Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4MagInt_Driver implementation << 27 // 26 // 28 // V.Grichine, 07.10.1996 - Created << 27 // 29 // W.Wander, 28.01.1998 - Added ability for lo << 28 // 30 // J.Apostolakis, 08.11.2001 - Respect minimum << 29 // >> 30 // Implementation for class G4MagInt_Driver >> 31 // Tracking in space dependent magnetic field >> 32 // >> 33 // History of major changes: >> 34 // 8 Nov 01 J. Apostolakis: Respect minimum step in AccurateAdvance >> 35 // 27 Jul 99 J. Apostolakis: Ensured that AccurateAdvance does not loop >> 36 // due to very small eps & step size (precision) >> 37 // 28 Jan 98 W. Wander: Added ability for low order integrators >> 38 // 7 Oct 96 V. Grichine First version 31 // ------------------------------------------- 39 // -------------------------------------------------------------------- 32 40 33 #include <iomanip> 41 #include <iomanip> 34 42 35 #include "globals.hh" 43 #include "globals.hh" 36 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 37 #include "G4GeometryTolerance.hh" 45 #include "G4GeometryTolerance.hh" 38 #include "G4MagIntegratorDriver.hh" 46 #include "G4MagIntegratorDriver.hh" 39 #include "G4FieldTrack.hh" 47 #include "G4FieldTrack.hh" 40 48 41 #ifdef G4DEBUG_FIELD << 42 #include "G4DriverReporter.hh" << 43 #endif << 44 << 45 // ------------------------------------------- 49 // --------------------------------------------------------- 46 50 47 // Constructor 51 // Constructor 48 // 52 // 49 G4MagInt_Driver::G4MagInt_Driver( G4double 53 G4MagInt_Driver::G4MagInt_Driver( G4double hminimum, 50 G4MagIntegra << 54 G4MagIntegratorStepper *pStepper, 51 G4int 55 G4int numComponents, 52 G4int 56 G4int statisticsVerbose) 53 : fNoIntegrationVariables(numComponents), << 57 : fSmallestFraction( 1.0e-12 ), >> 58 fNoIntegrationVariables(numComponents), >> 59 fMinNoVars(12), 54 fNoVars( std::max( fNoIntegrationVariables 60 fNoVars( std::max( fNoIntegrationVariables, fMinNoVars )), 55 fStatisticsVerboseLevel(statisticsVerbose) << 61 fStatisticsVerboseLevel(statisticsVerbose), >> 62 fNoTotalSteps(0), fNoBadSteps(0), fNoSmallSteps(0), >> 63 fNoInitialSmallSteps(0), fNoCalls(0), >> 64 fDyerr_max(0.0), fDyerr_mx2(0.0), >> 65 fDyerrPos_smTot(0.0), fDyerrPos_lgTot(0.0), fDyerrVel_lgTot(0.0), >> 66 fSumH_sm(0.0), fSumH_lg(0.0), >> 67 fVerboseLevel(0) 56 { 68 { 57 // In order to accomodate "Laboratory Time", 69 // In order to accomodate "Laboratory Time", which is [7], fMinNoVars=8 58 // is required. For proper time of flight an 70 // is required. For proper time of flight and spin, fMinNoVars must be 12 59 71 60 RenewStepperAndAdjust( pStepper ); 72 RenewStepperAndAdjust( pStepper ); 61 fMinimumStep = hminimum; << 73 fMinimumStep= hminimum; >> 74 >> 75 // The (default) maximum number of steps is Base >> 76 // divided by the order of Stepper >> 77 // >> 78 fMaxStepBase = 250; // Was 5000 62 79 63 fMaxNoSteps = fMaxStepBase / pIntStepper->In 80 fMaxNoSteps = fMaxStepBase / pIntStepper->IntegratorOrder(); 64 #ifdef G4DEBUG_FIELD 81 #ifdef G4DEBUG_FIELD 65 fVerboseLevel=2; 82 fVerboseLevel=2; 66 #endif 83 #endif 67 84 68 if( (fVerboseLevel > 0) || (fStatisticsVerbo 85 if( (fVerboseLevel > 0) || (fStatisticsVerboseLevel > 1) ) 69 { 86 { 70 G4cout << "MagIntDriver version: Accur-Adv 87 G4cout << "MagIntDriver version: Accur-Adv: " 71 << "invE_nS, QuickAdv-2sqrt with St 88 << "invE_nS, QuickAdv-2sqrt with Statistics " 72 #ifdef G4FLD_STATS 89 #ifdef G4FLD_STATS 73 << " enabled " 90 << " enabled " 74 #else 91 #else 75 << " disabled " 92 << " disabled " 76 #endif 93 #endif 77 << G4endl; 94 << G4endl; 78 } 95 } 79 } 96 } 80 97 81 // ------------------------------------------- 98 // --------------------------------------------------------- 82 99 83 // Destructor 100 // Destructor 84 // 101 // 85 G4MagInt_Driver::~G4MagInt_Driver() 102 G4MagInt_Driver::~G4MagInt_Driver() 86 { 103 { 87 if( fStatisticsVerboseLevel > 1 ) 104 if( fStatisticsVerboseLevel > 1 ) 88 { 105 { 89 PrintStatisticsReport(); 106 PrintStatisticsReport(); 90 } 107 } 91 } 108 } 92 109 93 // ------------------------------------------- 110 // --------------------------------------------------------- 94 111 95 G4bool 112 G4bool 96 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& 113 G4MagInt_Driver::AccurateAdvance(G4FieldTrack& y_current, 97 G4double << 114 G4double hstep, 98 G4double << 115 G4double eps, 99 G4double << 116 G4double hinitial ) 100 { 117 { 101 // Runge-Kutta driver with adaptive stepsize 118 // Runge-Kutta driver with adaptive stepsize control. Integrate starting 102 // values at y_current over hstep x2 with ac 119 // values at y_current over hstep x2 with accuracy eps. 103 // On output ystart is replaced by values at 120 // On output ystart is replaced by values at the end of the integration 104 // interval. RightHandSide is the right-hand 121 // interval. RightHandSide is the right-hand side of ODE system. 105 // The source is similar to odeint routine f 122 // The source is similar to odeint routine from NRC p.721-722 . 106 123 107 G4int nstp, i; << 124 G4int nstp, i, no_warnings=0; 108 G4double x, hnext, hdid, h; 125 G4double x, hnext, hdid, h; 109 126 110 #ifdef G4DEBUG_FIELD 127 #ifdef G4DEBUG_FIELD 111 G4int no_warnings = 0; << 128 static G4int dbg=1; 112 static G4int dbg = 1; << 129 static G4int nStpPr=50; // For debug printing of long integrations 113 static G4int nStpPr = 50; // For debug pri << 114 G4double ySubStepStart[G4FieldTrack::ncompSV 130 G4double ySubStepStart[G4FieldTrack::ncompSVEC]; 115 G4FieldTrack yFldTrkStart(y_current); 131 G4FieldTrack yFldTrkStart(y_current); 116 #endif 132 #endif 117 133 118 G4double y[G4FieldTrack::ncompSVEC] = {0., 0 << 134 G4double y[G4FieldTrack::ncompSVEC], dydx[G4FieldTrack::ncompSVEC]; 119 G4double dydx[G4FieldTrack::ncompSVEC] = {0. << 135 G4double ystart[G4FieldTrack::ncompSVEC], yEnd[G4FieldTrack::ncompSVEC]; 120 G4double ystart[G4FieldTrack::ncompSVEC] = { << 121 G4double yEnd[G4FieldTrack::ncompSVEC] = {0. << 122 G4double x1, x2; 136 G4double x1, x2; 123 G4bool succeeded = true; << 137 G4bool succeeded = true, lastStepSucceeded; 124 138 125 G4double startCurveLength; 139 G4double startCurveLength; 126 140 127 const G4int nvar = fNoVars; << 141 G4int noFullIntegr=0, noSmallIntegr = 0 ; >> 142 static G4ThreadLocal G4int noGoodSteps =0 ; // Bad = chord > curve-len >> 143 const G4int nvar= fNoVars; 128 144 129 G4FieldTrack yStartFT(y_current); 145 G4FieldTrack yStartFT(y_current); 130 146 131 // Ensure that hstep > 0 147 // Ensure that hstep > 0 132 // 148 // 133 if( hstep <= 0.0 ) 149 if( hstep <= 0.0 ) 134 { 150 { 135 if( hstep == 0.0 ) << 151 if(hstep==0.0) 136 { 152 { 137 std::ostringstream message; 153 std::ostringstream message; 138 message << "Proposed step is zero; hstep 154 message << "Proposed step is zero; hstep = " << hstep << " !"; 139 G4Exception("G4MagInt_Driver::AccurateAd 155 G4Exception("G4MagInt_Driver::AccurateAdvance()", 140 "GeomField1001", JustWarning 156 "GeomField1001", JustWarning, message); 141 return succeeded; 157 return succeeded; 142 } 158 } 143 << 159 else 144 std::ostringstream message; << 160 { 145 message << "Invalid run condition." << G4e << 161 std::ostringstream message; 146 << "Proposed step is negative; hst << 162 message << "Invalid run condition." << G4endl 147 << "Requested step cannot be negat << 163 << "Proposed step is negative; hstep = " << hstep << "." << G4endl 148 G4Exception("G4MagInt_Driver::AccurateAdva << 164 << "Requested step cannot be negative! Aborting event."; 149 "GeomField0003", EventMustBeAb << 165 G4Exception("G4MagInt_Driver::AccurateAdvance()", 150 return false; << 166 "GeomField0003", EventMustBeAborted, message); >> 167 return false; >> 168 } 151 } 169 } 152 170 153 y_current.DumpToArray( ystart ); 171 y_current.DumpToArray( ystart ); 154 172 155 startCurveLength= y_current.GetCurveLength() 173 startCurveLength= y_current.GetCurveLength(); 156 x1= startCurveLength; 174 x1= startCurveLength; 157 x2= x1 + hstep; 175 x2= x1 + hstep; 158 176 159 if ( (hinitial > 0.0) && (hinitial < hstep) 177 if ( (hinitial > 0.0) && (hinitial < hstep) 160 && (hinitial > perMillion * hstep) ) 178 && (hinitial > perMillion * hstep) ) 161 { 179 { 162 h = hinitial; 180 h = hinitial; 163 } 181 } 164 else // Initial Step size "h" defaults to 182 else // Initial Step size "h" defaults to the full interval 165 { 183 { 166 h = hstep; 184 h = hstep; 167 } 185 } 168 186 169 x = x1; 187 x = x1; 170 188 171 for ( i=0; i<nvar; ++i) { y[i] = ystart[i]; << 189 for (i=0;i<nvar;i++) { y[i] = ystart[i]; } 172 190 173 G4bool lastStep= false; 191 G4bool lastStep= false; 174 nstp = 1; << 192 nstp=1; 175 193 176 do 194 do 177 { 195 { 178 G4ThreeVector StartPos( y[0], y[1], y[2] ) 196 G4ThreeVector StartPos( y[0], y[1], y[2] ); 179 197 180 #ifdef G4DEBUG_FIELD 198 #ifdef G4DEBUG_FIELD 181 G4double xSubStepStart= x; 199 G4double xSubStepStart= x; 182 for (i=0; i<nvar; ++i) { ySubStepStart[i] << 200 for (i=0;i<nvar;i++) { ySubStepStart[i] = y[i]; } 183 yFldTrkStart.LoadFromArray(y, fNoIntegrati 201 yFldTrkStart.LoadFromArray(y, fNoIntegrationVariables); 184 yFldTrkStart.SetCurveLength(x); 202 yFldTrkStart.SetCurveLength(x); 185 #endif 203 #endif 186 204 187 pIntStepper->RightHandSide( y, dydx ); 205 pIntStepper->RightHandSide( y, dydx ); 188 ++fNoTotalSteps; << 206 fNoTotalSteps++; 189 207 190 // Perform the Integration 208 // Perform the Integration 191 // 209 // 192 if( h > fMinimumStep ) 210 if( h > fMinimumStep ) 193 { 211 { 194 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; 212 OneGoodStep(y,dydx,x,h,eps,hdid,hnext) ; 195 //-------------------------------------- 213 //-------------------------------------- >> 214 lastStepSucceeded= (hdid == h); 196 #ifdef G4DEBUG_FIELD 215 #ifdef G4DEBUG_FIELD 197 if (dbg>2) 216 if (dbg>2) 198 { 217 { 199 // PrintStatus( ySubStepStart, xSubSt << 218 PrintStatus( ySubStepStart, xSubStepStart, y, x, h, nstp); // Only 200 G4DriverReporter::PrintStatus( ySubSte << 201 } 219 } 202 #endif 220 #endif 203 } 221 } 204 else 222 else 205 { 223 { 206 G4FieldTrack yFldTrk( G4ThreeVector(0,0, 224 G4FieldTrack yFldTrk( G4ThreeVector(0,0,0), 207 G4ThreeVector(0,0, 225 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 208 G4double dchord_step, dyerr, dyerr_len; 226 G4double dchord_step, dyerr, dyerr_len; // What to do with these ? 209 yFldTrk.LoadFromArray(y, fNoIntegrationV 227 yFldTrk.LoadFromArray(y, fNoIntegrationVariables); 210 yFldTrk.SetCurveLength( x ); 228 yFldTrk.SetCurveLength( x ); 211 229 212 QuickAdvance( yFldTrk, dydx, h, dchord_s << 230 QuickAdvance( yFldTrk, dydx, h, UNKNOWN_CURVATURE_RADIUS, dchord_step, dyerr_len ); 213 //-------------------------------------- 231 //----------------------------------------------------- 214 232 215 yFldTrk.DumpToArray(y); 233 yFldTrk.DumpToArray(y); 216 234 217 #ifdef G4FLD_STATS 235 #ifdef G4FLD_STATS 218 ++fNoSmallSteps; << 236 fNoSmallSteps++; 219 if ( dyerr_len > fDyerr_max ) { fDyerr_ << 237 if ( dyerr_len > fDyerr_max) { fDyerr_max= dyerr_len; } 220 fDyerrPos_smTot += dyerr_len; 238 fDyerrPos_smTot += dyerr_len; 221 fSumH_sm += h; // Length total for 'sma 239 fSumH_sm += h; // Length total for 'small' steps 222 if (nstp==1) { ++fNoInitialSmallSteps; << 240 if (nstp<=1) { fNoInitialSmallSteps++; } 223 #endif 241 #endif 224 #ifdef G4DEBUG_FIELD 242 #ifdef G4DEBUG_FIELD 225 if (dbg>1) 243 if (dbg>1) 226 { 244 { 227 if(fNoSmallSteps<2) { PrintStatus(ySub 245 if(fNoSmallSteps<2) { PrintStatus(ySubStepStart, x1, y, x, h, -nstp); } 228 G4cout << "Another sub-min step, no " 246 G4cout << "Another sub-min step, no " << fNoSmallSteps 229 << " of " << fNoTotalSteps << " 247 << " of " << fNoTotalSteps << " this time " << nstp << G4endl; 230 PrintStatus( ySubStepStart, x1, y, x, 248 PrintStatus( ySubStepStart, x1, y, x, h, nstp); // Only this 231 G4cout << " dyerr= " << dyerr_len << " 249 G4cout << " dyerr= " << dyerr_len << " relative = " << dyerr_len / h 232 << " epsilon= " << eps << " hst 250 << " epsilon= " << eps << " hstep= " << hstep 233 << " h= " << h << " hmin= " << 251 << " h= " << h << " hmin= " << fMinimumStep << G4endl; 234 } 252 } 235 #endif 253 #endif 236 if( h == 0.0 ) 254 if( h == 0.0 ) 237 { 255 { 238 G4Exception("G4MagInt_Driver::Accurate 256 G4Exception("G4MagInt_Driver::AccurateAdvance()", 239 "GeomField0003", FatalExce 257 "GeomField0003", FatalException, 240 "Integration Step became Z 258 "Integration Step became Zero!"); 241 } 259 } 242 dyerr = dyerr_len / h; 260 dyerr = dyerr_len / h; 243 hdid = h; << 261 hdid= h; 244 x += hdid; 262 x += hdid; 245 263 246 // Compute suggested new step 264 // Compute suggested new step 247 hnext = ComputeNewStepSize( dyerr/eps, h << 265 hnext= ComputeNewStepSize( dyerr/eps, h); >> 266 >> 267 // .. hnext= ComputeNewStepSize_WithinLimits( dyerr/eps, h); >> 268 lastStepSucceeded= (dyerr<= eps); 248 } 269 } 249 270 >> 271 if (lastStepSucceeded) { noFullIntegr++; } >> 272 else { noSmallIntegr++; } >> 273 250 G4ThreeVector EndPos( y[0], y[1], y[2] ); 274 G4ThreeVector EndPos( y[0], y[1], y[2] ); 251 275 252 #ifdef G4DEBUG_FIELD 276 #ifdef G4DEBUG_FIELD 253 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) 277 if( (dbg>0) && (dbg<=2) && (nstp>nStpPr)) 254 { 278 { 255 if( nstp==nStpPr ) { G4cout << "***** M 279 if( nstp==nStpPr ) { G4cout << "***** Many steps ****" << G4endl; } 256 G4cout << "MagIntDrv: " ; 280 G4cout << "MagIntDrv: " ; 257 G4cout << "hdid=" << std::setw(12) << h 281 G4cout << "hdid=" << std::setw(12) << hdid << " " 258 << "hnext=" << std::setw(12) << h 282 << "hnext=" << std::setw(12) << hnext << " " 259 << "hstep=" << std::setw(12) << h << 283 << "hstep=" << std::setw(12) << hstep << " (requested) " 260 << G4endl; << 284 << G4endl; 261 PrintStatus( ystart, x1, y, x, h, (nstp= 285 PrintStatus( ystart, x1, y, x, h, (nstp==nStpPr) ? -nstp: nstp); 262 } 286 } 263 #endif 287 #endif 264 288 265 // Check the endpoint 289 // Check the endpoint 266 G4double endPointDist= (EndPos-StartPos).m 290 G4double endPointDist= (EndPos-StartPos).mag(); 267 if ( endPointDist >= hdid*(1.+perMillion) 291 if ( endPointDist >= hdid*(1.+perMillion) ) 268 { 292 { 269 ++fNoBadSteps; << 293 fNoBadSteps++; 270 294 271 // Issue a warning only for gross differ 295 // Issue a warning only for gross differences - 272 // we understand how small difference oc 296 // we understand how small difference occur. 273 if ( endPointDist >= hdid*(1.+perThousan 297 if ( endPointDist >= hdid*(1.