Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4MagInt_Driver implementation 26 // G4MagInt_Driver implementation 27 // 27 // 28 // V.Grichine, 07.10.1996 - Created 28 // V.Grichine, 07.10.1996 - Created 29 // W.Wander, 28.01.1998 - Added ability for lo 29 // W.Wander, 28.01.1998 - Added ability for low order integrators 30 // J.Apostolakis, 08.11.2001 - Respect minimum 30 // J.Apostolakis, 08.11.2001 - Respect minimum step in AccurateAdvance 31 // ------------------------------------------- 31 // -------------------------------------------------------------------- 32 32 33 #include <iomanip> 33 #include <iomanip> 34 34 35 #include "globals.hh" 35 #include "globals.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4GeometryTolerance.hh" 37 #include "G4GeometryTolerance.hh" 38 #include "G4MagIntegratorDriver.hh" 38 #include "G4MagIntegratorDriver.hh" 39 #include "G4FieldTrack.hh" 39 #include "G4FieldTrack.hh" 40 40 41 #ifdef G4DEBUG_FIELD 41 #ifdef G4DEBUG_FIELD 42 #include "G4DriverReporter.hh" 42 #include "G4DriverReporter.hh" 43 #endif 43 #endif 44 44 45 // ------------------------------------------- 45 // --------------------------------------------------------- 46 46 47 // Constructor 47 // Constructor 48 // 48 // 49 G4MagInt_Driver::G4MagInt_Driver( G4double 49 G4MagInt_Driver::G4MagInt_Driver( G4double hminimum, 50 G4MagIntegra 50 G4MagIntegratorStepper* pStepper, 51 G4int 51 G4int numComponents, 52 G4int 52 G4int statisticsVerbose) 53 : fNoIntegrationVariables(numComponents), 53 : fNoIntegrationVariables(numComponents), 54 fNoVars( std::max( fNoIntegrationVariables 54 fNoVars( std::max( fNoIntegrationVariables, fMinNoVars )), 55 fStatisticsVerboseLevel(statisticsVerbose) 55 fStatisticsVerboseLevel(statisticsVerbose) 56 { 56 { 57 // In order to accomodate "Laboratory Time", 57 // In order to accomodate "Laboratory Time", which is [7], fMinNoVars=8 58 // is required. For proper time of flight an 58 // is required. For proper time of flight and spin, fMinNoVars must be 12 59 59 60 RenewStepperAndAdjust( pStepper ); 60 RenewStepperAndAdjust( pStepper ); 61 fMinimumStep = hminimum; 61 fMinimumStep = hminimum; 62 62 63 fMaxNoSteps = fMaxStepBase / pIntStepper->In 63 fMaxNoSteps = fMaxStepBase / pIntStepper->IntegratorOrder(); 64 #ifdef G4DEBUG_FIELD 64 #ifdef G4DEBUG_FIELD 65 fVerboseLevel=2; 65 fVerboseLevel=2; 66 #endif 66 #endif 67 67 68 if( (fVerboseLevel > 0) || (fStatisticsVerbo 68 if( (fVerboseLevel > 0) || (fStatisticsVerboseLevel > 1) ) 69 { 69 { 70 G4cout << "MagIntDriver version: Accur-Adv 70 G4cout << "MagIntDriver version: Accur-Adv: " 71 << "invE_nS, QuickAdv-2sqrt with St 71 << "invE_nS, QuickAdv-2sqrt with Statistics " 72 #ifdef G4FLD_STATS 72 #ifdef G4FLD_STATS 73 << " enabled " 73 << " enabled " 74 #else 74 #else 75 << " disabled " 75 << " disabled " 76 #endif 76 #endif 77 << G4endl; 77 << G4endl; 78 } 78 } 79 } 79 } 80 80 81 // ------------------------------------------- 81 // --------------------------------------------------------- 82 82 83 // Destructor 83 // Destructor 84 // 84 // 85 G4MagInt_Driver::~G4MagInt_Driver() 85 G4MagInt_Driver::~G4MagInt_Driver() 86 { 86 { 87 if( fStatisticsVerboseLevel > 1 ) 87 if( fStatisticsVerboseLevel > 1 ) 88 { 88 { 89 PrintStatisticsReport(); 89 PrintStatisticsReport(); 90 } 90 } 91 } 91 } 92 92 93 // ------------------------------------------- 93 // --------------------------------------------------------- 94 94 95 G4bool 95 G4bool 96 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& 96 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& y_current, 97 G4double 97 G4double hstep, 98 G4double 98 G4double eps, 99 G4double 99 G4double hinitial ) 100 { 100 { 101 // Runge-Kutta driver with adaptive stepsize 101 // Runge-Kutta driver with adaptive stepsize control. Integrate starting 102 // values at y_current over hstep x2 with ac 102 // values at y_current over hstep x2 with accuracy eps. 103 // On output ystart is replaced by values at 103 // On output ystart is replaced by values at the end of the integration 104 // interval. RightHandSide is the right-hand 104 // interval. RightHandSide is the right-hand side of ODE system. 105 // The source is similar to odeint routine f 105 // The source is similar to odeint routine from NRC p.721-722 . 106 106 107 G4int nstp, i; 107 G4int nstp, i; 108 G4double x, hnext, hdid, h; 108 G4double x, hnext, hdid, h; 109 109 110 #ifdef G4DEBUG_FIELD 110 #ifdef G4DEBUG_FIELD 111 G4int no_warnings = 0; 111 G4int no_warnings = 0; 112 static G4int dbg = 1; 112 static G4int dbg = 1; 113 static G4int nStpPr = 50; // For debug pri 113 static G4int nStpPr = 50; // For debug printing of long integrations 114 G4double ySubStepStart[G4FieldTrack::ncompSV 114 G4double ySubStepStart[G4FieldTrack::ncompSVEC]; 115 G4FieldTrack yFldTrkStart(y_current); 115 G4FieldTrack yFldTrkStart(y_current); 116 #endif 116 #endif 117 117 118 G4double y[G4FieldTrack::ncompSVEC] = {0., 0 << 118 G4double y[G4FieldTrack::ncompSVEC], dydx[G4FieldTrack::ncompSVEC]; 119 G4double dydx[G4FieldTrack::ncompSVEC] = {0. << 119 G4double ystart[G4FieldTrack::ncompSVEC], yEnd[G4FieldTrack::ncompSVEC]; 120 G4double ystart[G4FieldTrack::ncompSVEC] = { << 121 G4double yEnd[G4FieldTrack::ncompSVEC] = {0. << 122 G4double x1, x2; 120 G4double x1, x2; 123 G4bool succeeded = true; 121 G4bool succeeded = true; 124 122 125 G4double startCurveLength; 123 G4double startCurveLength; 126 124 127 const G4int nvar = fNoVars; 125 const G4int nvar = fNoVars; 128 126 129 G4FieldTrack yStartFT(y_current); 127 G4FieldTrack yStartFT(y_current); 130 128 131 // Ensure that hstep > 0 129 // Ensure that hstep > 0 132 // 130 // 133 if( hstep <= 0.0 ) 131 if( hstep <= 0.0 ) 134 { 132 { 135 if( hstep == 0.0 ) 133 if( hstep == 0.0 ) 136 { 134 { 137 std::ostringstream message; 135 std::ostringstream message; 138 message << "Proposed step is zero; hstep 136 message << "Proposed step is zero; hstep = " << hstep << " !"; 139 G4Exception("G4MagInt_Driver::AccurateAd 137 G4Exception("G4MagInt_Driver::AccurateAdvance()", 140 "GeomField1001", JustWarning 138 "GeomField1001", JustWarning, message); 141 return succeeded; 139 return succeeded; 142 } 140 } 143 141 144 std::ostringstream message; 142 std::ostringstream message; 145 message << "Invalid run condition." << G4e 143 message << "Invalid run condition." << G4endl 146 << "Proposed step is negative; hst 144 << "Proposed step is negative; hstep = " << hstep << "." << G4endl 147 << "Requested step cannot be negat 145 << "Requested step cannot be negative! Aborting event."; 148 G4Exception("G4MagInt_Driver::AccurateAdva 146 G4Exception("G4MagInt_Driver::AccurateAdvance()", 149 "GeomField0003", EventMustBeAb 147 "GeomField0003", EventMustBeAborted, message); 150 return false; 148 return false; 151 } 149 } 152 150 153 y_current.DumpToArray( ystart ); 151 y_current.DumpToArray( ystart ); 154 152 155 startCurveLength= y_current.GetCurveLength() 153 startCurveLength= y_current.GetCurveLength(); 156 x1= startCurveLength; 154 x1= startCurveLength; 157 x2= x1 + hstep; 155 x2= x1 + hstep; 158 156 159 if ( (hinitial > 0.0) && (hinitial < hstep) 157 if ( (hinitial > 0.0) && (hinitial < hstep) 160 && (hinitial > perMillion * hstep) ) 158 && (hinitial > perMillion * hstep) ) 161 { 159 { 162 h = hinitial; 160 h = hinitial; 163 } 161 } 164 else // Initial Step size "h" defaults to 162 else // Initial Step size "h" defaults to the full interval 165 { 163 { 166 h = hstep; 164 h = hstep; 167 } 