 const G4double* CurrentArr, 788 G4dou << 731 G4double xcurrent, 789 G4int << 732 G4double requestStep, >> 733 G4int subStepNo) 790 // Potentially add as arguments: 734 // Potentially add as arguments: 791 // <dydx> 735 // <dydx> - as Initial Force 792 // stepTaken 736 // stepTaken(hdid) - last step taken 793 // nextStep 737 // nextStep (hnext) - proposal for size 794 { 738 { 795 G4FieldTrack StartFT(G4ThreeVector(0,0,0), << 739 G4FieldTrack StartFT(G4ThreeVector(0,0,0), G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 796 G4ThreeVector(0,0,0), 0., 0., << 797 G4FieldTrack CurrentFT (StartFT); 740 G4FieldTrack CurrentFT (StartFT); 798 741 799 StartFT.LoadFromArray( StartArr, fNoIntegra << 742 StartFT.LoadFromArray( StartArr); 800 StartFT.SetCurveLength( xstart); 743 StartFT.SetCurveLength( xstart); 801 CurrentFT.LoadFromArray( CurrentArr, fNoInt << 744 CurrentFT.LoadFromArray( CurrentArr); 802 CurrentFT.SetCurveLength( xcurrent ); 745 CurrentFT.SetCurveLength( xcurrent ); 803 746 804 PrintStatus(StartFT, CurrentFT, requestStep 747 PrintStatus(StartFT, CurrentFT, requestStep, subStepNo ); 805 } 748 } 806 749 807 // ------------------------------------------- << 808 750 809 void G4MagInt_Driver::PrintStatus(const G4Fiel << 751 810 const G4Fiel << 752 void G4MagInt_Driver::PrintStatus( 811 G4doub << 753 const G4FieldTrack& StartFT, 812 G4int << 754 const G4FieldTrack& CurrentFT, >> 755 G4double requestStep, >> 756 // G4double safety, >> 757 G4int subStepNo) 813 { 758 { 814 G4int verboseLevel= fVerboseLevel; 759 G4int verboseLevel= fVerboseLevel; 815 const G4int noPrecision = 5; << 760 static G4int noPrecision= 5; 816 G4long oldPrec= G4cout.precision(noPrecisi << 761 G4int oldPrec= G4cout.precision(noPrecision); 817 // G4cout.setf(ios_base::fixed,ios_base::f 762 // G4cout.setf(ios_base::fixed,ios_base::floatfield); 818 763 819 const G4ThreeVector StartPosition= S << 764 const G4ThreeVector StartPosition= StartFT.GetPosition(); 820 const G4ThreeVector StartUnitVelocity= S << 765 const G4ThreeVector StartUnitVelocity= StartFT.GetMomentumDir(); 821 const G4ThreeVector CurrentPosition= C << 766 const G4ThreeVector CurrentPosition= CurrentFT.GetPosition(); 822 const G4ThreeVector CurrentUnitVelocity= C << 767 const G4ThreeVector CurrentUnitVelocity= CurrentFT.GetMomentumDir(); 823 768 824 G4double DotStartCurrentVeloc= StartUnitV 769 G4double DotStartCurrentVeloc= StartUnitVelocity.dot(CurrentUnitVelocity); 825 770 826 G4double step_len= CurrentFT.GetCurveLengt << 771 G4double step_len= CurrentFT.GetCurveLength() >> 772 - StartFT.GetCurveLength(); 827 G4double subStepSize = step_len; 773 G4double subStepSize = step_len; 828 774 829 if( (subStepNo <= 1) || (verboseLevel > 3) << 775 if( (subStepNo <= 0) && (verboseLevel <= 3) ) 830 { 776 { 831 subStepNo = - subStepNo; // To a 777 subStepNo = - subStepNo; // To allow printing banner 832 778 833 G4cout << std::setw( 6) << " " << std: << 779 G4cout << std::setw( 6) << " " 834 << " G4MagInt_Driver: Current Po << 780 << std::setw( 25) << " G4MagInt_Driver: Current Position and Direction" << " " 835 << G4endl; << 781 << G4endl; 836 G4cout << std::setw( 5) << "Step#" << " 782 G4cout << std::setw( 5) << "Step#" << " " 837 << std::setw( 7) << "s-curve" << << 783 << std::setw( 7) << "s-curve" << " " 838 << std::setw( 9) << "X(mm)" << " << 784 << std::setw( 9) << "X(mm)" << " " 839 << std::setw( 9) << "Y(mm)" << " << 785 << std::setw( 9) << "Y(mm)" << " " 840 << std::setw( 9) << "Z(mm)" << " << 786 << std::setw( 9) << "Z(mm)" << " " 841 << std::setw( 8) << " N_x " << " << 787 << std::setw( 8) << " N_x " << " " 842 << std::setw( 8) << " N_y " << " << 788 << std::setw( 8) << " N_y " << " " 843 << std::setw( 8) << " N_z " << " << 789 << std::setw( 8) << " N_z " << " " 844 << std::setw( 8) << " N^2-1 " << << 790 << std::setw( 7) << " N^2-1 " << " " 845 << std::setw(10) << " N(0).N " < << 791 << std::setw(10) << " N(0).N " << " " 846 << std::setw( 7) << "KinEner " < << 792 << std::setw( 7) << "KinEner " << " " 847 << std::setw(12) << "Track-l" << << 793 << std::setw(12) << "Track-l" << " " // Add the Sub-step ?? 