+perThousand) ) 274 { 298 { 275 #ifdef G4DEBUG_FIELD 299 #ifdef G4DEBUG_FIELD 276 if (dbg) 300 if (dbg) 277 { 301 { 278 WarnEndPointTooFar ( endPointDist, h 302 WarnEndPointTooFar ( endPointDist, hdid, eps, dbg ); 279 G4cerr << " Total steps: bad " << 303 G4cerr << " Total steps: bad " << fNoBadSteps 280 << " current h= " << hdid << << 304 << " good " << noGoodSteps << " current h= " << hdid >> 305 << G4endl; 281 PrintStatus( ystart, x1, y, x, hstep 306 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 282 } 307 } 283 ++no_warnings; << 284 #endif 308 #endif >> 309 no_warnings++; 285 } 310 } 286 } 311 } >> 312 else >> 313 { >> 314 noGoodSteps ++; >> 315 } >> 316 // #endif 287 317 288 // Avoid numerous small last steps 318 // Avoid numerous small last steps 289 if( (h < eps * hstep) || (h < fSmallestFra 319 if( (h < eps * hstep) || (h < fSmallestFraction * startCurveLength) ) 290 { 320 { 291 // No more integration -- the next step 321 // No more integration -- the next step will not happen 292 lastStep = true; 322 lastStep = true; 293 } 323 } 294 else 324 else 295 { 325 { 296 // Check the proposed next stepsize 326 // Check the proposed next stepsize 297 if(std::fabs(hnext) <= Hmin()) 327 if(std::fabs(hnext) <= Hmin()) 298 { 328 { 299 #ifdef G4DEBUG_FIELD 329 #ifdef G4DEBUG_FIELD 300 // If simply a very small interval is 330 // If simply a very small interval is being integrated, do not warn 301 if( (x < x2 * (1-eps) ) && // T 331 if( (x < x2 * (1-eps) ) && // The last step can be small: OK 302 (std::fabs(hstep) > Hmin()) ) // a 332 (std::fabs(hstep) > Hmin()) ) // and if we are asked, it's OK 303 { 333 { 304 if(dbg>0) 334 if(dbg>0) 305 { 335 { 306 WarnSmallStepSize( hnext, hstep, h 336 WarnSmallStepSize( hnext, hstep, h, x-x1, nstp ); 307 PrintStatus( ystart, x1, y, x, hst 337 PrintStatus( ystart, x1, y, x, hstep, no_warnings?nstp:-nstp); 308 } 338 } 309 ++no_warnings; << 339 no_warnings++; 310 } 340 } 311 #endif 341 #endif 312 // Make sure that the next step is at 342 // Make sure that the next step is at least Hmin. 313 h = Hmin(); 343 h = Hmin(); 314 } 344 } 315 else 345 else 316 { 346 { 317 h = hnext; 347 h = hnext; 318 } 348 } 319 349 320 // Ensure that the next step does not o 350 // Ensure that the next step does not overshoot 321 if ( x+h > x2 ) 351 if ( x+h > x2 ) 322 { // When stepsize oversh 352 { // When stepsize overshoots, decrease it! 323 h = x2 - x ; // Must cope with diffi 353 h = x2 - x ; // Must cope with difficult rounding-error 324 } // issues if hstep << x 354 } // issues if hstep << x2 325 355 326 if ( h == 0.0 ) 356 if ( h == 0.0 ) 327 { 357 { 328 // Cannot progress - accept this as la 358 // Cannot progress - accept this as last step - by default 329 lastStep = true; 359 lastStep = true; 330 #ifdef G4DEBUG_FIELD 360 #ifdef G4DEBUG_FIELD 331 if (dbg>2) 361 if (dbg>2) 332 { 362 { 333 int prec= G4cout.precision(12); 363 int prec= G4cout.precision(12); 334 G4cout << "Warning: G4MagIntegratorD 364 G4cout << "Warning: G4MagIntegratorDriver::AccurateAdvance" 335 << G4endl 365 << G4endl 336 << " Integration step 'h' be 366 << " Integration step 'h' became " 337 << h << " due to roundoff. " 367 << h << " due to roundoff. " << G4endl 338 << " Calculated as difference << 368 << " Calculated as difference of x2= "<< x2 << " and x=" << x 339 << " Forcing termination of 369 << " Forcing termination of advance." << G4endl; 340 G4cout.precision(prec); 370 G4cout.precision(prec); 341 } 371 } 342 #endif 372 #endif 343 } 373 } 344 } 374 } 345 } while ( ((++nstp)<=fMaxNoSteps) && (x < x2 << 375 } while ( ((nstp++)<=fMaxNoSteps) && (x < x2) && (!lastStep) ); 346 // Loop checking, 07.10.2016, J. Apostolakis 376 // Loop checking, 07.10.2016, J. Apostolakis 347 377 348 // Have we reached the end ? 378 // Have we reached the end ? 349 // --> a better test might be x-x2 > an_e 379 // --> a better test might be x-x2 > an_epsilon 350 380 351 succeeded = (x>=x2); // If it was a "forced << 381 succeeded= (x>=x2); // If it was a "forced" last step 352 382 353 for (i=0; i<nvar; ++i) { yEnd[i] = y[i]; } << 383 for (i=0;i<nvar;i++) { yEnd[i] = y[i]; } 354 384 355 // Put back the values. 385 // Put back the values. 356 y_current.LoadFromArray( yEnd, fNoIntegratio 386 y_current.LoadFromArray( yEnd, fNoIntegrationVariables ); 357 y_current.SetCurveLength( x ); 387 y_current.SetCurveLength( x ); 358 388 359 if(nstp > fMaxNoSteps) 389 if(nstp > fMaxNoSteps) 360 { 390 { >> 391 no_warnings++; 361 succeeded = false; 392 succeeded = false; 362 #ifdef G4DEBUG_FIELD 393 #ifdef G4DEBUG_FIELD 363 ++no_warnings; << 364 if (dbg) 394 if (dbg) 365 { 395 { 366 WarnTooManyStep( x1, x2, x ); // Issue 396 WarnTooManyStep( x1, x2, x ); // Issue WARNING 367 PrintStatus( yEnd, x1, y, x, hstep, -nst 397 PrintStatus( yEnd, x1, y, x, hstep, -nstp); 368 } 398 } 369 #endif 399 #endif 370 } 400 } 371 401 372 #ifdef G4DEBUG_FIELD 402 #ifdef G4DEBUG_FIELD 373 if( dbg && no_warnings ) 403 if( dbg && no_warnings ) 374 { 404 { 375 G4cerr << "G4MagIntegratorDriver exit stat 405 G4cerr << "G4MagIntegratorDriver exit status: no-steps " << nstp << G4endl; 376 PrintStatus( yEnd, x1, y, x, hstep, nstp); 406 PrintStatus( yEnd, x1, y, x, hstep, nstp); 377 } 407 } 378 #endif 408 #endif 379 409 380 return succeeded; 410 return succeeded; 381 } // end of AccurateAdvance ................. 411 } // end of AccurateAdvance ........................... 382 412 383 // ------------------------------------------- 413 // --------------------------------------------------------- 384 414 385 void 415 void 386 G4MagInt_Driver::WarnSmallStepSize( G4double h 416 G4MagInt_Driver::WarnSmallStepSize( G4double hnext, G4double hstep, 387 G4double h 417 G4double h, G4double xDone, 388 G4int nstp 418 G4int nstp) 389 { 419 { 390 static G4ThreadLocal G4int noWarningsIssued << 420 static G4ThreadLocal G4int noWarningsIssued =0; 391 const G4int maxNoWarnings = 10; // Number << 421 const G4int maxNoWarnings = 10; // Number of verbose warnings 392 std::ostringstream message; 422 std::ostringstream message; 393 if( (noWarningsIssued < maxNoWarnings) || fV 423 if( (noWarningsIssued < maxNoWarnings) || fVerboseLevel > 10 ) 394 { 424 { 395 message << "The stepsize for the next iter 425 message << "The stepsize for the next iteration, " << hnext 396 << ", is too small - in Step numbe 426 << ", is too small - in Step number " << nstp << "." << G4endl 397 << "The minimum for the driver is 427 << "The minimum for the driver is " << Hmin() << G4endl 398 << "Requested integr. length was " 428 << "Requested integr. length was " << hstep << " ." << G4endl 399 << "The size of this sub-step was 429 << "The size of this sub-step was " << h << " ." << G4endl 400 << "The integrations has already g 430 << "The integrations has already gone " << xDone; 401 } 431 } 402 else 432 else 403 { 433 { 404 message << "Too small 'next' step " << hne 434 message << "Too small 'next' step " << hnext 405 << ", step-no: " << nstp << G4endl 435 << ", step-no: " << nstp << G4endl 406 << ", this sub-step: " << h 436 << ", this sub-step: " << h 407 << ", req_tot_len: " << hstep 437 << ", req_tot_len: " << hstep 408 << ", done: " << xDone << ", min: 438 << ", done: " << xDone << ", min: " << Hmin(); 409 } 439 } 410 G4Exception("G4MagInt_Driver::WarnSmallStepS 440 G4Exception("G4MagInt_Driver::WarnSmallStepSize()", "GeomField1001", 411 JustWarning, message); 441 JustWarning, message); 412 ++noWarningsIssued; << 442 noWarningsIssued++; 413 } 443 } 414 444 415 // ------------------------------------------- 445 // --------------------------------------------------------- 416 446 417 void 447 void 418 G4MagInt_Driver::WarnTooManyStep( G4double x1s 448 G4MagInt_Driver::WarnTooManyStep( G4double