165 } 168 166 169 x = x1; 167 x = x1; 170 168 171 for ( i=0; i<nvar; ++i) { y[i] = ystart[i]; 169 for ( i=0; i<nvar; ++i) { y[i] = ystart[i]; } 172 170 173 G4bool lastStep= false; 171 G4bool lastStep= false; 174 nstp = 1; 172 nstp = 1; 175 173 176 do 174 do 177 { 175 { 178 G4ThreeVector StartPos( y[0], y[1], y[2] ) 176 G4ThreeVector StartPos( y[0], y[1], y[2] ); 179 177 180 #ifdef G4DEBUG_FIELD 178 #ifdef G4DEBUG_FIELD 181 G4double xSubStepStart= x; 179 G4double xSubStepStart= x; 182 for (i=0; i<nvar; ++i) { ySubStepStart[i] 180 for (i=0; i<nvar; ++i) { ySubStepStart[i] = y[i]; } 183 yFldTrkStart.LoadFromArray(y, fNoIntegrati 181 yFldTrkStart.LoadFromArray(y, fNoIntegrationVariables); 184 yFldTrkStart.SetCurveLength(x); 182 yFldTrkStart.SetCurveLength(x); 185 #endif 183 #endif 186 184 187 pIntStepper->RightHandSide( y, dydx ); 185 pIntStepper->RightHandSide( y, dydx ); 188 ++fNoTotalSteps; 186 ++fNoTotalSteps; 189 187 190 // Perform the Integration 188 // Perform the Integration 191 // 189 // 192 if( h > fMinimumStep ) 190 if( h > fMinimumStep ) 193 { 191 { 194 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; 192 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; 195 //-------------------------------------- 193 //-------------------------------------- 196 #ifdef G4DEBUG_FIELD 194 #ifdef G4DEBUG_FIELD 197 if (dbg>2) 195 if (dbg>2) 198 { 196 { 199 // PrintStatus( ySubStepStart, xSubSt 197 // PrintStatus( ySubStepStart, xSubStepStart, y, x, h, nstp); // Only 200 G4DriverReporter::PrintStatus( ySubSte 198 G4DriverReporter::PrintStatus( ySubStepStart, xSubStepStart, y, x, h, nstp, nvar); 201 } 199 } 202 #endif 200 #endif 203 } 201 } 204 else 202 else 205 { 203 { 206 G4FieldTrack yFldTrk( G4ThreeVector(0,0, 204 G4FieldTrack yFldTrk( G4ThreeVector(0,0,0), 207 G4ThreeVector(0,0, 205 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 208 G4double dchord_step, dyerr, dyerr_len; 206 G4double dchord_step, dyerr, dyerr_len; // What to do with these ? 209 yFldTrk.LoadFromArray(y, fNoIntegrationV 207 yFldTrk.LoadFromArray(y, fNoIntegrationVariables); 210 yFldTrk.SetCurveLength( x ); 208 yFldTrk.SetCurveLength( x ); 211 209 212 QuickAdvance( yFldTrk, dydx, h, dchord_s 210 QuickAdvance( yFldTrk, dydx, h, dchord_step, dyerr_len ); 213 //-------------------------------------- 211 //----------------------------------------------------- 214 212 215 yFldTrk.DumpToArray(y); 213 yFldTrk.DumpToArray(y); 216 214 217 #ifdef G4FLD_STATS 215 #ifdef G4FLD_STATS 218 ++fNoSmallSteps; 216 ++fNoSmallSteps; 219 if ( dyerr_len > fDyerr_max ) { fDyerr_ 217 if ( dyerr_len > fDyerr_max ) { fDyerr_max = dyerr_len; } 220 fDyerrPos_smTot += dyerr_len; 218 fDyerrPos_smTot += dyerr_len; 221 fSumH_sm += h; // Length total for 'sma 219 fSumH_sm += h; // Length total for 'small' steps 222 if (nstp==1) { ++fNoInitialSmallSteps; 220 if (nstp==1) { ++fNoInitialSmallSteps; } 223 #endif 221 #endif 224 #ifdef G4DEBUG_FIELD 222 #ifdef G4DEBUG_FIELD 225 if (dbg>1) 223 if (dbg>1) 226 { 224 { 227 if(fNoSmallSteps<2) { PrintStatus(ySub 225 if(fNoSmallSteps<2) { PrintStatus(ySubStepStart, x1, y, x, h, -nstp); } 228 G4cout << "Another sub-min step, no " 226 G4cout << "Another sub-min step, no " << fNoSmallSteps 229 << " of " << fNoTotalSteps << " 227 << " of " << fNoTotalSteps << " this time " << nstp << G4endl; 230 PrintStatus( ySubStepStart, x1, y, x, 228 PrintStatus( ySubStepStart, x1, y, x, h, nstp); // Only this 231 G4cout << " dyerr= " << dyerr_len << " 229 G4cout << " dyerr= " << dyerr_len << " relative = " << dyerr_len / h 232 << " epsilon= " << eps << " hst 230 << " epsilon= " << eps << " hstep= " << hstep 233 << " h= " << h << " hmin= " << 231 << " h= " << h << " hmin= " << fMinimumStep << G4endl; 234 } 232 } 235 #endif 233 #endif 236 if( h == 0.0 ) 234 if( h == 0.0 ) 237 { 235 { 238 G4Exception("G4MagInt_Driver::Accurate 236 G4Exception("G4MagInt_Driver::AccurateAdvance()", 239 "GeomField0003", FatalExce 237 "GeomField0003", FatalException, 240 "Integration Step became Z 238 "Integration Step became Zero!"); 241 } 239 } 242 dyerr = dyerr_len / h; 240 dyerr = dyerr_len / h; 243 hdid = h; 241 hdid = h; 244 x += hdid; 242 x += hdid; 245 243 246 // Compute suggested new step 244 // Compute suggested new step 247 hnext = ComputeNewStepSize( dyerr/eps, h 245 hnext = ComputeNewStepSize( dyerr/eps, h); 248 } 246 } 249 247 250 G4ThreeVector EndPos( y[0], y[1], y[2] ); 248 G4ThreeVector EndPos( y[0], y[1], y[2] ); 251 249 252 #ifdef G4DEBUG_FIELD 250 #ifdef G4DEBUG_FIELD 253 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) 251 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) 254 { 252 { 255 if( nstp==nStpPr ) { G4cout << "***** M 253 if( nstp==nStpPr ) { G4cout << "***** Many steps ****" << G4endl; } 256 G4cout << "MagIntDrv: " ; 254 G4cout << "MagIntDrv: " ; 257 G4cout << "hdid=" << std::setw(12) << h 255 G4cout << "hdid=" << std::setw(12) << hdid << " " 258 << "hnext=" << std::setw(12) << h 256 << "hnext=" << std::setw(12) << hnext << " " 259 << "hstep=" << std::setw(12) << h 257 << "hstep=" << std::setw(12) << hstep << " (requested) " 260 << G4endl; 258 << G4endl; 261 PrintStatus( ystart, x1, y, x, h, (nstp= 259 PrintStatus( ystart, x1, y, x, h, (nstp==nStpPr) ? -nstp: nstp); 262 } 260 } 263 #endif 261 #endif 264 262 265 // Check the endpoint 263 // Check the endpoint 266 G4double endPointDist= (EndPos-StartPos).m 264 G4double endPointDist= (EndPos-StartPos).mag(); 267 if ( endPointDist >= hdid*(1.+perMillion) 265 if ( endPointDist >= hdid*(1.+perMillion) ) 268 { 266 { 269 ++fNoBadSteps; 267 ++fNoBadSteps; 270 268 271 // Issue a warning only for gross differ 269 // Issue a warning only for gross differences - 272 // we understand how small difference oc 270 // we understand how small difference occur. 273 if ( endPointDist >= hdid*(1.+perThousan 271 if ( endPointDist >= hdid*(1.+perThousand) ) 274 { 272 { 275 #ifdef G4DEBUG_FIELD 273 #ifdef G4DEBUG_FIELD 276 if (dbg) 274 if (dbg) 277 { 275 { 278 WarnEndPointTooFar ( endPointDist, h 276 WarnEndPointTooFar ( endPointDist, hdid, eps, dbg ); 279 G4cerr << " Total steps: bad " << 277 G4cerr << " Total steps: bad " << fNoBadSteps 280 << " current h= " << hdid << 278 << " current h= " << hdid << G4endl; 281 PrintStatus( ystart, x1, y, x, hstep 279 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 282 } 280 } 283 ++no_warnings; 281 ++no_warnings; 284 #endif 282 #endif 285 } 283 } 286 } 284 } 287 285 288 // Avoid numerous small last steps 286 // Avoid numerous small last steps 289 if( (h < eps * hstep) || (h < fSmallestFra 287 if( (h < eps * hstep) || (h < fSmallestFraction * startCurveLength) ) 290 { 288 { 291 // No more integration -- the next step 289 // No more integration -- the next step will not happen 292 lastStep = true; 290 lastStep = true; 293 } 291 } 294 else 292 else 295 { 293 { 296 // Check the proposed next stepsize 294 // Check the proposed next stepsize 297 if(std::fabs(hnext) <= Hmin()) 295 if(std::fabs(hnext) <= Hmin()) 298 { 296 { 299 #ifdef G4DEBUG_FIELD 297 #ifdef G4DEBUG_FIELD 300 // If simply a very small interval is 298 // If simply a very small interval is being integrated, do not warn 301 if( (x < x2 * (1-eps) ) && // T 299 if( (x < x2 * (1-eps) ) && // The last step can be small: OK 302 (std::fabs(hstep) > Hmin()) ) // a 300 (std::fabs(hstep) > Hmin()) ) // and if we are asked, it's OK 303 { 301 { 304 if(dbg>0) 302 if(dbg>0) 305 { 303 { 306 WarnSmallStepSize( hnext, hstep, h 304 WarnSmallStepSize( hnext, hstep, h, x-x1, nstp ); 307 PrintStatus( ystart, x1, y, x, hst 305 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 308 } 306 } 309 ++no_warnings; 307 ++no_warnings; 310 } 308 } 311 #endif 309 #endif 312 // Make sure that the next step is at 310 // Make sure that the next step is at least Hmin. 313 h = Hmin(); 311 h = Hmin(); 314 } 312 } 315 else 313 else 316 { 314 { 317 h = hnext; 315 h = hnext; 318 } 316 } 319 317 320 // Ensure that the next step does not o 318 // Ensure that the next step does not overshoot 321 if ( x+h > x2 ) 319 if ( x+h > x2 ) 322 { // When stepsize oversh 320 { // When stepsize overshoots, decrease it! 323 h = x2 - x ; // Must cope with diffi 321 h = x2 - x ; // Must cope with difficult rounding-error 324 } // issues if hstep << x 322 } // issues if hstep << x2 325 323 326 if ( h == 0.0 ) 324 if ( h == 0.0 ) 327 { 325 { 328 // Cannot progress - accept this as la 326 // Cannot progress - accept this as last step - by default 329 lastStep = true; 327 lastStep = true; 330 #ifdef G4DEBUG_FIELD 328 #ifdef G4DEBUG_FIELD 331 if (dbg>2) 329 if (dbg>2) 332 { 330 { 333 int prec= G4cout.precision(12); 331 int prec= G4cout.precision(12); 334 G4cout << "Warning: G4MagIntegratorD 332 G4cout << "Warning: G4MagIntegratorDriver::AccurateAdvance" 335 << G4endl 333 << G4endl 336 << " Integration step 'h' be 334 << " Integration step 'h' became " 337 << h << " due to roundoff. " 335 << h << " due to roundoff. " << G4endl 338 << " Calculated as difference 336 << " Calculated as difference of x2= "<< x2 << " and x=" << x 339 << " Forcing termination of 337 << " Forcing termination of advance." << G4endl; 340 G4cout.precision(prec); 338 G4cout.precision(prec); 341 } 339 } 342 #endif 340 #endif 343 } 341 } 344 } 342 } 345 } while ( ((++nstp)<=fMaxNoSteps) && (x < x2 343 } while ( ((++nstp)<=fMaxNoSteps) && (x < x2) && (!lastStep) ); 346 // Loop checking, 07.10.2016, J. Apostolakis 344 // Loop checking, 07.10.2016, J. Apostolakis 347 345 348 // Have we reached the end ? 346 // Have we reached the end ? 349 // --> a better test might be x-x2 > an_e 347 // --> a better test might be x-x2 > an_epsilon 350 348 351 succeeded = (x>=x2); // If it was a "forced 349 succeeded = (x>=x2); // If it was a "forced" last step 352 350 353 for (i=0; i<nvar; ++i) { yEnd[i] = y[i]; } 351 for (i=0; i<nvar; ++i) { yEnd[i] = y[i]; } 354 352 355 // Put back the values. 353 // Put back the values. 356 y_current.LoadFromArray( yEnd, fNoIntegratio 354 y_current.LoadFromArray( yEnd, fNoIntegrationVariables ); 357 y_current.SetCurveLength( x ); 355 y_current.SetCurveLength( x ); 358 356 359 if(nstp > fMaxNoSteps) 357 if(nstp > fMaxNoSteps) 360 { 358 { 361 succeeded = false; 359 succeeded = false; 362 #ifdef G4DEBUG_FIELD 360 #ifdef G4DEBUG_FIELD 363 ++no_warnings; 361 ++no_warnings; 364 if (dbg) 362 if (dbg) 365 { 363 { 366 WarnTooManyStep( x1, x2, x ); // Issue 364 WarnTooManyStep( x1, x2, x ); // Issue WARNING 367 PrintStatus( yEnd, x1, y, x, hstep, -nst 365 PrintStatus( yEnd, x1, y, x, hstep, -nstp); 368 } 366 } 369 #endif 367 #endif 370 } 368 } 371 369 372 #ifdef G4DEBUG_FIELD 370 #ifdef G4DEBUG_FIELD 373 if( dbg && no_warnings ) 371 if( dbg && no_warnings ) 374 { 372 { 375 G4cerr << "G4MagIntegratorDriver exit stat 373 G4cerr << "G4MagIntegratorDriver exit status: no-steps " << nstp << G4endl; 376 PrintStatus( yEnd, x1, y, x, hstep, nstp); 374 PrintStatus( yEnd, x1, y, x, hstep, nstp); 377 } 375 } 378 #endif 376 #endif 379 377 380 return succeeded; 378 return succeeded; 381 } // end of AccurateAdvance ................. 379 } // end of AccurateAdvance ........................... 382 380 383 // ------------------------------------------- 381 // --------------------------------------------------------- 384 382 385 void 383 void 386 G4MagInt_Driver::WarnSmallStepSize( G4double h 384 G4MagInt_Driver::WarnSmallStepSize( G4double hnext, G4double hstep, 387 G4double h 385 G4double h, G4double xDone, 388 G4int nstp 386 G4int nstp) 389 { 387 { 390 static G4ThreadLocal G4int noWarningsIssued 388 static G4ThreadLocal G4int noWarningsIssued = 0; 391 const G4int maxNoWarnings = 10; // Number 389 const G4int maxNoWarnings = 10; // Number of verbose warnings 392 std::ostringstream message; 390 std::ostringstream message; 393 if( (noWarningsIssued < maxNoWarnings) || fV 391 if( (noWarningsIssued < maxNoWarnings) || fVerboseLevel > 10 ) 394 { 392 { 395 message << "The stepsize for the next iter 393 message << "The stepsize for the next iteration, " << hnext 396 << ", is too small - in Step numbe 394 << ", is too small - in Step number " << nstp << "." << G4endl 397 << "The minimum for the driver is 395 << "The minimum for the driver is " << Hmin() << G4endl 398 << "Requested integr. length was " 396 << "Requested integr. length was " << hstep << " ." << G4endl 399 << "The size of this sub-step was 397 << "The size of this sub-step was " << h << " ." << G4endl 400 << "The integrations has already g 398 << "The integrations has already gone " << xDone; 401 } 399 } 402 else 400 else 403 { 401 { 404 message << "Too small 'next' step " << hne 402 message << "Too small 'next' step " << hnext 405 << ", step-no: " << nstp << G4endl 403 << ", step-no: " << nstp << G4endl 406 << ", this sub-step: " << h 404 << ", this sub-step: " << h 407 << ", req_tot_len: " << hstep 405 << ", req_tot_len: " << hstep 408 << ", done: " << xDone << ", min: 406 << ", done: " << xDone << ", min: " << Hmin(); 409 } 407 } 410 G4Exception("G4MagInt_Driver::WarnSmallStepS 408 G4Exception("G4MagInt_Driver::WarnSmallStepSize()", "GeomField1001", 411 JustWarning, message); 409 JustWarning, message); 412 ++noWarningsIssued; 410 ++noWarningsIssued; 413 } 411 } 414 412 415 // ------------------------------------------- 413 // --------------------------------------------------------- 416 414 417 void 415 void 418 G4MagInt_Driver::WarnTooManyStep( G4double x1s 416 G4MagInt_Driver::WarnTooManyStep( G4double x1start, 419 G4double x2e 417 G4double x2end, 420 G4double xCu 418 G4double xCurrent ) 421 { 419 { 422 std::ostringstream message; 420 std::ostringstream message; 423 message << "The number of steps used in the 421 message << "The number of steps used in the Integration driver" 424 << " (Runge-Kutta) is too many." << 422 << " (Runge-Kutta) is too many." << G4endl 425 << "Integration of the interval was 423 << "Integration of the interval was not completed !" << G4endl 426 << "Only a " << (xCurrent-x1start)* 424 << "Only a " << (xCurrent-x1start)*100/(x2end-x1start) 427 << " % fraction of it was done."; 425 << " % fraction of it was done."; 428 G4Exception("G4MagInt_Driver::WarnTooManySt 426 G4Exception("G4MagInt_Driver::WarnTooManyStep()", "GeomField1001", 429 JustWarning, message); 427 JustWarning, message); 430 } 428 } 431 429 432 // ------------------------------------------- 430 // --------------------------------------------------------- 433 431 434 void 432 void 435 G4MagInt_Driver::WarnEndPointTooFar (G4double 433 G4MagInt_Driver::WarnEndPointTooFar (G4double endPointDist, 436 G4double 434 G4double h , 437 G4double 435 G4double eps, 438 G4int 436 G4int dbg) 439 { 437 { 440 static G4ThreadLocal G4double maxRelError = 438 static G4ThreadLocal G4double maxRelError = 0.0; 441 G4bool isNewMax, prNewMax; 439 G4bool isNewMax, prNewMax; 442 440 443 isNewMax = endPointDist > (1.0 + maxRelError 441 isNewMax = endPointDist > (1.0 + maxRelError) * h; 444 prNewMax = endPointDist > (1.0 + 1.05 * maxR 442 prNewMax = endPointDist > (1.0 + 1.05 * maxRelError) * h; 445 if( isNewMax ) { maxRelError= endPointDist / 443 if( isNewMax ) { maxRelError= endPointDist / h - 1.0; } 446 444 447 if( (dbg != 0) && (h > G4GeometryTolerance:: 445 if( (dbg != 0) && (h > G4GeometryTolerance::GetInstance()->GetSurfaceTolerance()) 448 && ( (dbg>1) || prNewMax || (endPoin 446 && ( (dbg>1) || prNewMax || (endPointDist >= h*(1.