Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // << 26 // G4ExplicitEuler implementation << 27 // 7 // 28 // Explicit Euler: x_1 = x_0 + h * dx_0 << 8 // $Id: G4ExplicitEuler.cc,v 1.3 2000/11/01 15:15:53 gcosmo Exp $ >> 9 // GEANT4 tag $Name: geant4-03-00 $ 29 // 10 // 30 // Most simple approach for solving linear dif << 31 // Take the current derivative and add it to t << 32 // 11 // 33 // Created: W.Wander <wwc@mit.edu>, 12.09.1997 << 12 // Explicit Euler: x_1 = x_0 + h * dx_0 34 // ------------------------------------------- << 13 // >> 14 // most simple approach for solving linear differential equations. >> 15 // Take the current derivative and add it to the current position. >> 16 // >> 17 // W.Wander <wwc@mit.edu> 12/09/97 35 18 36 #include "G4ExplicitEuler.hh" 19 #include "G4ExplicitEuler.hh" 37 #include "G4ThreeVector.hh" 20 #include "G4ThreeVector.hh" 38 21 39 ////////////////////////////////////////////// 22 ////////////////////////////////////////////////////////////////////////// 40 // 23 // 41 // Constructor 24 // Constructor 42 // << 25 43 G4ExplicitEuler::G4ExplicitEuler(G4EquationOfM << 26 G4ExplicitEuler::G4ExplicitEuler(G4Mag_EqRhs *EqRhs, 44 G4int numberO 27 G4int numberOfVariables) 45 : G4MagErrorStepper(EqRhs, numberOfVariables) << 28 : G4MagErrorStepper(EqRhs, numberOfVariables), >> 29 fNumberOfVariables(numberOfVariables) 46 { 30 { 47 } 31 } 48 32 49 33 50 ////////////////////////////////////////////// 34 /////////////////////////////////////////////////////////////////////// 51 // 35 // 52 // Destructor 36 // Destructor 53 // << 37 54 G4ExplicitEuler::~G4ExplicitEuler() = default; << 38 G4ExplicitEuler::~G4ExplicitEuler() >> 39 { >> 40 } 55 41 56 42 57 ////////////////////////////////////////////// 43 /////////////////////////////////////////////////////////////////////// 58 // 44 // 59 // 45 // 60 // << 46 61 void 47 void 62 G4ExplicitEuler::DumbStepper( const G4double y << 48 G4ExplicitEuler::DumbStepper( const G4double yIn[], 63 const G4double dydx[], << 49 const G4double dydx[], 64 G4double h, << 50 G4double h, 65 G4double yOut[] ) << 51 G4double yOut[] ) 66 { 52 { 67 const G4int numberOfVariables = GetNumberOfV << 53 // const G4int nvar = 6 ; 68 54 69 // Initialise time to t0, needed when it is << 55 G4int i; 70 56 71 for(G4int i=0; i< numberOfVariables; ++i) << 57 for(i=0;i<fNumberOfVariables;i++) 72 { 58 { 73 yOut[i] = yIn[i] + h*dydx[i] ; 59 yOut[i] = yIn[i] + h*dydx[i] ; // 1st and only Step 74 } 60 } >> 61 // NormaliseTangentVector( yOut ); // this could harm more than >> 62 // it helps - FIXME ??? 75 63 76 return; << 64 return ; >> 65 77 } 66 } 78 67