x1start, 419 G4double x2e 449 G4double x2end, 420 G4double xCu << 450 G4double xCurrent) 421 { 451 { 422 std::ostringstream message; << 452 std::ostringstream message; 423 message << "The number of steps used in the << 453 message << "The number of steps used in the Integration driver" 424 << " (Runge-Kutta) is too many." << << 454 << " (Runge-Kutta) is too many." << G4endl 425 << "Integration of the interval was << 455 << "Integration of the interval was not completed !" << G4endl 426 << "Only a " << (xCurrent-x1start)* << 456 << "Only a " << (xCurrent-x1start)*100/(x2end-x1start) 427 << " % fraction of it was done."; << 457 << " % fraction of it was done."; 428 G4Exception("G4MagInt_Driver::WarnTooManySt << 458 G4Exception("G4MagInt_Driver::WarnTooManyStep()", "GeomField1001", 429 JustWarning, message); << 459 JustWarning, message); 430 } 460 } 431 461 432 // ------------------------------------------- 462 // --------------------------------------------------------- 433 463 434 void 464 void 435 G4MagInt_Driver::WarnEndPointTooFar (G4double 465 G4MagInt_Driver::WarnEndPointTooFar (G4double endPointDist, 436 G4double << 466 G4double h , 437 G4double << 467 G4double eps, 438 G4int << 468 G4int dbg) 439 { 469 { 440 static G4ThreadLocal G4double maxRelError = << 470 static G4ThreadLocal G4double maxRelError=0.0; 441 G4bool isNewMax, prNewMax; 471 G4bool isNewMax, prNewMax; 442 472 443 isNewMax = endPointDist > (1.0 + maxRelError 473 isNewMax = endPointDist > (1.0 + maxRelError) * h; 444 prNewMax = endPointDist > (1.0 + 1.05 * maxR 474 prNewMax = endPointDist > (1.0 + 1.05 * maxRelError) * h; 445 if( isNewMax ) { maxRelError= endPointDist / 475 if( isNewMax ) { maxRelError= endPointDist / h - 1.0; } 446 476 447 if( (dbg != 0) && (h > G4GeometryTolerance:: << 477 if( dbg && (h > G4GeometryTolerance::GetInstance()->GetSurfaceTolerance()) 448 && ( (dbg>1) || prNewMax || (endPoin 478 && ( (dbg>1) || prNewMax || (endPointDist >= h*(1.+eps) ) ) ) 449 { 479 { 450 static G4ThreadLocal G4int noWarnings = 0; 480 static G4ThreadLocal G4int noWarnings = 0; 451 std::ostringstream message; 481 std::ostringstream message; 452 if( (noWarnings++ < 10) || (dbg>2) ) << 482 if( (noWarnings ++ < 10) || (dbg>2) ) 453 { 483 { 454 message << "The integration produced an 484 message << "The integration produced an end-point which " << G4endl 455 << "is further from the start-po 485 << "is further from the start-point than the curve length." 456 << G4endl; 486 << G4endl; 457 } 487 } 458 message << " Distance of endpoints = " << 488 message << " Distance of endpoints = " << endPointDist 459 << ", curve length = " << h << G4e 489 << ", curve length = " << h << G4endl 460 << " Difference (curveLen-endpDis 490 << " Difference (curveLen-endpDist)= " << (h - endPointDist) 461 << ", relative = " << (h-endPointD 491 << ", relative = " << (h-endPointDist) / h 462 << ", epsilon = " << eps; 492 << ", epsilon = " << eps; 463 G4Exception("G4MagInt_Driver::WarnEndPoint 493 G4Exception("G4MagInt_Driver::WarnEndPointTooFar()", "GeomField1001", 464 JustWarning, message); 494 JustWarning, message); 465 } 495 } 466 } 496 } 467 497 468 // ------------------------------------------- 498 // --------------------------------------------------------- 469 499 470 void 500 void 471 G4MagInt_Driver::OneGoodStep( G4double y[ 501 G4MagInt_Driver::OneGoodStep( G4double y[], // InOut 472 const G4double dy 502 const G4double dydx[], 473 G4double& x 503 G4double& x, // InOut 474 G4double ht 504 G4double htry, 475 G4double ep 505 G4double eps_rel_max, 476 G4double& h 506 G4double& hdid, // Out 477 G4double& h 507 G4double& hnext ) // Out 478 508 479 // Driver for one Runge-Kutta Step with monito 509 // Driver for one Runge-Kutta Step with monitoring of local truncation error 480 // to ensure accuracy and adjust stepsize. Inp 510 // to ensure accuracy and adjust stepsize. Input are dependent variable 481 // array y[0,...,5] and its derivative dydx[0, 511 // array y[0,...,5] and its derivative dydx[0,...,5] at the 482 // starting value of the independent variable 512 // starting value of the independent variable x . Also input are stepsize 483 // to be attempted htry, and the required accu 513 // to be attempted htry, and the required accuracy eps. On output y and x 484 // are replaced by their new values, hdid is t 514 // are replaced by their new values, hdid is the stepsize that was actually 485 // accomplished, and hnext is the estimated ne 515 // accomplished, and hnext is the estimated next stepsize. 486 // This is similar to the function rkqs from t 516 // This is similar to the function rkqs from the book: 487 // Numerical Recipes in C: The Art of Scientif 517 // Numerical Recipes in C: The Art of Scientific Computing (NRC), Second 488 // Edition, by William H. Press, Saul A. Teuko 518 // Edition, by William H. Press, Saul A. Teukolsky, William T. 489 // Vetterling, and Brian P. Flannery (Cambridg 519 // Vetterling, and Brian P. Flannery (Cambridge University Press 1992), 490 // 16.2 Adaptive StepSize Control for Runge-Ku 520 // 16.2 Adaptive StepSize Control for Runge-Kutta, p. 719 491 521 492 { 522 { 493 G4double errmax_sq; 523 G4double errmax_sq; 494 G4double h, htemp, xnew ; 524 G4double h, htemp, xnew ; 495 525 496 G4double yerr[G4FieldTrack::ncompSVEC], ytem 526 G4double yerr[G4FieldTrack::ncompSVEC], ytemp[G4FieldTrack::ncompSVEC]; 497 527 498 h = htry ; // Set stepsize to the initial tr 528 h = htry ; // Set stepsize to the initial trial value 499 529 500 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max 530 G4double inv_eps_vel_sq = 1.0 / (eps_rel_max*eps_rel_max); 501 531 502 G4double errpos_sq = 0.0; // square of di << 532 G4double errpos_sq=0.0; // square of displacement error 503 G4double errvel_sq = 0.0; // square of mo << 533 G4double errvel_sq=0.0; // square of momentum vector difference 504 G4double errspin_sq = 0.0; // square of sp << 534 G4double errspin_sq=0.0; // square of spin vector difference 505 535 >> 536 G4int iter; >> 537 >> 538 static G4ThreadLocal G4int tot_no_trials=0; 506 const G4int max_trials=100; 539 const G4int max_trials=100; 507 540 508 G4ThreeVector Spin(y[9],y[10],y[11]); 541 G4ThreeVector Spin(y[9],y[10],y[11]); 509 G4double spin_mag2 = Spin.mag2(); << 542 G4double spin_mag2 =Spin.mag2() ; 510 G4bool hasSpin = (spin_mag2 > 0.0); << 543 G4bool hasSpin= (spin_mag2 > 0.0); 511 544 512 for (G4int iter=0; iter<max_trials; ++iter) << 545 for (iter=0; iter<max_trials ;iter++) 513 { 546 { >> 547 tot_no_trials++; 514 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr) 548 pIntStepper-> Stepper(y,dydx,h,ytemp,yerr); 515 // ******* 549 // ******* 516 G4double eps_pos = eps_rel_max * std::max( 550 G4double eps_pos = eps_rel_max * std::max(h, fMinimumStep); 517 G4double inv_eps_pos_sq = 1.0 / (eps_pos*e 551 G4double inv_eps_pos_sq = 1.0 / (eps_pos*eps_pos); 518 552 519 // Evaluate accuracy 553 // Evaluate accuracy 520 // 554 // 521 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + 555 errpos_sq = sqr(yerr[0]) + sqr(yerr[1]) + sqr(yerr[2]) ; 522 errpos_sq *= inv_eps_pos_sq; // Scale rela 556 errpos_sq *= inv_eps_pos_sq; // Scale relative to required tolerance 523 557 524 // Accuracy for momentum 558 // Accuracy for momentum 525 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) 559 G4double magvel_sq= sqr(y[3]) + sqr(y[4]) + sqr(y[5]) ; 526 G4double sumerr_sq = sqr(yerr[3]) + sqr(y 