+eps) ) ) ) 449 { 447 { 450 static G4ThreadLocal G4int noWarnings = 0; 448 static G4ThreadLocal G4int noWarnings = 0; 451 std::ostringstream message; 449 std::ostringstream message; 452 if( (noWarnings++ < 10) || (dbg>2) ) 450 if( (noWarnings++ < 10) || (dbg>2) ) 453 { 451 { 454 message << "The integration produced an 452 message << "The integration produced an end-point which " << G4endl 455 << "is further from the start-po 453 << "is further from the start-point than the curve length." 456 << G4endl; 454 << G4endl; 457 } 455 } 458 message << " Distance of endpoints = " << 456 message << " Distance of endpoints = " << endPointDist 459 << ", curve length = " << h << G4e 457 << ", curve length = " << h << G4endl 460 << " Difference (curveLen-endpDis 458 << " Difference (curveLen-endpDist)= " << (h - endPointDist) 461 << ", relative = " << (h-endPointD 459 << ", relative = " << (h-endPointDist) / h 462 << ", epsilon = " << eps; 460 << ", epsilon = " << eps; 463 G4Exception("G4MagInt_Driver::WarnEndPoint 461 G4Exception("G4MagInt_Driver::WarnEndPointTooFar()", "GeomField1001", 464 JustWarning, message); 462 JustWarning, message); 465 } 463 } 466 } 464 } 467 465 468 // ------------------------------------------- 466 // --------------------------------------------------------- 469 467 470 void 468 void 471 G4MagInt_Driver::OneGoodStep( G4double y[ 469 G4MagInt_Driver::OneGoodStep( G4double y[], // InOut 472 const G4double dy 470 const G4double dydx[], 473 G4double& x 471 G4double& x, // InOut 474 G4double ht 472 G4double htry, 475 G4double ep 473 G4double eps_rel_max, 476 G4double& h 474 G4double& hdid, // Out 477 G4double& h 475 G4double& hnext ) // Out 478 476 479 // Driver for one Runge-Kutta Step with monito 477 // Driver for one Runge-Kutta Step with monitoring of local truncation error 480 // to ensure accuracy and adjust stepsize. Inp 478 // to ensure accuracy and adjust stepsize. Input are dependent variable 481 // array y[0,...,5] and its derivative dydx[0, 479 // array y[0,...,5] and its derivative dydx[0,...,5] at the 482 // starting value of the independent variable 480 // starting value of the independent variable x . Also input are stepsize 483 // to be attempted htry, and the required accu 481 // to be attempted htry, and the required accuracy eps. On output y and x 484 // are replaced by their new values, hdid is t 482 // are replaced by their new values, hdid is the stepsize that was actually 485 // accomplished, and hnext is the estimated ne 483 // accomplished, and hnext is the estimated next stepsize. 486 // This is similar to the function rkqs from t 484 // This is similar to the function rkqs from the book: 487 // Numerical Recipes in C: The Art of Scientif 485 // Numerical Recipes in C: The Art of Scientific Computing (NRC), Second 488 // Edition, by William H. Press, Saul A. Teuko 486 // Edition, by William H. Press, Saul A. Teukolsky, William T. 489 // Vetterling, and Brian P. Flannery (Cambridg 487 // Vetterling, and Brian P. Flannery (Cambridge University Press 1992), 490 // 16.2 Adaptive StepSize Control for Runge-Ku 488 // 16.2 Adaptive StepSize Control for Runge-Kutta, p. 719 491 489 492 { 490 { 493 G4double errmax_sq; 491 G4double errmax_sq; 494 G4double h, htemp, xnew ; 492 G4double h, htemp, xnew ; 495 493 496 G4double yerr[G4FieldTrack::ncompSVEC], ytem 494 G4double yerr[G4FieldTrack::ncompSVEC], ytemp[G4FieldTrack::ncompSVEC]; 497 495 498 h = htry ; // Set stepsize to the initial tr 496 h = htry ; // Set stepsize to the initial trial value 499 497 500 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max 498 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max*eps_rel_max); 501 499 502 G4double errpos_sq = 0.0; // square of di 500 G4double errpos_sq = 0.0; // square of displacement error 503 G4double errvel_sq = 0.0; // square of mo 501 G4double errvel_sq = 0.0; // square of momentum vector difference 504 G4double errspin_sq = 0.0; // square of sp 502 G4double errspin_sq = 0.0; // square of spin vector difference 505 503 506 const G4int max_trials=100; 504 const G4int max_trials=100; 507 505 508 G4ThreeVector Spin(y[9],y[10],y[11]); 506 G4ThreeVector Spin(y[9],y[10],y[11]); 509 G4double spin_mag2 = Spin.mag2(); 507 G4double spin_mag2 = Spin.mag2(); 510 G4bool hasSpin = (spin_mag2 > 0.0); 508 G4bool hasSpin = (spin_mag2 > 0.0); 511 509 512 for (G4int iter=0; iter<max_trials; ++iter) 510 for (G4int iter=0; iter<max_trials; ++iter) 513 { 511 { 514 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr) 512 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr); 515 // ******* 513 // ******* 516 G4double eps_pos = eps_rel_max * std::max( 514 G4double eps_pos = eps_rel_max * std::max(h, fMinimumStep); 517 G4double inv_eps_pos_sq = 1.0 / (eps_pos*e 515 G4double inv_eps_pos_sq = 1.0 / (eps_pos*eps_pos); 518 516 519 // Evaluate accuracy 517 // Evaluate accuracy 520 // 518 // 521 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + 519 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + sqr(yerr[2]) ; 522 errpos_sq *= inv_eps_pos_sq; // Scale rela 520 errpos_sq *= inv_eps_pos_sq; // Scale relative to required tolerance 523 521 524 // Accuracy for momentum 522 // Accuracy for momentum 525 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) 523 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) + sqr(y[5]) ; 526 G4double sumerr_sq = sqr(yerr[3]) + sqr(y 524 G4double sumerr_sq = sqr(yerr[3]) + sqr(yerr[4]) + sqr(yerr[5]) ; 527 if( magvel_sq > 0.0 ) 525 if( magvel_sq > 0.0 ) 528 { 526 { 529 errvel_sq = sumerr_sq / magvel_sq; 527 errvel_sq = sumerr_sq / magvel_sq; 530 } 528 } 531 else 529 else 532 { 530 { 533 std::ostringstream message; 531 std::ostringstream message; 534 message << "Found case of zero momentum 532 message << "Found case of zero momentum." << G4endl 535 << "- iteration= " << iter << " 533 << "- iteration= " << iter << "; h= " << h; 536 G4Exception("G4MagInt_Driver::OneGoodSt 534 G4Exception("G4MagInt_Driver::OneGoodStep()", 537 "GeomField1001", JustWarnin 535 "GeomField1001", JustWarning, message); 538 errvel_sq = sumerr_sq; 536 errvel_sq = sumerr_sq; 539 } 537 } 540 errvel_sq *= inv_eps_vel_sq; 538 errvel_sq *= inv_eps_vel_sq; 541 errmax_sq = std::max( errpos_sq, errvel_sq 539 errmax_sq = std::max( errpos_sq, errvel_sq ); // Square of maximum error 542 540 543 if( hasSpin ) 541 if( hasSpin ) 544 { 542 { 545 // Accuracy for spin 543 // Accuracy for spin 546 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[ 544 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[10]) + sqr(yerr[11]) ) 547 / spin_mag2; // ( sqr(y[9 545 / spin_mag2; // ( sqr(y[9]) + sqr(y[10]) + sqr(y[11]) ); 548 errspin_sq *= inv_eps_vel_sq; 546 errspin_sq *= inv_eps_vel_sq; 549 errmax_sq = std::max( errmax_sq, errspin 547 errmax_sq = std::max( errmax_sq, errspin_sq ); 550 } 548 } 551 549 552 if ( errmax_sq <= 1.0 ) { break; } // Ste 550 if ( errmax_sq <= 1.0 ) { break; } // Step succeeded. 