Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4EqMagElectricField.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4EqMagElectricField.cc (Version 11.3.0) and /geometry/magneticfield/src/G4EqMagElectricField.cc (Version 3.1)


  1 //                                                  1 //
  2 // ******************************************* <<   2 //  This is the standard right-hand side for equation of motion.
  3 // * License and Disclaimer                    << 
  4 // *                                           << 
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                                  3 //
 26 // G4EqMagElectricField implementation         <<   4 //    The only case another is required is when using a moving reference
                                                   >>   5 //     frame ... or extending the class to include additional Forces,
                                                   >>   6 //     eg an electric field
 27 //                                                  7 //
 28 // This is the standard right-hand side for eq <<   8 //           10.11.98   V.Grichine
 29 //                                                  9 //
 30 // The only case another is required is when u << 
 31 // frame ... or extending the class to include << 
 32 // e.g., an electric field                     << 
 33 //                                             << 
 34 // Created: V.Grichine, 10.11.1998             << 
 35 // ------------------------------------------- << 
 36                                                << 
 37 #include "G4EqMagElectricField.hh"                 10 #include "G4EqMagElectricField.hh"
 38 #include "globals.hh"                          << 
 39 #include "G4PhysicalConstants.hh"              << 
 40 #include "G4SystemOfUnits.hh"                  << 
 41                                                << 
 42 G4EqMagElectricField::G4EqMagElectricField(G4E << 
 43   : G4EquationOfMotion( emField )              << 
 44 {                                              << 
 45 }                                              << 
 46                                                << 
 47 G4EqMagElectricField::~G4EqMagElectricField()  << 
 48                                                    11 
 49 void                                               12 void  
 50 G4EqMagElectricField::SetChargeMomentumMass(G4 <<  13 G4EqMagElectricField::SetChargeMomentumMass(G4double particleCharge, // e+ units
 51                                             G4 <<  14                                 G4double MomentumXc,
 52                                             G4     15                                             G4double particleMass)
 53 {                                                  16 {
 54    G4double pcharge = particleCharge.GetCharge <<  17    fElectroMagCof =  eplus*particleCharge*c_light ;
 55    fElectroMagCof =  eplus*pcharge*c_light ;   << 
 56    fMassCof = particleMass*particleMass ;          18    fMassCof = particleMass*particleMass ; 
 57 }                                                  19 }
 58                                                    20 
                                                   >>  21 
                                                   >>  22 
 59 void                                               23 void
 60 G4EqMagElectricField::EvaluateRhsGivenB(const      24 G4EqMagElectricField::EvaluateRhsGivenB(const G4double y[],
 61                                         const  <<  25                       const G4double Field[],
 62                                                <<  26                       G4double dydx[] ) const
 63 {                                                  27 {
                                                   >>  28 
 64    // Components of y:                             29    // Components of y:
 65    //    0-2 dr/ds,                                30    //    0-2 dr/ds, 
 66    //    3-5 dp/ds - momentum derivatives          31    //    3-5 dp/ds - momentum derivatives 
 67                                                    32 
 68    G4double pSquared = y[3]*y[3] + y[4]*y[4] +     33    G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
 69                                                    34 
 70    G4double Energy   = std::sqrt( pSquared + f <<  35    G4double cof2     = sqrt( pSquared + fMassCof )/c_light ;
 71    G4double cof2     = Energy/c_light ;        << 
 72                                                << 
 73    G4double pModuleInverse  = 1.0/std::sqrt(pS << 
 74                                                    36 
 75    G4double inverse_velocity = Energy * pModul <<  37    G4double pModuleInverse  = 1.0/sqrt(pSquared) ;
 76                                                    38 
 77    G4double cof1     = fElectroMagCof*pModuleI     39    G4double cof1     = fElectroMagCof*pModuleInverse ;
 78                                                    40 
                                                   >>  41    //  G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ;
                                                   >>  42 
                                                   >>  43 
 79    dydx[0] = y[3]*pModuleInverse ;                 44    dydx[0] = y[3]*pModuleInverse ;                         
 80    dydx[1] = y[4]*pModuleInverse ;                 45    dydx[1] = y[4]*pModuleInverse ;                         
 81    dydx[2] = y[5]*pModuleInverse ;                 46    dydx[2] = y[5]*pModuleInverse ;                        
 82                                                    47 
 83    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field     48    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
 84                                                    49    
 85    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field     50    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 
 86                                                    51  
 87    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field     52    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;  
 88                                                <<  53    return ;
 89    dydx[6] = 0.;//not used                     << 
 90                                                << 
 91    // Lab Time of flight                       << 
 92    //                                          << 
 93    dydx[7] = inverse_velocity;                 << 
 94                                                << 
 95    return;                                     << 
 96 }                                                  54 }
 97                                                    55