560 G4double sumerr_sq = sqr(yerr[3]) + sqr(yerr[4]) + sqr(yerr[5]) ; 527 if( magvel_sq > 0.0 ) 561 if( magvel_sq > 0.0 ) 528 { 562 { 529 errvel_sq = sumerr_sq / magvel_sq; 563 errvel_sq = sumerr_sq / magvel_sq; 530 } 564 } 531 else 565 else 532 { 566 { 533 std::ostringstream message; 567 std::ostringstream message; 534 message << "Found case of zero momentum 568 message << "Found case of zero momentum." << G4endl 535 << "- iteration= " << iter << " 569 << "- iteration= " << iter << "; h= " << h; 536 G4Exception("G4MagInt_Driver::OneGoodSt 570 G4Exception("G4MagInt_Driver::OneGoodStep()", 537 "GeomField1001", JustWarnin 571 "GeomField1001", JustWarning, message); 538 errvel_sq = sumerr_sq; 572 errvel_sq = sumerr_sq; 539 } 573 } 540 errvel_sq *= inv_eps_vel_sq; 574 errvel_sq *= inv_eps_vel_sq; 541 errmax_sq = std::max( errpos_sq, errvel_sq 575 errmax_sq = std::max( errpos_sq, errvel_sq ); // Square of maximum error 542 576 543 if( hasSpin ) 577 if( hasSpin ) 544 { 578 { 545 // Accuracy for spin 579 // Accuracy for spin 546 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[ 580 errspin_sq = ( sqr(yerr[9]) + sqr(yerr[10]) + sqr(yerr[11]) ) 547 / spin_mag2; // ( sqr(y[9 581 / spin_mag2; // ( sqr(y[9]) + sqr(y[10]) + sqr(y[11]) ); 548 errspin_sq *= inv_eps_vel_sq; 582 errspin_sq *= inv_eps_vel_sq; 549 errmax_sq = std::max( errmax_sq, errspin 583 errmax_sq = std::max( errmax_sq, errspin_sq ); 550 } 584 } 551 585 552 if ( errmax_sq <= 1.0 ) { break; } // Ste 586 if ( errmax_sq <= 1.0 ) { break; } // Step succeeded. 553 587 554 // Step failed; compute the size of retria 588 // Step failed; compute the size of retrial Step. 555 htemp = GetSafety() * h * std::pow( errmax << 589 htemp = GetSafety()*h* std::pow( errmax_sq, 0.5*GetPshrnk() ); 556 590 557 if (htemp >= 0.1*h) { h = htemp; } // Tr 591 if (htemp >= 0.1*h) { h = htemp; } // Truncation error too large, 558 else { h = 0.1*h; } // re 592 else { h = 0.1*h; } // reduce stepsize, but no more 559 // th 593 // than a factor of 10 560 xnew = x + h; 594 xnew = x + h; 561 if(xnew == x) 595 if(xnew == x) 562 { 596 { 563 std::ostringstream message; 597 std::ostringstream message; 564 message << "Stepsize underflow in Steppe 598 message << "Stepsize underflow in Stepper !" << G4endl 565 << "- Step's start x=" << x << " 599 << "- Step's start x=" << x << " and end x= " << xnew 566 << " are equal !! " << G4endl 600 << " are equal !! " << G4endl 567 << " Due to step-size= " << h 601 << " Due to step-size= " << h 568 << ". Note that input step was " 602 << ". Note that input step was " << htry; 569 G4Exception("G4MagInt_Driver::OneGoodSte 603 G4Exception("G4MagInt_Driver::OneGoodStep()", 570 "GeomField1001", JustWarning 604 "GeomField1001", JustWarning, message); 571 break; 605 break; 572 } 606 } 573 } 607 } 574 608 575 // Compute size of next Step 609 // Compute size of next Step 576 if (errmax_sq > errcon*errcon) 610 if (errmax_sq > errcon*errcon) 577 { 611 { 578 hnext = GetSafety()*h*std::pow(errmax_sq, 612 hnext = GetSafety()*h*std::pow(errmax_sq, 0.5*GetPgrow()); 579 } 613 } 580 else 614 else 581 { 615 { 582 hnext = max_stepping_increase*h ; // No mo 616 hnext = max_stepping_increase*h ; // No more than a factor of 5 increase 583 } 617 } 584 x += (hdid = h); 618 x += (hdid = h); 585 619 586 for(G4int k=0; k<fNoIntegrationVariables; ++ << 620 for(G4int k=0;k<fNoIntegrationVariables;k++) { y[k] = ytemp[k]; } 587 621 588 return; 622 return; 589 } 623 } 590 624 591 //-------------------------------------------- 625 //---------------------------------------------------------------------- 592 626 593 // QuickAdvance just tries one Step - it does 627 // QuickAdvance just tries one Step - it does not ensure accuracy 594 // 628 // 595 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr << 629 G4bool G4MagInt_Driver::QuickAdvance( 596 const G4double << 630 G4FieldTrack& y_posvel, // INOUT 597 G4double << 631 const G4double dydx[], 598 G4double& << 632 G4double hstep, // In 599 G4double& << 633 G4double& dchord_step, 600 G4double& << 634 G4double& dyerr_pos_sq, >> 635 G4double& dyerr_mom_rel_sq ) 601 { 636 { 602 G4Exception("G4MagInt_Driver::QuickAdvance() 637 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 603 FatalException, "Not yet impleme 638 FatalException, "Not yet implemented."); 604 639 605 // Use the parameters of this method, to ple 640 // Use the parameters of this method, to please compiler 606 // << 607 dchord_step = dyerr_pos_sq = hstep * hstep * 641 dchord_step = dyerr_pos_sq = hstep * hstep * dydx[0]; 608 dyerr_mom_rel_sq = y_posvel.GetPosition().ma 642 dyerr_mom_rel_sq = y_posvel.GetPosition().mag2(); 609 return true; 643 return true; 610 } 644 } 611 645 612 //-------------------------------------------- 646 //---------------------------------------------------------------------- 613 647 614 G4bool G4MagInt_Driver::QuickAdvance(G4FieldTr << 648 G4bool G4MagInt_Driver::QuickAdvance( 615 const G4double << 649 G4FieldTrack& y_posvel, // INOUT 616 G4double << 650 const G4double dydx[], 617 G4double& << 651 G4double hstep, // In 618 G4double& << 652 G4double /*inverseCurvatureRadius*/, >> 653 G4double& dchord_step, >> 654 G4double& dyerr ) 619 { 655 { 620 G4double dyerr_pos_sq, dyerr_mom_rel_sq; 656 G4double dyerr_pos_sq, dyerr_mom_rel_sq; 621 G4double yerr_vec[G4FieldTrack::ncompSVEC], 657 G4double yerr_vec[G4FieldTrack::ncompSVEC], 622 yarrin[G4FieldTrack::ncompSVEC], ya 658 yarrin[G4FieldTrack::ncompSVEC], yarrout[G4FieldTrack::ncompSVEC]; 623 G4double s_start; 659 G4double s_start; 624 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_m 660 G4double dyerr_mom_sq, vel_mag_sq, inv_vel_mag_sq; 625 661 >> 662 static G4ThreadLocal G4int no_call=0; >> 663 no_call ++; >> 664 626 // Move data into array 665 // Move data into array 627 y_posvel.DumpToArray( yarrin ); // yar 666 y_posvel.DumpToArray( yarrin ); // yarrin <== y_posvel 628 s_start = y_posvel.GetCurveLength(); 667 s_start = y_posvel.GetCurveLength(); 629 668 630 // Do an Integration Step 669 // Do an Integration Step 631 pIntStepper-> Stepper(yarrin, dydx, hstep, y 670 pIntStepper-> Stepper(yarrin, dydx, hstep, yarrout, yerr_vec) ; 632 671 633 // Estimate curve-chord distance 672 // Estimate curve-chord distance 634 dchord_step= pIntStepper-> DistChord(); 673 dchord_step= pIntStepper-> DistChord(); 635 674 636 // Put back the values. yarrout ==> y_posve 675 // Put back the values. yarrout ==> y_posvel 637 y_posvel.LoadFromArray( yarrout, fNoIntegrat 676 y_posvel.LoadFromArray( yarrout, fNoIntegrationVariables ); 638 y_posvel.SetCurveLength( s_start + hstep ); 677 y_posvel.SetCurveLength( s_start + hstep ); 639 678 640 #ifdef G4DEBUG_FIELD 679 #ifdef G4DEBUG_FIELD 641 if(fVerboseLevel>2) 680 if(fVerboseLevel>2) 642 { 681 { 643 G4cout << "G4MagIntDrv: Quick Advance" << 682 G4cout << "G4MagIntDrv: Quick Advance" << G4endl; 644 PrintStatus( yarrin, s_start, yarrout, s_s 683 PrintStatus( yarrin, s_start, yarrout, s_start+hstep, hstep, 1); 645 } 684 } 646 #endif 685 #endif 647 686 648 // A single measure of the error 687 // A single measure of the error 649 // TO-DO : account for energy, spin, 688 // TO-DO : account for energy, spin, ... ? 