553 551 554 // Step failed; compute the size of retria 552 // Step failed; compute the size of retrial Step. 555 htemp = GetSafety() * h * std::pow( errmax 553 htemp = GetSafety() * h * std::pow( errmax_sq, 0.5*GetPshrnk() ); 556 554 557 if (htemp >= 0.1*h) { h = htemp; } // Tr 555 if (htemp >= 0.1*h) { h = htemp; } // Truncation error too large, 558 else { h = 0.1*h; } // re 556 else { h = 0.1*h; } // reduce stepsize, but no more 559 // th 557 // than a factor of 10 560 xnew = x + h; 558 xnew = x + h; 561 if(xnew == x) 559 if(xnew == x) 562 { 560 { 563 std::ostringstream message; 561 std::ostringstream message; 564 message << "Stepsize underflow in Steppe 562 message << "Stepsize underflow in Stepper !" << G4endl 565 << "- Step's start x=" << x << " 563 << "- Step's start x=" << x << " and end x= " << xnew 566 << " are equal !! " << G4endl 564 << " are equal !! " << G4endl 567 << " Due to step-size= " << h 565 << " Due to step-size= " << h 568 << ". Note that input step was " 566 << ". Note that input step was " << htry; 569 G4Exception("G4MagInt_Driver::OneGoodSte 567 G4Exception("G4MagInt_Driver::OneGoodStep()", 570 "GeomField1001", JustWarning 568 "GeomField1001", JustWarning, message); 571 break; 569 break; 572 } 570 } 573 } 571 } 574 572 575 // Compute size of next Step 573 // Compute size of next Step 576 if (errmax_sq > errcon*errcon) 574 if (errmax_sq > errcon*errcon) 577 { 575 { 578 hnext = GetSafety()*h*std::pow(errmax_sq, 576 hnext = GetSafety()*h*std::pow(errmax_sq, 0.5*GetPgrow()); 579 } 577 } 580 else 578 else 581 { 579 { 582 hnext = max_stepping_increase*h ; // No mo 580 hnext = max_stepping_increase*h ; // No more than a factor of 5 increase 583 } 581 } 584 x += (hdid = h); 582 x += (hdid = h); 585 583 586 for(G4int k=0; k<fNoIntegrationVariables; ++ 584 for(G4int k=0; k<fNoIntegrationVariables; ++k) { y[k] = ytemp[k]; } 587 585 588 return; 586 return; 589 } 587 } 590 588 591 //-------------------------------------------- 589 //---------------------------------------------------------------------- 592 590 593 // QuickAdvance just tries one Step - it does 591 // QuickAdvance just tries one Step - it does not ensure accuracy 594 // 592 // 595 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr 593 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTrack& y_posvel, // INOUT 596 const G4double 594 const G4double dydx[], 597 G4double 595 G4double hstep, // In 598 G4double& 596 G4double& dchord_step, 599 G4double& 597 G4double& dyerr_pos_sq, 600 G4double& 598 G4double& dyerr_mom_rel_sq ) 601 { 599 { 602 G4Exception("G4MagInt_Driver::QuickAdvance() 600 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 603 FatalException, "Not yet impleme 601 FatalException, "Not yet implemented."); 604 602 605 // Use the parameters of this method, to ple 603 // Use the parameters of this method, to please compiler 606 // 604 // 607 dchord_step = dyerr_pos_sq = hstep * hstep * 605 dchord_step = dyerr_pos_sq = hstep * hstep * dydx[0]; 608 dyerr_mom_rel_sq = y_posvel.GetPosition().ma 606 dyerr_mom_rel_sq = y_posvel.GetPosition().mag2(); 609 return true; 607 return true; 610 } 608 } 611 609 612 //-------------------------------------------- 610 //---------------------------------------------------------------------- 613 611 614 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr 612 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTrack& y_posvel, // INOUT 615 const G4double 613 const G4double dydx[], 616 G4double 614 G4double hstep, // In 617 G4double& 615 G4double& dchord_step, 618 G4double& 616 G4double& dyerr ) 619 { 617 { 620 G4double dyerr_pos_sq, dyerr_mom_rel_sq; 618 G4double dyerr_pos_sq, dyerr_mom_rel_sq; 621 G4double yerr_vec[G4FieldTrack::ncompSVEC], 619 G4double yerr_vec[G4FieldTrack::ncompSVEC], 622 yarrin[G4FieldTrack::ncompSVEC], ya 620 yarrin[G4FieldTrack::ncompSVEC], yarrout[G4FieldTrack::ncompSVEC]; 623 G4double s_start; 621 G4double s_start; 624 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_m 622 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_mag_sq; 625 623 626 // Move data into array 624 // Move data into array 627 y_posvel.DumpToArray( yarrin ); // yar 625 y_posvel.DumpToArray( yarrin ); // yarrin <== y_posvel 628 s_start = y_posvel.GetCurveLength(); 626 s_start = y_posvel.GetCurveLength(); 629 627 630 // Do an Integration Step 628 // Do an Integration Step 631 pIntStepper-> Stepper(yarrin, dydx, hstep, y 629 pIntStepper-> Stepper(yarrin, dydx, hstep, yarrout, yerr_vec) ; 632 630 633 // Estimate curve-chord distance 631 // Estimate curve-chord distance 634 dchord_step= pIntStepper-> DistChord(); 632 dchord_step= pIntStepper-> DistChord(); 635 633 636 // Put back the values. yarrout ==> y_posve 634 // Put back the values. yarrout ==> y_posvel 637 y_posvel.LoadFromArray( yarrout, fNoIntegrat 635 y_posvel.LoadFromArray( yarrout, fNoIntegrationVariables ); 638 y_posvel.SetCurveLength( s_start + hstep ); 636 y_posvel.SetCurveLength( s_start + hstep ); 639 637 640 #ifdef G4DEBUG_FIELD 638 #ifdef G4DEBUG_FIELD 641 if(fVerboseLevel>2) 639 if(fVerboseLevel>2) 642 { 640 { 643 G4cout << "G4MagIntDrv: Quick Advance" << 641 G4cout << "G4MagIntDrv: Quick Advance" << G4endl; 644 PrintStatus( yarrin, s_start, yarrout, s_s 642 PrintStatus( yarrin, s_start, yarrout, s_start+hstep, hstep, 1); 645 } 643 } 646 #endif 644 #endif 647 645 648 // A single measure of the error 646 // A single measure of the error 649 // TO-DO : account for energy, spin, 647 // TO-DO : account for energy, spin, ... ? 650 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout 648 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout[4])+sqr(yarrout[5]) ); 651 inv_vel_mag_sq = 1.0 / vel_mag_sq; 649 inv_vel_mag_sq = 1.0 / vel_mag_sq; 652 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_v 650 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_vec[1])+sqr(yerr_vec[2])); 653 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_v 651 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 654 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_ma 652 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_mag_sq; 655 653 656 // Calculate also the change in the momentum 654 // Calculate also the change in the momentum squared also ??? 657 // G4double veloc_square = y_posvel.GetVeloc 655 // G4double veloc_square = y_posvel.GetVelocity().mag2(); 658 // ... 656 // ... 659 657 660 #ifdef RETURN_A_NEW_STEP_LENGTH 658 #ifdef RETURN_A_NEW_STEP_LENGTH 661 // The following step cannot be done here be 659 // The following step cannot be done here because "eps" is not known. 662 dyerr_len = std::sqrt( dyerr_len_sq ); 660 dyerr_len = std::sqrt( dyerr_len_sq ); 663 dyerr_len_sq /= eps ; 661 dyerr_len_sq /= eps ; 664 662 665 // Look at the velocity deviation ? 663 // Look at the velocity deviation ? 