848 << std::setw(12) << "Step-len" < << 794 << std::setw(12) << "Step-len" << " " 849 << std::setw(12) << "Step-len" < << 795 << std::setw(12) << "Step-len" << " " 850 << std::setw( 9) << "ReqStep" << << 796 << std::setw( 9) << "ReqStep" << " " 851 << G4endl; << 797 << G4endl; 852 } << 798 853 << 799 PrintStat_Aux( StartFT, requestStep, 0., 854 if( (subStepNo <= 0) ) << 800 0, 0.0, 1.0); 855 { << 801 //************* 856 PrintStat_Aux( StartFT, requestStep, 0. << 857 0, 0.0, << 858 } 802 } 859 803 860 if( verboseLevel <= 3 ) 804 if( verboseLevel <= 3 ) 861 { 805 { 862 G4cout.precision(noPrecision); << 806 G4cout.precision(noPrecision); 863 PrintStat_Aux( CurrentFT, requestStep, s << 807 PrintStat_Aux( CurrentFT, requestStep, step_len, 864 subStepNo, subStepSize, D << 808 subStepNo, subStepSize, DotStartCurrentVeloc ); 865 } << 809 //************* >> 810 } >> 811 >> 812 else // if( verboseLevel > 3 ) >> 813 { >> 814 // Multi-line output >> 815 >> 816 // G4cout << "Current Position is " << CurrentPosition << G4endl >> 817 // << " and UnitVelocity is " << CurrentUnitVelocity << G4endl; >> 818 // G4cout << "Step taken was " << step_len >> 819 // << " out of PhysicalStep= " << requestStep << G4endl; >> 820 // G4cout << "Final safety is: " << safety << G4endl; 866 821 >> 822 // G4cout << "Chord length = " << (CurrentPosition-StartPosition).mag() << G4endl; >> 823 // G4cout << G4endl; >> 824 } 867 G4cout.precision(oldPrec); 825 G4cout.precision(oldPrec); 868 } 826 } 869 827 870 // ------------------------------------------- << 828 void G4MagInt_Driver::PrintStat_Aux( 871 << 829 const G4FieldTrack& aFieldTrack, 872 void G4MagInt_Driver::PrintStat_Aux(const G4Fi << 830 G4double requestStep, 873 G4do << 831 G4double step_len, 874 G4do << 832 G4int subStepNo, 875 G4in << 833 G4double subStepSize, 876 G4do << 834 G4double dotVeloc_StartCurr) 877 G4do << 878 { 835 { 879 const G4ThreeVector Position = aFieldTrack << 836 const G4ThreeVector Position= aFieldTrack.GetPosition(); 880 const G4ThreeVector UnitVelocity = aFieldT << 837 const G4ThreeVector UnitVelocity= aFieldTrack.GetMomentumDir(); 881 838 882 if( subStepNo >= 0) 839 if( subStepNo >= 0) 883 { << 884 G4cout << std::setw( 5) << subStepNo << 840 G4cout << std::setw( 5) << subStepNo << " "; 885 } << 886 else 841 else 887 { << 888 G4cout << std::setw( 5) << "Start" << " 842 G4cout << std::setw( 5) << "Start" << " "; 889 } << 890 G4double curveLen= aFieldTrack.GetCurveLen 843 G4double curveLen= aFieldTrack.GetCurveLength(); 891 G4cout << std::setw( 7) << curveLen; 844 G4cout << std::setw( 7) << curveLen; 892 G4cout << std::setw( 9) << Position.x() << 845 G4cout << std::setw( 9) << Position.x() << " " 893 << std::setw( 9) << Position.y() << << 846 << std::setw( 9) << Position.y() << " " 894 << std::setw( 9) << Position.z() << << 847 << std::setw( 9) << Position.z() << " " 895 << std::setw( 8) << UnitVelocity.x( << 848 << std::setw( 8) << UnitVelocity.x() << " " 896 << std::setw( 8) << UnitVelocity.y( << 849 << std::setw( 8) << UnitVelocity.y() << " " 897 << std::setw( 8) << UnitVelocity.z( << 850 << std::setw( 8) << UnitVelocity.z() << " "; 898 G4long