650 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout 689 vel_mag_sq = ( sqr(yarrout[3])+sqr(yarrout[4])+sqr(yarrout[5]) ); 651 inv_vel_mag_sq = 1.0 / vel_mag_sq; 690 inv_vel_mag_sq = 1.0 / vel_mag_sq; 652 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_v 691 dyerr_pos_sq = ( sqr(yerr_vec[0])+sqr(yerr_vec[1])+sqr(yerr_vec[2])); 653 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_v 692 dyerr_mom_sq = ( sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 654 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_ma 693 dyerr_mom_rel_sq = dyerr_mom_sq * inv_vel_mag_sq; 655 694 656 // Calculate also the change in the momentum 695 // Calculate also the change in the momentum squared also ??? 657 // G4double veloc_square = y_posvel.GetVeloc 696 // G4double veloc_square = y_posvel.GetVelocity().mag2(); 658 // ... 697 // ... 659 698 660 #ifdef RETURN_A_NEW_STEP_LENGTH 699 #ifdef RETURN_A_NEW_STEP_LENGTH 661 // The following step cannot be done here be 700 // The following step cannot be done here because "eps" is not known. 662 dyerr_len = std::sqrt( dyerr_len_sq ); 701 dyerr_len = std::sqrt( dyerr_len_sq ); 663 dyerr_len_sq /= eps ; 702 dyerr_len_sq /= eps ; 664 703 665 // Look at the velocity deviation ? 704 // Look at the velocity deviation ? 666 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(ye 705 // sqr(yerr_vec[3])+sqr(yerr_vec[4])+sqr(yerr_vec[5])); 667 706 668 // Set suggested new step 707 // Set suggested new step 669 hstep = ComputeNewStepSize( dyerr_len, hstep << 708 hstep= ComputeNewStepSize( dyerr_len, hstep); 670 #endif 709 #endif 671 710 672 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr( 711 if( dyerr_pos_sq > ( dyerr_mom_rel_sq * sqr(hstep) ) ) 673 { 712 { 674 dyerr = std::sqrt(dyerr_pos_sq); 713 dyerr = std::sqrt(dyerr_pos_sq); 675 } 714 } 676 else 715 else 677 { 716 { 678 // Scale it to the current step size - for 717 // Scale it to the current step size - for now 679 dyerr = std::sqrt(dyerr_mom_rel_sq) * hste 718 dyerr = std::sqrt(dyerr_mom_rel_sq) * hstep; 680 } 719 } 681 720 682 return true; 721 return true; 683 } 722 } 684 723 685 // ------------------------------------------- 724 // -------------------------------------------------------------------------- 686 725 687 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 726 #ifdef QUICK_ADV_ARRAY_IN_AND_OUT 688 G4bool G4MagInt_Driver::QuickAdvance(G4double << 727 G4bool G4MagInt_Driver::QuickAdvance( 689 const G4double << 728 G4double yarrin[], // In 690 G4double << 729 const G4double dydx[], 691 G4double << 730 G4double hstep, // In 692 G4double << 731 G4double yarrout[], 693 G4double << 732 G4double& dchord_step, >> 733 G4double& dyerr ) // In length 694 { 734 { 695 G4Exception("G4MagInt_Driver::QuickAdvance() 735 G4Exception("G4MagInt_Driver::QuickAdvance()", "GeomField0001", 696 FatalException, "Not yet impleme 736 FatalException, "Not yet implemented."); 697 dyerr = dchord_step = hstep * yarrin[0] * dy 737 dyerr = dchord_step = hstep * yarrin[0] * dydx[0]; 698 yarrout[0]= yarrin[0]; 738 yarrout[0]= yarrin[0]; 699 } 739 } 700 #endif 740 #endif 701 741 702 // ------------------------------------------- 742 // -------------------------------------------------------------------------- 703 743 704 // This method computes new step sizes - but d << 744 // This method computes new step sizes - but does not limit changes to 705 // within certain factors << 745 // within certain factors 706 // 746 // 707 G4double G4MagInt_Driver:: 747 G4double G4MagInt_Driver:: 708 ComputeNewStepSize_WithoutReductionLimit(G4dou << 748 ComputeNewStepSize(G4double errMaxNorm, // max error (normalised) 709 G4double hstepCurrent) // 749 G4double hstepCurrent) // current step size 710 { 750 { 711 G4double hnew; 751 G4double hnew; 712 752 713 // Compute size of next Step for a failed st 753 // Compute size of next Step for a failed step 714 if(errMaxNorm > 1.0 ) 754 if(errMaxNorm > 1.0 ) 715 { 755 { 716 // Step failed; compute the size of retria 756 // Step failed; compute the size of retrial Step. 717 hnew = GetSafety()*hstepCurrent*std::pow(e 757 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 718 } 758 } 719 else if(errMaxNorm > 0.0 ) 759 else if(errMaxNorm > 0.0 ) 720 { 760 { 721 // Compute size of next Step for a success 761 // Compute size of next Step for a successful step 722 hnew = GetSafety()*hstepCurrent*std::pow(e 762 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()) ; 723 } 763 } 724 else 764 else 725 { 765 { 726 // if error estimate is zero (possible) or 766 // if error estimate is zero (possible) or negative (dubious) 727 hnew = max_stepping_increase * hstepCurren 767 hnew = max_stepping_increase * hstepCurrent; 728 } 768 } 729 769 730 return hnew; 770 return hnew; 731 } 771 } 732 772 733 // ------------------------------------------- 773 // --------------------------------------------------------------------------- 734 774 735 G4double << 736 G4MagInt_Driver::ComputeNewStepSize( << 737 G4double errMaxNorm << 738 G4double hstepCurre << 739 { << 740 // Legacy behaviour: << 741 return ComputeNewStepSize_WithoutReductionL << 742 // 'Improved' behaviour - at least more con << 743 // return ComputeNewStepSize_WithinLimits( << 744 } << 745 << 746 // This method computes new step sizes limitin 775 // This method computes new step sizes limiting changes within certain factors 747 // 776 // 748 // It shares its logic with AccurateAdvance. 777 // It shares its logic with AccurateAdvance. 749 // They are kept separate currently for optimi 778 // They are kept separate currently for optimisation. 750 // 779 // 751 G4double 780 G4double 752 G4MagInt_Driver::ComputeNewStepSize_WithinLimi 781 G4MagInt_Driver::ComputeNewStepSize_WithinLimits( 753 G4double errMaxNorm 782 G4double errMaxNorm, // max error (normalised) 754 G4double hstepCurre 783 G4double hstepCurrent) // current step size 755 { 784 { 756 G4double hnew; 785 G4double hnew; 757 786 758 // Compute size of next Step for a failed st 787 // Compute size of next Step for a failed step 759 if (errMaxNorm > 1.0 ) 788 if (errMaxNorm > 1.0 ) 760 { 789 { 761 // Step failed; compute the size of retria 790 // Step failed; compute the size of retrial Step. 762 hnew = GetSafety()*hstepCurrent*std::pow(e 791 hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPshrnk()) ; 763 792 764 if (hnew < max_stepping_decrease*hstepCurr 793 if (hnew < max_stepping_decrease*hstepCurrent) 765 { 794 { 766 hnew = max_stepping_decrease*hstepCurren 795 hnew = max_stepping_decrease*hstepCurrent ; 767 // reduce stepsize, b 796 // reduce stepsize, but no more 768 // than this factor ( 797 // than this factor (value= 1/10) 769 } 798 } 770 } 799 } 771 else 800 else 772 { 801 { 773 // Compute size of next Step for a success 802 // Compute size of next Step for a successful step 774 if (errMaxNorm > errcon) 803 if (errMaxNorm > errcon) 775 { hnew = GetSafety()*hstepCurrent*std::po 804 { hnew = GetSafety()*hstepCurrent*std::pow(errMaxNorm,GetPgrow()); } 776 else // No more than a factor of 5 increa 805 else // No more than a factor of 5 increase 777 { hnew = max_stepping_increase * hstepCur 806 { hnew = max_stepping_increase * hstepCurrent; } 778 } 807 } 779 return hnew; 808 return hnew; 780 } 809 } 781 810 782 // ------------------------------------------- 811 // --------------------------------------------------------------------------- 783 812 784 void G4MagInt_Driver::PrintStatus( const G4dou << 813 void G4MagInt_Driver::PrintStatus( const G4double* StartArr, 785 G4dou << 814 G4double xstart, 786 const G4dou << 815 const G4double* CurrentArr, 787 