666 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(ye 664 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 667 665 668 // Set suggested new step 666 // Set suggested new step 669 hstep = ComputeNewStepSize( dyerr_len, hstep 667 hstep = ComputeNewStepSize( dyerr_len, hstep); 670 #endif 668 #endif 671 669 672 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr( 670 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr(hstep) ) ) 673 { 671 { 674 dyerr = std::sqrt(dyerr_pos_sq); 672 dyerr = std::sqrt(dyerr_pos_sq); 675 } 673 } 676 else 674 else 677 { 675 { 678 // Scale it to the current step size - for 676 // Scale it to the current step size - for now 679 dyerr = std::sqrt(dyerr_mom_rel_sq) * hste 677 dyerr = std::sqrt(dyerr_mom_rel_sq) * hstep; 680 } 678 } 681 679 682 return true; 680 return true; 683 } 681 } 684 682 685 // ------------------------------------------- 683 // -------------------------------------------------------------------------- 686 684 687 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 685 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 688 G4bool G4MagInt_Driver::QuickAdvance(G4double 686 G4bool G4MagInt_Driver::QuickAdvance(G4double yarrin[], // In 689 const G4double 687 const G4double dydx[], 690 G4double 688 G4double hstep, // In 691 G4double 689 G4double yarrout[], 692 G4double 690 G4double& dchord_step, 693 G4double 691 G4double& dyerr ) // In length 694 { 692 { 695 G4Exception("G4MagInt_Driver::QuickAdvance() 693 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 696 FatalException, "Not yet impleme 694 FatalException, "Not yet implemented."); 697 dyerr = dchord_step = hstep * yarrin[0] * dy 695 dyerr = dchord_step = hstep * yarrin[0] * dydx[0]; 698 yarrout[0]= yarrin[0]; 696 yarrout[0]= yarrin[0]; 699 } 697 } 700 #endif 698 #endif 701 699 702 // ------------------------------------------- 700 // -------------------------------------------------------------------------- 703 701 704 // This method computes new step sizes - but d 702 // This method computes new step sizes - but does not limit changes to 705 // within certain factors 703 // within certain factors 706 // 704 // 707 G4double G4MagInt_Driver:: 705 G4double G4MagInt_Driver:: 708 ComputeNewStepSize_WithoutReductionLimit(G4dou 706 ComputeNewStepSize_WithoutReductionLimit(G4double errMaxNorm, // max error (normalised) 709 G4double hstepCurrent) // 707 G4double hstepCurrent) // current step size 710 { 708 { 711 G4double hnew; 709 G4double hnew; 712 710 713 // Compute size of next Step for a failed st 711 // Compute size of next Step for a failed step 714 if(errMaxNorm > 1.0 ) 712 if(errMaxNorm > 1.0 ) 715 { 713 { 716 // Step failed; compute the size of retria 714 // Step failed; compute the size of retrial Step. 717 hnew = GetSafety()*hstepCurrent*std::pow(e 715 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 718 } 716 } 719 else if(errMaxNorm > 0.0 ) 717 else if(errMaxNorm > 0.0 ) 720 { 718 { 721 // Compute size of next Step for a success 719 // Compute size of next Step for a successful step 722 hnew = GetSafety()*hstepCurrent*std::pow(e 720 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()) ; 723 } 721 } 724 else 722 else 725 { 723 { 726 // if error estimate is zero (possible) or 724 // if error estimate is zero (possible) or negative (dubious) 727 hnew = max_stepping_increase * hstepCurren 725 hnew = max_stepping_increase * hstepCurrent; 728 } 726 } 729 727 730 return hnew; 728 return hnew; 731 } 729 } 732 730 733 // ------------------------------------------- 731 // --------------------------------------------------------------------------- 734 732 735 G4double 733 G4double 736 G4MagInt_Driver::ComputeNewStepSize( 734 G4MagInt_Driver::ComputeNewStepSize( 737 G4double errMaxNorm 735 G4double errMaxNorm, // max error (normalised) 738 G4double hstepCurre 736 G4double hstepCurrent) // current step size 739 { 737 { 740 // Legacy behaviour: 738 // Legacy behaviour: 741 return ComputeNewStepSize_WithoutReductionL 739 return ComputeNewStepSize_WithoutReductionLimit( errMaxNorm, hstepCurrent ); 742 // 'Improved' behaviour - at least more con 740 // 'Improved' behaviour - at least more consistent with other step estimates: 743 // return ComputeNewStepSize_WithinLimits( 741 // return ComputeNewStepSize_WithinLimits( errMaxNorm, hstepCurrent ); 744 } 742 } 745 743 746 // This method computes new step sizes limitin 744 // This method computes new step sizes limiting changes within certain factors 747 // 745 // 748 // It shares its logic with AccurateAdvance. 746 // It shares its logic with AccurateAdvance. 749 // They are kept separate currently for optimi 747 // They are kept separate currently for optimisation. 750 // 748 // 751 G4double 749 G4double 752 G4MagInt_Driver::ComputeNewStepSize_WithinLimi 750 G4MagInt_Driver::ComputeNewStepSize_WithinLimits( 753 G4double errMaxNorm 751 G4double errMaxNorm, // max error (normalised) 754 G4double hstepCurre 752 G4double hstepCurrent) // current step size 755 { 753 { 756 G4double hnew; 754 G4double hnew; 757 755 758 // Compute size of next Step for a failed st 756 // Compute size of next Step for a failed step 759 if (errMaxNorm > 1.0 ) 757 if (errMaxNorm > 1.0 ) 760 { 758 { 761 // Step failed; compute the size of retria 759 // Step failed; compute the size of retrial Step. 762 hnew = GetSafety()*hstepCurrent*std::pow(e 760 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 763 761 764 if (hnew < max_stepping_decrease*hstepCurr 762 if (hnew < max_stepping_decrease*hstepCurrent) 765 { 763 { 766 hnew = max_stepping_decrease*hstepCurren 764 hnew = max_stepping_decrease*hstepCurrent ; 767 // reduce stepsize, b 765 // reduce stepsize, but no more 768 // than this factor ( 766 // than this factor (value= 1/10) 769 } 767 } 770 } 768 } 771 else 769 else 772 { 770 { 773 // Compute size of next Step for a success 771 // Compute size of next Step for a successful step 774 if (errMaxNorm > errcon) 772 if (errMaxNorm > errcon) 775 { hnew = GetSafety()*hstepCurrent*std::po 773 { hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()); } 776 else // No more than a factor of 5 increa 774 else // No more than a factor of 5 increase 777 { hnew = max_stepping_increase * hstepCur 775 { hnew = max_stepping_increase * hstepCurrent; } 778 } 776 } 779 return hnew; 777 return hnew; 780 } 778 } 781 779 782 // ------------------------------------------- 780 // --------------------------------------------------------------------------- 783 781 784 void G4MagInt_Driver::PrintStatus( const G4dou 782 void G4MagInt_Driver::PrintStatus( const G4double* StartArr, 785 G4dou 783 G4double xstart, 786 const G4dou 784 const G4double* CurrentArr, 787 G4dou 785 G4double xcurrent, 788 G4dou 786 G4double requestStep, 789 G4int 787 G4int subStepNo ) 790 // Potentially add as arguments: 788 // Potentially add as arguments: 791 // <dydx> 789 // <dydx> - as Initial Force 792 // stepTaken 790 // stepTaken(hdid) - last step taken 793 // nextStep 791 // nextStep (hnext) - proposal for size 794 { 792 { 795 G4FieldTrack StartFT(G4ThreeVector(0,0,0), 793 G4FieldTrack StartFT(G4ThreeVector(0,0,0), 796 G4ThreeVector(0,0,0), 0., 0., 794 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 797 G4FieldTrack CurrentFT (StartFT); 795 G4FieldTrack CurrentFT (StartFT); 798 796 799 StartFT.LoadFromArray( StartArr, fNoIntegra 797 StartFT.LoadFromArray( StartArr, fNoIntegrationVariables); 800 StartFT.SetCurveLength( xstart); 798 StartFT.SetCurveLength( xstart); 801 CurrentFT.LoadFromArray( CurrentArr, fNoInt 799 CurrentFT.LoadFromArray( CurrentArr, fNoIntegrationVariables); 802 CurrentFT.SetCurveLength( xcurrent ); 800 CurrentFT.SetCurveLength( xcurrent ); 803 801 804 PrintStatus(StartFT, CurrentFT, requestStep 802 PrintStatus(StartFT, CurrentFT, requestStep, subStepNo ); 805 } 803 } 806 804 807 // ------------------------------------------- 805 // --------------------------------------------------------------------------- 808 806 809 void G4MagInt_Driver::PrintStatus(const G4Fiel 807 void G4MagInt_Driver::PrintStatus(const G4FieldTrack& StartFT, 810 const G4Fiel 808 const G4FieldTrack& CurrentFT, 811 G4doub 809 G4double requestStep, 812 G4int 810 G4int subStepNo) 813 { 811 { 814 G4int verboseLevel= fVerboseLevel; 812 G4int verboseLevel= fVerboseLevel; 