oldprec= G4cout.precision(3); << 851 G4int oldprec= G4cout.precision(3); 899 G4cout << std::setw( 8) << UnitVelocity.ma << 852 G4cout << std::setw( 7) << UnitVelocity.mag2()-1.0 << " "; 900 G4cout.precision(6); 853 G4cout.precision(6); 901 G4cout << std::setw(10) << dotVeloc_StartC 854 G4cout << std::setw(10) << dotVeloc_StartCurr << " "; 902 G4cout.precision(oldprec); 855 G4cout.precision(oldprec); 903 G4cout << std::setw( 7) << aFieldTrack.Get 856 G4cout << std::setw( 7) << aFieldTrack.GetKineticEnergy(); 904 G4cout << std::setw(12) << step_len << " " 857 G4cout << std::setw(12) << step_len << " "; 905 858 906 static G4ThreadLocal G4double oldCurveLeng << 859 static G4double oldCurveLength= 0.0; 907 static G4ThreadLocal G4double oldSubStepLe << 860 static G4double oldSubStepLength= 0.0; 908 static G4ThreadLocal G4int oldSubStepNo = << 861 static int oldSubStepNo= -1; 909 862 910 G4double subStep_len = 0.0; << 863 G4double subStep_len=0.0; 911 if( curveLen > oldCurveLength ) 864 if( curveLen > oldCurveLength ) 912 { << 865 subStep_len= curveLen - oldCurveLength; 913 subStep_len= curveLen - oldCurveLength; << 914 } << 915 else if (subStepNo == oldSubStepNo) 866 else if (subStepNo == oldSubStepNo) 916 { << 867 subStep_len= oldSubStepLength; 917 subStep_len= oldSubStepLength; << 868 // else subStepLen_NotAvail; 918 } << 919 oldCurveLength= curveLen; 869 oldCurveLength= curveLen; 920 oldSubStepLength= subStep_len; 870 oldSubStepLength= subStep_len; 921 871 922 G4cout << std::setw(12) << subStep_len << 872 G4cout << std::setw(12) << subStep_len << " "; 923 G4cout << std::setw(12) << subStepSize << 873 G4cout << std::setw(12) << subStepSize << " "; 924 if( requestStep != -1.0 ) << 874 if( requestStep != -1.0 ) 925 { << 875 G4cout << std::setw( 9) << requestStep << " "; 926 G4cout << std::setw( 9) << requestStep < << 927 } << 928 else 876 else 929 { << 877 G4cout << std::setw( 9) << " InitialStep " << " "; 930 G4cout << std::setw( 9) << " InitialSte << 878 // G4cout << std::setw(12) << safety << " "; 931 } << 932 G4cout << G4endl; 879 G4cout << G4endl; 933 } 880 } 934 881 935 // ------------------------------------------- << 936 << 937 void G4MagInt_Driver::PrintStatisticsReport() 882 void G4MagInt_Driver::PrintStatisticsReport() 938 { 883 { 939 G4int noPrecBig = 6; << 884 G4int noPrecBig= 6; 940 G4long oldPrec = G4cout.precision(noPrecBig) << 885 G4int oldPrec= G4cout.precision(noPrecBig); 941 886 942 G4cout << "G4MagInt_Driver Statistics of ste 887 G4cout << "G4MagInt_Driver Statistics of steps undertaken. " << G4endl; 943 G4cout << "G4MagInt_Driver: Number of Steps: 888 G4cout << "G4MagInt_Driver: Number of Steps: " 944 << " Total= " << fNoTotalSteps << 889 << " Total= " << fNoTotalSteps 945 << " Bad= " << fNoBadSteps 890 << " Bad= " << fNoBadSteps 946 << " Small= " << fNoSmallSteps 891 << " Small= " << fNoSmallSteps 947 << " Non-initial small= " << (fNoSmal << 892 << " Non-initial small= " << (fNoSmallSteps-fNoInitialSmallSteps) 948 << G4endl; << 893 << G4endl; 949 G4cout.precision(oldPrec); << 950 } << 951 << 952 // ------------------------------------------- << 953 << 954 void G4MagInt_Driver::SetSmallestFraction(G4do << 955 { << 956 if( (newFraction > 1.e-16) && (newFraction < << 957 { << 958 fSmallestFraction= newFraction; << 959 } << 960 else << 961 { << 962 std::ostringstream message; << 963 message << "Smallest Fraction not changed. << 964 << " Proposed value was " << newF << 965 << " Value must be between 1.e-8 << 966 G4Exception("G4MagInt_Driver::SetSmallestF << 967 "GeomField1001", JustWarning, << 968 } << 969 } << 970 << 971 void G4MagInt_Driver:: << 972 GetDerivatives(const