G4dou << 816 G4double xcurrent, 788 G4dou << 817 G4double requestStep, 789 G4int << 818 G4int subStepNo) 790 // Potentially add as arguments: 819 // Potentially add as arguments: 791 // <dydx> 820 // <dydx> - as Initial Force 792 // stepTaken 821 // stepTaken(hdid) - last step taken 793 // nextStep 822 // nextStep (hnext) - proposal for size 794 { 823 { 795 G4FieldTrack StartFT(G4ThreeVector(0,0,0), 824 G4FieldTrack StartFT(G4ThreeVector(0,0,0), 796 G4ThreeVector(0,0,0), 0., 0., 825 G4ThreeVector(0,0,0), 0., 0., 0., 0. ); 797 G4FieldTrack CurrentFT (StartFT); 826 G4FieldTrack CurrentFT (StartFT); 798 827 799 StartFT.LoadFromArray( StartArr, fNoIntegra 828 StartFT.LoadFromArray( StartArr, fNoIntegrationVariables); 800 StartFT.SetCurveLength( xstart); 829 StartFT.SetCurveLength( xstart); 801 CurrentFT.LoadFromArray( CurrentArr, fNoInt 830 CurrentFT.LoadFromArray( CurrentArr, fNoIntegrationVariables); 802 CurrentFT.SetCurveLength( xcurrent ); 831 CurrentFT.SetCurveLength( xcurrent ); 803 832 804 PrintStatus(StartFT, CurrentFT, requestStep 833 PrintStatus(StartFT, CurrentFT, requestStep, subStepNo ); 805 } 834 } 806 835 807 // ------------------------------------------- 836 // --------------------------------------------------------------------------- 808 837 809 void G4MagInt_Driver::PrintStatus(const G4Fiel << 838 void G4MagInt_Driver::PrintStatus( 810 const G4Fiel << 839 const G4FieldTrack& StartFT, 811 G4doub << 840 const G4FieldTrack& CurrentFT, 812 G4int << 841 G4double requestStep, >> 842 G4int subStepNo) 813 { 843 { 814 G4int verboseLevel= fVerboseLevel; 844 G4int verboseLevel= fVerboseLevel; 815 const G4int noPrecision = 5; 845 const G4int noPrecision = 5; 816 G4long oldPrec= G4cout.precision(noPrecisi << 846 G4int oldPrec= G4cout.precision(noPrecision); 817 // G4cout.setf(ios_base::fixed,ios_base::f 847 // G4cout.setf(ios_base::fixed,ios_base::floatfield); 818 848 819 const G4ThreeVector StartPosition= S 849 const G4ThreeVector StartPosition= StartFT.GetPosition(); 820 const G4ThreeVector StartUnitVelocity= S 850 const G4ThreeVector StartUnitVelocity= StartFT.GetMomentumDir(); 821 const G4ThreeVector CurrentPosition= C 851 const G4ThreeVector CurrentPosition= CurrentFT.GetPosition(); 822 const G4ThreeVector CurrentUnitVelocity= C 852 const G4ThreeVector CurrentUnitVelocity= CurrentFT.GetMomentumDir(); 823 853 824 G4double DotStartCurrentVeloc= StartUnitV 854 G4double DotStartCurrentVeloc= StartUnitVelocity.dot(CurrentUnitVelocity); 825 855 826 G4double step_len= CurrentFT.GetCurveLengt 856 G4double step_len= CurrentFT.GetCurveLength() - StartFT.GetCurveLength(); 827 G4double subStepSize = step_len; 857 G4double subStepSize = step_len; 828 858 829 if( (subStepNo <= 1) || (verboseLevel > 3) 859 if( (subStepNo <= 1) || (verboseLevel > 3) ) 830 { 860 { 831 subStepNo = - subStepNo; // To a 861 subStepNo = - subStepNo; // To allow printing banner 832 862 833 G4cout << std::setw( 6) << " " << std: 863 G4cout << std::setw( 6) << " " << std::setw( 25) 834 << " G4MagInt_Driver: Current Po 864 << " G4MagInt_Driver: Current Position and Direction" << " " 835 << G4endl; 865 << G4endl; 836 G4cout << std::setw( 5) << "Step#" << " 866 G4cout << std::setw( 5) << "Step#" << " " 837 << std::setw( 7) << "s-curve" << 867 << std::setw( 7) << "s-curve" << " " 838 << std::setw( 9) << "X(mm)" << " 868 << std::setw( 9) << "X(mm)" << " " 839 << std::setw( 9) << "Y(mm)" << " 869 << std::setw( 9) << "Y(mm)" << " " 840 << std::setw( 9) << "Z(mm)" << " 870 << std::setw( 9) << "Z(mm)" << " " 841 << std::setw( 8) << " N_x " << " 871 << std::setw( 8) << " N_x " << " " 842 << std::setw( 8) << " N_y " << " 872 << std::setw( 8) << " N_y " << " " 843 << std::setw( 8) << " N_z " << " 873 << std::setw( 8) << " N_z " << " " 844 << std::setw( 8) << " N^2-1 " << 874 << std::setw( 8) << " N^2-1 " << " " 845 << std::setw(10) << " N(0).N " < 875 << std::setw(10) << " N(0).N " << " " 846 << std::setw( 7) << "KinEner " < 876 << std::setw( 7) << "KinEner " << " " 847 << std::setw(12) << "Track-l" << 877 << std::setw(12) << "Track-l" << " " // Add the Sub-step ?? 848 << std::setw(12) << "Step-len" < 878 << std::setw(12) << "Step-len" << " " 849 << std::setw(12) << "Step-len" < 879 << std::setw(12) << "Step-len" << " " 850 << std::setw( 9) << "ReqStep" << 880 << std::setw( 9) << "ReqStep" << " " 851 << G4endl; 881 << G4endl; 852 } 882 } 853 883 854 if( (subStepNo <= 0) ) 884 if( (subStepNo <= 0) ) 855 { 885 { 856 PrintStat_Aux( StartFT, requestStep, 0. 886 PrintStat_Aux( StartFT, requestStep, 0., 857 0, 0.0, 887 0, 0.0, 1.0); 858 } 888 } 859 889 860 if( verboseLevel <= 3 ) 890 if( verboseLevel <= 3 ) 861 { 891 { 862 G4cout.precision(noPrecision); 892 G4cout.precision(noPrecision); 863 PrintStat_Aux( CurrentFT, requestStep, s 893 PrintStat_Aux( CurrentFT, requestStep, step_len, 864 subStepNo, subStepSize, D 894 subStepNo, subStepSize, DotStartCurrentVeloc ); 865 } 895 } 866 896 867 G4cout.precision(oldPrec); 897 G4cout.precision(oldPrec); 868 } 898 } 869 899 870 // ------------------------------------------- 900 // --------------------------------------------------------------------------- 871 901 872 void G4MagInt_Driver::PrintStat_Aux(const G4Fi << 902 void G4MagInt_Driver::PrintStat_Aux( 873 G4do << 903 const G4FieldTrack& aFieldTrack, 874 G4do << 904 G4double requestStep, 875 G4in << 905 G4double step_len, 876 G4do << 906 G4int subStepNo, 877 G4do << 907 G4double subStepSize, >> 908 G4double dotVeloc_StartCurr) 878 { 909 { 879 const G4ThreeVector Position = aFieldTrack << 910 const G4ThreeVector Position= aFieldTrack.GetPosition(); 880 const G4ThreeVector UnitVelocity = aFieldT << 911 const G4ThreeVector UnitVelocity= aFieldTrack.GetMomentumDir(); 881 912 882 if( subStepNo >= 0) 913 if( subStepNo >= 0) 883 { 914 { 884 G4cout << std::setw( 5) << subStepNo << 915 G4cout << std::setw( 5) << subStepNo << " "; 885 } 916 } 886 else 917 else 887 { 918 { 888 G4cout << std::setw( 5) << "Start" << " 919 G4cout << std::setw( 5) << "Start" << " "; 889 } 920 } 890 G4double curveLen= aFieldTrack.GetCurveLen 921 G4double curveLen= aFieldTrack.GetCurveLength(); 891 G4cout << std::setw( 7) << curveLen; 922 G4cout << std::setw( 7) << curveLen; 892 G4cout << std::setw( 9) << Position.x() << 923 G4cout << std::setw( 9) << Position.x() << " " 893 << std::setw( 9) << Position.y() << 924 << std::setw( 9) << Position.y() << " " 894 << std::setw( 9) << Position.z() << 925 << std::setw( 9) << Position.z() << " " 895 << std::setw( 8) << UnitVelocity.x( 926 << std::setw( 8) << UnitVelocity.x() << " " 896 << std::setw( 8) << UnitVelocity.y( 927 << std::setw( 8) << UnitVelocity.y() << " " 897 << std::setw( 8) << UnitVelocity.z( 928 << std::setw( 8) << UnitVelocity.z() << " "; 898 G4long oldprec= G4cout.precision(3); << 929 G4int oldprec= G4cout.precision(3); 899 G4cout << std::setw( 8) << UnitVelocity.ma 930 G4cout << std::setw( 8) << UnitVelocity.mag2()-1.0 << " "; 900 G4cout.precision(6); 931 G4cout.precision(6); 901 G4cout << std::setw(10) << dotVeloc_StartC 932 G4cout << std::setw(10) << dotVeloc_StartCurr << " "; 902 G4cout.precision(oldprec); 933 G4cout.precision(oldprec); 903 G4cout << std::setw( 7) << aFieldTrack.Get 934 G4cout << std::setw( 7) << aFieldTrack.GetKineticEnergy(); 904 G4cout << std::setw(12) << step_len << " " 935 G4cout << std::setw(12) << step_len << " "; 905 936 906 static G4ThreadLocal G4double oldCurveLeng << 937 static G4ThreadLocal G4double oldCurveLength= 0.0; 907 static G4ThreadLocal G4double oldSubStepLe << 938 static G4ThreadLocal G4double oldSubStepLength= 0.0; 908 static G4ThreadLocal G4int oldSubStepNo = << 939 static G4ThreadLocal G4int oldSubStepNo= -1; 909 940 910 G4double subStep_len = 0.0; << 941 G4double subStep_len=0.0; 911 if( curveLen > oldCurveLength ) 942 if( curveLen > oldCurveLength ) 912 { 943 { 913 subStep_len= curveLen - oldCurveLength; 944 subStep_len= curveLen - oldCurveLength; 914 } 945 } 915 else if (subStepNo == oldSubStepNo) 946 else if (subStepNo == oldSubStepNo) 916 { 947 { 917 subStep_len= oldSubStepLength; 948 subStep_len= oldSubStepLength; 918 } 949 } 919 oldCurveLength= curveLen; 950 oldCurveLength= curveLen; 920 oldSubStepLength= subStep_len; 951 oldSubStepLength= subStep_len; 921 952 922 G4cout << std::setw(12) << subStep_len << 953 G4cout << std::setw(12) << subStep_len << " "; 923 G4cout << std::setw(12) << subStepSize << 954 G4cout << std::setw(12) << subStepSize << " "; 924 if( requestStep != -1.0 ) 955 if( requestStep != -1.0 ) 925 { 956 { 926 G4cout << std::setw( 9) << requestStep < 957 G4cout << std::setw( 9) << requestStep << " "; 927 } 958 } 928 else 959 else 929 { 960 { 930 G4cout << std::setw( 9) << " InitialSte 961 G4cout << std::setw( 9) << " InitialStep " << " "; 931 } 962 } 932 G4cout << G4endl; 963 G4cout << G4endl; 933 } 964 } 934 965 935 // ------------------------------------------- 966 // --------------------------------------------------------------------------- 936 967 937 void G4MagInt_Driver::PrintStatisticsReport() 968 void G4MagInt_Driver::PrintStatisticsReport() 938 { 969 { 939 G4int noPrecBig = 6; << 970 G4int noPrecBig= 6; 940 G4long oldPrec = G4cout.precision(noPrecBig) << 971 G4int oldPrec= G4cout.precision(noPrecBig); 941 972 942 G4cout << "G4MagInt_Driver Statistics of ste 973 G4cout << "G4MagInt_Driver Statistics of steps undertaken. " << G4endl; 943 G4cout << "G4MagInt_Driver: Number of Steps: 974 G4cout << "G4MagInt_Driver: Number of Steps: " 944 << " Total= " << fNoTotalSteps 975 << " Total= " << fNoTotalSteps 945 << " Bad= " << fNoBadSteps 976 << " Bad= " << fNoBadSteps 946 << " Small= " << fNoSmallSteps 977 << " Small= " << fNoSmallSteps 947 << " Non-initial small= " << (fNoSmal 978 << " Non-initial small= " << (fNoSmallSteps-fNoInitialSmallSteps) 948 << G4endl; 979 << G4endl; 949 G4cout.precision(oldPrec); 980 G4cout.precision(oldPrec); 950 } 981 } 951 982 952 // ------------------------------------------- 983 // --------------------------------------------------------------------------- 953 984 954 void G4MagInt_Driver::SetSmallestFraction(G4do 985 void G4MagInt_Driver::SetSmallestFraction(G4double newFraction) 955 { 986 { 956 if( (newFraction > 1.e-16) && (newFraction < 987 if( (newFraction > 1.e-16) && (newFraction < 1e-8) ) 957 { 988 { 958 fSmallestFraction= newFraction; 989 fSmallestFraction= newFraction; 959 } 990 } 960 else 991 else 961 { 992 { 962 std::ostringstream message; 993 std::ostringstream message; 963 message << "Smallest Fraction not changed. 994 message << "Smallest Fraction not changed. " << G4endl 964 << " Proposed value was " << newF 995 << " Proposed value was " << newFraction << G4endl 965 << " Value must be between 1.e-8 996 << " Value must be between 1.e-8 and 1.e-16"; 966 G4Exception("G4MagInt_Driver::SetSmallestF 997 G4Exception("G4MagInt_Driver::SetSmallestFraction()", 967 "GeomField1001", JustWarning, 998 "GeomField1001", JustWarning, message); 968 } 999 } 969 } 1000 } 970 1001 971 void G4MagInt_Driver:: 1002 void G4MagInt_Driver:: 972 GetDerivatives(const G4FieldTrack& y_curr, G4d 1003 GetDerivatives(const G4FieldTrack& y_curr, G4double* dydx) const 973 { 1004 { 974 G4double ytemp[G4FieldTrack::ncompSVEC]; 1005 G4double ytemp[G4FieldTrack::ncompSVEC]; 975 y_curr.DumpToArray(ytemp); 1006 y_curr.DumpToArray(ytemp); 976 pIntStepper->RightHandSide(ytemp, dydx); << 1007 pIntStepper->RightHandSide(ytemp, dydx); // Avoid virtual call for GetStepper 977 // Avoid virtual call for GetStepper << 1008 // Was: GetStepper()->ComputeRightHandSide(ytemp, dydx); 978 // Was: GetStepper()->ComputeRightHandSi << 979 } 1009 } 980 1010 981 void G4MagInt_Driver::GetDerivatives(const G4F 1011 void G4MagInt_Driver::GetDerivatives(const G4FieldTrack& track, 982 G4double 1012 G4double dydx[], 983 G4double 1013 G4double field[]) const 984 { 1014 { 985 G4double ytemp[G4FieldTrack::ncompSVEC]; 1015 G4double ytemp[G4FieldTrack::ncompSVEC]; 986 track.DumpToArray(ytemp); 1016 track.DumpToArray(ytemp); 987 pIntStepper->RightHandSide(ytemp, dydx, fi 1017 pIntStepper->RightHandSide(ytemp, dydx, field); 988 } 1018 } 989 1019 990 G4EquationOfMotion* G4MagInt_Driver::GetEquati 1020 G4EquationOfMotion* G4MagInt_Driver::GetEquationOfMotion() 991 { 1021 { 992 return pIntStepper->GetEquationOfMotion(); 1022 return pIntStepper->GetEquationOfMotion(); 993 } 1023 } 994 1024 995 void G4MagInt_Driver::SetEquationOfMotion(G4Eq 1025 void G4MagInt_Driver::SetEquationOfMotion(G4EquationOfMotion *equation) 996 { 1026 { 997 pIntStepper->SetEquationOfMotion(equation) 1027 pIntStepper->SetEquationOfMotion(equation); 998 } 1028 } 999 1029 1000 const G4MagIntegratorStepper* G4MagInt_Driver 1030 const G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() const 1001 { 1031 { 1002 return pIntStepper; 1032 return pIntStepper; 1003 } 1033 } 1004 1034 1005 G4MagIntegratorStepper* G4MagInt_Driver::GetS 1035 G4MagIntegratorStepper* G4MagInt_Driver::GetStepper() 1006 { 1036 { 1007 return pIntStepper; 1037 return pIntStepper; 1008 } 1038 } 1009 1039 1010 void G4MagInt_Driver:: 1040 void G4MagInt_Driver:: 1011 RenewStepperAndAdjust(G4MagIntegratorStepper* << 1041 RenewStepperAndAdjust(G4MagIntegratorStepper *pItsStepper) 1012 { 1042 { 1013 pIntStepper = pItsStepper; << 1043 pIntStepper = pItsStepper; 1014 ReSetParameters(); 1044 ReSetParameters(); 1015 } << 1016 << 1017 void G4MagInt_Driver::StreamInfo( std::ostrea << 1018 { << 1019 os << "State of G4MagInt_Driver: " << std << 1020 os << " Max number of Steps = " << fMaxN << 1021 << " (base # = " << fMaxStepBase << << 1022 os << " Safety factor = " << safet << 1023 os << " Power - shrink = " << pshrn << 1024 os << " Power - grow = " << pgrow << 1025 os << " threshold (errcon) = " << errco << 1026 << 1027 os << " fMinimumStep = " << fMini << 1028 os << " Smallest Fraction = " << fSmal << 1029 << 1030 os << " No Integrat Vars = " << fNoIn << 1031 os << " Min No Vars = " << fMinN << 1032 os << " Num-Vars = " << fNoVa << 1033 << 1034 os << " verbose level = " << fVerb << 1035 os << " Reintegrates = " << DoesR << 1036 } << 1037 << 1038 void PrintInfo( const G4MagInt_Driver & magDr << 1039 { << 1040 os << "State of G4MagInt_Driver: " << std << 1041 os << " Max number of Steps = " << magDr << 1042 // << " (base # = " << magDrv.fMaxSt << 1043 os << " Safety factor = " << magDr << 1044 os << " Power - shrink = " << magDr << 1045 os << " Power - grow = " << magDr << 1046 os << " threshold (errcon) = " << magDr << 1047 << 1048 os << " fMinimumStep = " << magDr << 1049 os << " Smallest Fraction = " << magDr << 1050 << 1051 /***** << 1052 os << " No Integrat Vars = " << magDr << 1053 os << " Min No Vars = " << magDr << 1054 os << " Num-Vars = " << magDr << 1055 *****/ << 1056 os << " verbose level = " << magDr << 1057 os << " Reintegrates = " << magDr << 1058 } 1045 } 1059 1046