815 const G4int noPrecision = 5; 813 const G4int noPrecision = 5; 816 G4long oldPrec= G4cout.precision(noPrecisi 814 G4long oldPrec= G4cout.precision(noPrecision); 817 // G4cout.setf(ios_base::fixed,ios_base::f 815 // G4cout.setf(ios_base::fixed,ios_base::floatfield); 818 816 819 const G4ThreeVector StartPosition= S 817 const G4ThreeVector StartPosition= StartFT.GetPosition(); 820 const G4ThreeVector StartUnitVelocity= S 818 const G4ThreeVector StartUnitVelocity= StartFT.GetMomentumDir(); 821 const G4ThreeVector CurrentPosition= C 819 const G4ThreeVector CurrentPosition= CurrentFT.GetPosition(); 822 const G4ThreeVector CurrentUnitVelocity= C 820 const G4ThreeVector CurrentUnitVelocity= CurrentFT.GetMomentumDir(); 823 821 824 G4double DotStartCurrentVeloc= StartUnitV 822 G4double DotStartCurrentVeloc= StartUnitVelocity.dot(CurrentUnitVelocity); 825 823 826 G4double step_len= CurrentFT.GetCurveLengt 824 G4double step_len= CurrentFT.GetCurveLength() - StartFT.GetCurveLength(); 827 G4double subStepSize = step_len; 825 G4double subStepSize = step_len; 828 826 829 if( (subStepNo <= 1) || (verboseLevel > 3) 827 if( (subStepNo <= 1) || (verboseLevel > 3) ) 830 { 828 { 831 subStepNo = - subStepNo; // To a 829 subStepNo = - subStepNo; // To allow printing banner 832 830 833 G4cout << std::setw( 6) << " " << std: 831 G4cout << std::setw( 6) << " " << std::setw( 25) 834 << " G4MagInt_Driver: Current Po 832 << " G4MagInt_Driver: Current Position and Direction" << " " 835 << G4endl; 833 << G4endl; 836 G4cout << std::setw( 5) << "Step#" << " 834 G4cout << std::setw( 5) << "Step#" << " " 837 << std::setw( 7) << "s-curve" << 835 << std::setw( 7) << "s-curve" << " " 838 << std::setw( 9) << "X(mm)" << " 836 << std::setw( 9) << "X(mm)" << " " 839 << std::setw( 9) << "Y(mm)" << " 837 << std::setw( 9) << "Y(mm)" << " " 840 << std::setw( 9) << "Z(mm)" << " 838 << std::setw( 9) << "Z(mm)" << " " 841 << std::setw( 8) << " N_x " << " 839 << std::setw( 8) << " N_x " << " " 842 << std::setw( 8) << " N_y " << " 840 << std::setw( 8) << " N_y " << " " 843 << std::setw( 8) << " N_z " << " 841 << std::setw( 8) << " N_z " << " " 844 << std::setw( 8) << " N^2-1 " << 842 << std::setw( 8) << " N^2-1 " << " " 845 << std::setw(10) << " N(0).N " < 843 << std::setw(10) << " N(0).N " << " " 846 << std::setw( 7) << "KinEner " < 844 << std::setw( 7) << "KinEner " << " " 847 << std::setw(12) << "Track-l" << 845 << std::setw(12) << "Track-l" << " " // Add the Sub-step ?? 848 << std::setw(12) << "Step-len" < 846 << std::setw(12) << "Step-len" << " " 849 << std::setw(12) << "Step-len" < 847 << std::setw(12) << "Step-len" << " " 850 << std::setw( 9) << "ReqStep" << 848 << std::setw( 9) << "ReqStep" << " " 851 << G4endl; 849 << G4endl; 852 } 850 } 853 851 854 if( (subStepNo <= 0) ) 852 if( (subStepNo <= 0) ) 855 { 853 { 856 PrintStat_Aux( StartFT, requestStep, 0. 854 PrintStat_Aux( StartFT, requestStep, 0., 857 0, 0.0, 855 0, 0.0, 1.0); 858 } 856 } 859 857 860 if( verboseLevel <= 3 ) 858 if( verboseLevel <= 3 ) 861 { 859 { 862 G4cout.precision(noPrecision); 860 G4cout.precision(noPrecision); 863 PrintStat_Aux( CurrentFT, requestStep, s 861 PrintStat_Aux( CurrentFT, requestStep, step_len, 864 subStepNo, subStepSize, D 862 subStepNo, subStepSize, DotStartCurrentVeloc ); 865 } 863 } 866 864 867 G4cout.precision(oldPrec); 865 G4cout.precision(oldPrec); 868 } 866 } 869 867 870 // ------------------------------------------- 868 // --------------------------------------------------------------------------- 871 869 872 void G4MagInt_Driver::PrintStat_Aux(const G4Fi 870 void G4MagInt_Driver::PrintStat_Aux(const G4FieldTrack& aFieldTrack, 873 G4do 871 G4double requestStep, 874 G4do 872 G4double step_len, 875 G4in 873 G4int subStepNo, 876 G4do 874 G4double subStepSize, 877 G4do 875 G4double dotVeloc_StartCurr) 878 { 876 { 879 const G4ThreeVector Position = aFieldTrack 877 const G4ThreeVector Position = aFieldTrack.GetPosition(); 880 const G4ThreeVector UnitVelocity = aFieldT 878 const G4ThreeVector UnitVelocity = aFieldTrack.GetMomentumDir(); 881 879 882 if( subStepNo >= 0) 880 if( subStepNo >= 0) 883 { 881 { 884 G4cout << std::setw( 5) << subStepNo << 882 G4cout << std::setw( 5) << subStepNo << " "; 885 } 883 } 886 else 884 else 887 { 885 { 888 G4cout << std::setw( 5) << "Start" << " 886 G4cout << std::setw( 5) << "Start" << " "; 889 } 887 } 890 G4double curveLen= aFieldTrack.GetCurveLen 888 G4double curveLen= aFieldTrack.GetCurveLength(); 891 G4cout << std::setw( 7) << curveLen; 889 G4cout << std::setw( 7) << curveLen; 892 G4cout << std::setw( 9) << Position.x() << 890 G4cout << std::setw( 9) << Position.x() << " " 893 << std::setw( 9) << Position.y() << 891 << std::setw( 9) << Position.y() << " " 894 << std::setw( 9) << Position.z() << 892 << std::setw( 9) << Position.z() << " " 895 << std::setw( 8) << UnitVelocity.x( 893 << std::setw( 8) << UnitVelocity.x() << " " 896 << std::setw( 8) << UnitVelocity.y( 894 << std::setw( 8) << UnitVelocity.y() << " " 897 << std::setw( 8) << UnitVelocity.z( 895 << std::setw( 8) << UnitVelocity.z() << " "; 898 G4long oldprec= G4cout.precision(3); 896 G4long oldprec= G4cout.precision(3); 899 G4cout << std::setw( 8) << UnitVelocity.ma 897 G4cout << std::setw( 8) << UnitVelocity.mag2()-1.0 << " "; 900 G4cout.precision(6); 898 G4cout.precision(6); 901 G4cout << std::setw(10) << dotVeloc_StartC 899 G4cout << std::setw(10) << dotVeloc_StartCurr << " "; 902 G4cout.precision(oldprec); 900 G4cout.precision(oldprec); 903 G4cout << std::setw( 7) << aFieldTrack.Get 901 G4cout << std::setw( 7) << aFieldTrack.GetKineticEnergy(); 904 G4cout << std::setw(12) << step_len << " " 902 G4cout << std::setw(12) << step_len << " "; 905 903 906 static G4ThreadLocal G4double oldCurveLeng 904 static G4ThreadLocal G4double oldCurveLength = 0.0; 907 static G4ThreadLocal G4double oldSubStepLe 905 static G4ThreadLocal G4double oldSubStepLength = 0.0; 908 static G4ThreadLocal G4int oldSubStepNo = 906 static G4ThreadLocal G4int oldSubStepNo = -1; 909 907 910 G4double subStep_len = 0.0; 908 G4double subStep_len = 0.0; 911 if( curveLen > oldCurveLength ) 909 if( curveLen > oldCurveLength ) 912 { 910 { 913 subStep_len= curveLen - oldCurveLength; 911 subStep_len= curveLen - oldCurveLength; 914 } 912 } 915 else if (subStepNo == oldSubStepNo) 913 else if (subStepNo == oldSubStepNo) 916 { 914 { 917 subStep_len= oldSubStepLength; 915 subStep_len= oldSubStepLength; 918 } 916 } 919 oldCurveLength= curveLen; 917 oldCurveLength= curveLen; 920 oldSubStepLength= subStep_len; 918 oldSubStepLength= subStep_len; 921 919 922 G4cout << std::setw(12) << subStep_len << 920 G4cout << std::setw(12) << subStep_len << " "; 923 G4cout << std::setw(12) << subStepSize << 921 G4cout << std::setw(12) << subStepSize << " "; 924 if( requestStep != -1.0 ) 922 if( requestStep != -1.0 ) 925 { 923 { 926 G4cout << std::setw( 9) << requestStep < 924 G4cout << std::setw( 9) << requestStep << " "; 927 } 925 } 928 else 926 else 929 { 927 { 930 G4cout << std::setw( 9) << " InitialSte 928 G4cout << std::setw( 9) << " InitialStep " << " "; 931 } 929 } 932 G4cout << G4endl; 930 G4cout << G4endl; 933 } 931 } 934 932 935 // ------------------------------------------- 933 // --------------------------------------------------------------------------- 936 934 937 void G4MagInt_Driver::PrintStatisticsReport() 935 void G4MagInt_Driver::PrintStatisticsReport() 938 { 936 { 939 G4int noPrecBig = 6; 937 G4int noPrecBig = 6; 940 G4long oldPrec = G4cout.precision(noPrecBig) 