G4FieldTrack& y_curr, G4d << 973 { << 974 G4double ytemp[G4FieldTrack::ncompSVEC]; << 975 y_curr.DumpToArray(ytemp); << 976 pIntStepper->RightHandSide(ytemp, dydx); << 977 // Avoid virtual call for GetStepper << 978 // Was: GetStepper()->ComputeRightHandSi << 979 } << 980 << 981 void G4MagInt_Driver::GetDerivatives(const G4F << 982 G4double << 983 G4double << 984 { << 985 G4double ytemp[G4FieldTrack::ncompSVEC]; << 986 track.DumpToArray(ytemp); << 987 pIntStepper->RightHandSide(ytemp, dydx, fi << 988 } << 989 << 990 G4EquationOfMotion* G4MagInt_Driver::GetEquati << 991 { << 992 return pIntStepper->GetEquationOfMotion(); << 993 } << 994 << 995 void G4MagInt_Driver::SetEquationOfMotion(G4Eq << 996 { << 997 pIntStepper->SetEquationOfMotion(equation) << 998 } << 999 894 1000 const G4MagIntegratorStepper* G4MagInt_Driver << 895 #ifdef G4FLD_STATS 1001 { << 896 G4cout << "MID dyerr: " 1002 return pIntStepper; << 897 << " maximum= " << fDyerr_max 1003 } << 898 // << " 2nd max= " << fDyerr_mx2 >> 899 << " Sum small= " << fDyerrPos_smTot >> 900 << " sqrt(Sum large^2): pos= " << sqrt(fDyerrPos_lgTot) >> 901 << " vel= " << sqrt( fDyerrVel_lgTot ) >> 902 << " Total h-distance: small= " << fSumH_sm >> 903 << " large= " << fSumH_lg >> 904 << G4endl; >> 905 >> 906 #if 0 >> 907 G4int noPrecSmall=4; >> 908 // Single line precis of statistics ... optional >> 909 G4cout.precision(noPrecSmall); >> 910 G4cout << "MIDnums: " << fMinimumStep >> 911 << " " << fNoTotalSteps >> 912 << " " << fNoSmallSteps >> 913 << " " << fNoSmallSteps-fNoInitialSmallSteps >> 914 << " " << fNoBadSteps >> 915 << " " << fDyerr_max >> 916 << " " << fDyerr_mx2 >> 917 << " " << fDyerrPos_smTot >> 918 << " " << fSumH_sm >> 919 << " " << fDyerrPos_lgTot >> 920 << " " << fDyerrVel_lgTot >> 921 << " " << fSumH_lg >> 922 << G4endl; >> 923 #endif >> 924 #endif 1004 925 1005 G4MagIntegratorStepper* G4MagInt_Driver::GetS << 926 G4cout.precision(oldPrec); 1006 { << 1007 return pIntStepper; << 1008 } << 1009 << 1010 void G4MagInt_Driver:: << 1011 RenewStepperAndAdjust(G4MagIntegratorStepper* << 1012 { << 1013 pIntStepper = pItsStepper; << 1014 ReSetParameters(); << 1015 } << 1016 << 1017 void G4MagInt_Driver::StreamInfo( std::ostrea << 1018 { << 1019 os << "State of G4MagInt_Driver: " << std << 1020 os << " Max number of Steps = " << fMaxN << 1021 << " (base # = " << fMaxStepBase << << 1022 os << " Safety factor = " << safet << 1023 os << " Power - shrink = " << pshrn << 1024 os << " Power - grow = " << pgrow << 1025 os << " threshold (errcon) = " << errco << 1026 << 1027 os << " fMinimumStep = " << fMini << 1028 os << " Smallest Fraction = " << fSmal << 1029 << 1030 os << " No Integrat Vars = " << fNoIn << 1031 os << " Min No Vars = " << fMinN << 1032 os << " Num-Vars = " << fNoVa << 1033 << 1034 os << " verbose level = " << fVerb << 1035 os << " Reintegrates = " << DoesR << 1036 } << 1037 << 1038 void PrintInfo( const G4MagInt_Driver & magDr << 1039 { << 1040 os << "State of G4MagInt_Driver: " << std << 1041 os << " Max number of Steps = " << magDr << 1042 // << " (base # = " << magDrv.fMaxSt << 1043 os << " Safety factor = " << magDr << 1044 os << " Power - shrink = " << magDr << 1045 os << " Power - grow = " << magDr << 1046 os << " threshold (errcon) = " << magDr << 1047 << 1048 os << " fMinimumStep = " << magDr << 1049 os << " Smallest Fraction = " << magDr << 1050 << 1051 /***** << 1052 os << " No Integrat Vars = " << magDr << 1053 os << " Min No Vars = " << magDr << 1054 os << " Num-Vars = " << magDr << 1055 *****/ << 1056 os << " verbose level = " << magDr << 1057 os << " Reintegrates = " << magDr << 1058 } 927 } 1059 928