Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4ExplicitEuler.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4ExplicitEuler.cc (Version 11.3.0) and /geometry/magneticfield/src/G4ExplicitEuler.cc (Version 3.0)


                                                   >>   1 // This code implementation is the intellectual property of
                                                   >>   2 // the GEANT4 collaboration.
  1 //                                                  3 //
  2 // ******************************************* <<   4 // By copying, distributing or modifying the Program (or any work
  3 // * License and Disclaimer                    <<   5 // based on the Program) you indicate your acceptance of this statement,
  4 // *                                           <<   6 // and all its terms.
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                             << 
 26 // G4ExplicitEuler implementation              << 
 27 //                                                  7 //
 28 // Explicit Euler: x_1 = x_0 + h * dx_0        <<   8 // $Id: G4ExplicitEuler.cc,v 1.3 2000/11/01 15:15:53 gcosmo Exp $
                                                   >>   9 // GEANT4 tag $Name: geant4-03-00 $
 29 //                                                 10 //
 30 // Most simple approach for solving linear dif << 
 31 // Take the current derivative and add it to t << 
 32 //                                                 11 //
 33 // Created: W.Wander <wwc@mit.edu>, 12.09.1997 <<  12 //  Explicit Euler: x_1 = x_0 + h * dx_0
 34 // ------------------------------------------- <<  13 //
                                                   >>  14 //  most simple approach for solving linear differential equations.
                                                   >>  15 //  Take the current derivative and add it to the current position.
                                                   >>  16 //
                                                   >>  17 //  W.Wander <wwc@mit.edu> 12/09/97 
 35                                                    18 
 36 #include "G4ExplicitEuler.hh"                      19 #include "G4ExplicitEuler.hh"
 37 #include "G4ThreeVector.hh"                        20 #include "G4ThreeVector.hh"
 38                                                    21 
 39 //////////////////////////////////////////////     22 //////////////////////////////////////////////////////////////////////////
 40 //                                                 23 //
 41 // Constructor                                     24 // Constructor
 42 //                                             <<  25 
 43 G4ExplicitEuler::G4ExplicitEuler(G4EquationOfM <<  26 G4ExplicitEuler::G4ExplicitEuler(G4Mag_EqRhs *EqRhs, 
 44                                  G4int numberO     27                                  G4int numberOfVariables)
 45  : G4MagErrorStepper(EqRhs, numberOfVariables) <<  28  : G4MagErrorStepper(EqRhs, numberOfVariables),
                                                   >>  29    fNumberOfVariables(numberOfVariables)
 46 {                                                  30 {
 47 }                                                  31 }
 48                                                    32 
 49                                                    33 
 50 //////////////////////////////////////////////     34 ///////////////////////////////////////////////////////////////////////
 51 //                                                 35 //
 52 // Destructor                                      36 // Destructor
 53 //                                             <<  37 
 54 G4ExplicitEuler::~G4ExplicitEuler() = default; <<  38 G4ExplicitEuler::~G4ExplicitEuler()
                                                   >>  39 {
                                                   >>  40 }
 55                                                    41 
 56                                                    42 
 57 //////////////////////////////////////////////     43 ///////////////////////////////////////////////////////////////////////
 58 //                                                 44 //
 59 //                                                 45 //
 60 //                                             <<  46 
 61 void                                               47 void
 62 G4ExplicitEuler::DumbStepper( const G4double y <<  48 G4ExplicitEuler::DumbStepper( const G4double  yIn[],
 63             const G4double dydx[],             <<  49             const G4double  dydx[],
 64                   G4double h,                  <<  50                   G4double  h,
 65             G4double yOut[] )                  <<  51             G4double  yOut[]        )
 66 {                                                  52 {
 67   const G4int numberOfVariables = GetNumberOfV <<  53   //  const G4int nvar = 6 ; 
 68                                                    54 
 69   // Initialise time to t0, needed when it is  <<  55   G4int i;
 70                                                    56 
 71   for(G4int i=0; i< numberOfVariables; ++i)    <<  57   for(i=0;i<fNumberOfVariables;i++)
 72   {                                                58   {
 73     yOut[i] = yIn[i] + h*dydx[i] ;                 59     yOut[i] = yIn[i] + h*dydx[i] ;             // 1st and only Step 
 74   }                                                60   }
                                                   >>  61   // NormaliseTangentVector( yOut );           // this could harm more than
                                                   >>  62                                                // it helps - FIXME ???
 75                                                    63   
 76   return;                                      <<  64   return ;
                                                   >>  65 
 77 }                                                  66 }  
 78                                                    67