938 G4long oldPrec = G4cout.precision(noPrecBig); 941 939 942 G4cout << "G4MagInt_Driver Statistics of ste 940 G4cout << "G4MagInt_Driver Statistics of steps undertaken. " << G4endl; 943 G4cout << "G4MagInt_Driver: Number of Steps: 941 G4cout << "G4MagInt_Driver: Number of Steps: " 944 << " Total= " << fNoTotalSteps 942 << " Total= " << fNoTotalSteps 945 << " Bad= " << fNoBadSteps 943 << " Bad= " << fNoBadSteps 946 << " Small= " << fNoSmallSteps 944 << " Small= " << fNoSmallSteps 947 << " Non-initial small= " << (fNoSmal 945 << " Non-initial small= " << (fNoSmallSteps-fNoInitialSmallSteps) 948 << G4endl; 946 << G4endl; 949 G4cout.precision(oldPrec); 947 G4cout.precision(oldPrec); 950 } 948 } 951 949 952 // ------------------------------------------- 950 // --------------------------------------------------------------------------- 953 951 954 void G4MagInt_Driver::SetSmallestFraction(G4do 952 void G4MagInt_Driver::SetSmallestFraction(G4double newFraction) 955 { 953 { 956 if( (newFraction > 1.e-16) && (newFraction < 954 if( (newFraction > 1.e-16) && (newFraction < 1e-8) ) 957 { 955 { 958 fSmallestFraction= newFraction; 956 fSmallestFraction= newFraction; 959 } 957 } 960 else 958 else 961 { 959 { 962 std::ostringstream message; 960 std::ostringstream message; 963 message << "Smallest Fraction not changed. 961 message << "Smallest Fraction not changed. " << G4endl 964 << " Proposed value was " << newF 962 << " Proposed value was " << newFraction << G4endl 965 << " Value must be between 1.e-8 963 << " Value must be between 1.e-8 and 1.e-16"; 966 G4Exception("G4MagInt_Driver::SetSmallestF 964 G4Exception("G4MagInt_Driver::SetSmallestFraction()", 967 "GeomField1001", JustWarning, 965 "GeomField1001", JustWarning, message); 968 } 966 } 969 } 967 } 970 968 971 void G4MagInt_Driver:: 969 void G4MagInt_Driver:: 972 GetDerivatives(const G4FieldTrack& y_curr, G4d 970 GetDerivatives(const G4FieldTrack& y_curr, G4double* dydx) const 973 { 971 { 974 G4double ytemp[G4FieldTrack::ncompSVEC]; 972 G4double ytemp[G4FieldTrack::ncompSVEC]; 975 y_curr.DumpToArray(ytemp); 973 y_curr.DumpToArray(ytemp); 976 pIntStepper->RightHandSide(ytemp, dydx); 974 pIntStepper->RightHandSide(ytemp, dydx); 977 // Avoid virtual call for GetStepper 975 // Avoid virtual call for GetStepper 978 // Was: GetStepper()->ComputeRightHandSi 976 // Was: GetStepper()->ComputeRightHandSide(ytemp, dydx); 979 } 977 } 980 978 981 void G4MagInt_Driver::GetDerivatives(const G4F 979 void G4MagInt_Driver::GetDerivatives(const G4FieldTrack& track, 982 G4double 980 G4double dydx[], 983 G4double 981 G4double field[]) const 984 { 982 { 985 G4double ytemp[G4FieldTrack::ncompSVEC]; 983 G4double ytemp[G4FieldTrack::ncompSVEC]; 986 track.DumpToArray(ytemp); 984 track.DumpToArray(ytemp); 987 pIntStepper->RightHandSide(ytemp, dydx, fi 985 pIntStepper->RightHandSide(ytemp, dydx, field); 988 } 986 } 989 987 990 G4EquationOfMotion* G4MagInt_Driver::GetEquati 988 G4EquationOfMotion* G4MagInt_Driver::GetEquationOfMotion() 991 { 989 { 992 return pIntStepper->GetEquationOfMotion(); 990 return pIntStepper->GetEquationOfMotion(); 993 } 991 } 994 992 995 void G4MagInt_Driver::SetEquationOfMotion(G4Eq 993 void G4MagInt_Driver::SetEquationOfMotion(G4EquationOfMotion *equation) 996 { 994 { 997 pIntStepper->SetEquationOfMotion(equation) 995 pIntStepper->SetEquationOfMotion(equation); 998 } 996 } 999 997 1000 const G4MagIntegratorStepper* G4MagInt_Driver 998 const G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() const 1001 { 999 { 1002 return pIntStepper; 1000 return pIntStepper; 1003 } 1001 } 1004 1002 1005 G4MagIntegratorStepper* G4MagInt_Driver::GetS 1003 G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() 1006 { 1004 { 1007 return pIntStepper; 1005 return pIntStepper; 1008 } 1006 } 1009 1007 1010 void G4MagInt_Driver:: 1008 void G4MagInt_Driver:: 1011 RenewStepperAndAdjust(G4MagIntegratorStepper* 1009 RenewStepperAndAdjust(G4MagIntegratorStepper* pItsStepper) 1012 { 1010 { 1013 pIntStepper = pItsStepper; 1011 pIntStepper = pItsStepper; 1014 ReSetParameters(); 1012 ReSetParameters(); 1015 } 1013 } 1016 1014 1017 void G4MagInt_Driver::StreamInfo( std::ostrea 1015 void G4MagInt_Driver::StreamInfo( std::ostream& os ) const 1018 { 1016 { 1019 os << "State of G4MagInt_Driver: " << std 1017 os << "State of G4MagInt_Driver: " << std::endl; 1020 os << " Max number of Steps = " << fMaxN 1018 os << " Max number of Steps = " << fMaxNoSteps 1021 << " (base # = " << fMaxStepBase << 1019 << " (base # = " << fMaxStepBase << " )" << std::endl; 1022 os << " Safety factor = " << safet 1020 os << " Safety factor = " << safety << std::endl; 1023 os << " Power - shrink = " << pshrn 1021 os << " Power - shrink = " << pshrnk << std::endl; 1024 os << " Power - grow = " << pgrow 1022 os << " Power - grow = " << pgrow << std::endl; 1025 os << " threshold (errcon) = " << errco 1023 os << " threshold (errcon) = " << errcon << std::endl; 1026 1024 1027 os << " fMinimumStep = " << fMini 1025 os << " fMinimumStep = " << fMinimumStep << std::endl; 1028 os << " Smallest Fraction = " << fSmal 1026 os << " Smallest Fraction = " << fSmallestFraction << std::endl; 1029 1027 1030 os << " No Integrat Vars = " << fNoIn 1028 os << " No Integrat Vars = " << fNoIntegrationVariables << std::endl; 1031 os << " Min No Vars = " << fMinN 1029 os << " Min No Vars = " << fMinNoVars << std::endl; 1032 os << " Num-Vars = " << fNoVa 1030 os << " Num-Vars = " << fNoVars << std::endl; 1033 1031 1034 os << " verbose level = " << fVerb 1032 os << " verbose level = " << fVerboseLevel << std::endl; 1035 os << " Reintegrates = " << DoesR 1033 os << " Reintegrates = " << DoesReIntegrate() << std::endl; 1036 } 1034 } 1037 1035 1038 void PrintInfo( const G4MagInt_Driver & magDr 1036 void PrintInfo( const G4MagInt_Driver & magDrv, std::ostream& os ) 1039 { 1037 { 1040 os << "State of G4MagInt_Driver: " << std 1038 os << "State of G4MagInt_Driver: " << std::endl; 1041 os << " Max number of Steps = " << magDr 1039 os << " Max number of Steps = " << magDrv.GetMaxNoSteps(); 1042 // << " (base # = " << magDrv.fMaxSt 1040 // << " (base # = " << magDrv.fMaxStepBase << " )" << std::endl; 1043 os << " Safety factor = " << magDr 1041 os << " Safety factor = " << magDrv.GetSafety() << std::endl; 1044 os << " Power - shrink = " << magDr 1042 os << " Power - shrink = " << magDrv.GetPshrnk() << std::endl; 1045 os << " Power - grow = " << magDr 1043 os << " Power - grow = " << magDrv.GetPgrow() << std::endl; 1046 os << " threshold (errcon) = " << magDr 1044 os << " threshold (errcon) = " << magDrv.GetErrcon() << std::endl; 1047 1045 1048 os << " fMinimumStep = " << magDr 1046 os << " fMinimumStep = " << magDrv.GetHmin() << std::endl; 1049 os << " Smallest Fraction = " << magDr 1047 os << " Smallest Fraction = " << magDrv.GetSmallestFraction() << std::endl; 1050 1048 1051 /***** 1049 /***** 1052 os << " No Integrat Vars = " << magDr 1050 os << " No Integrat Vars = " << magDrv.GetNoIntegrationVariables << std::endl; 1053 os << " Min No Vars = " << magDr 1051 os << " Min No Vars = " << magDrv.GetMinNoVars << std::endl; 1054 os << " Num-Vars = " << magDr 1052 os << " Num-Vars = " << magDrv.GetNoVars << std::endl; 1055 *****/ 1053 *****/ 1056 os << " verbose level = " << magDr 1054 os << " verbose level = " << magDrv.GetVerboseLevel() << std::endl; 1057 os << " Reintegrates = " << magDr 1055 os << " Reintegrates = " << magDrv.DoesReIntegrate() << std::endl; 1058 } 1056 } 1059 1057