Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* << 2 // This is the standard right-hand side for equation of motion. 3 // * License and Disclaimer << 4 // * << 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 3 // 26 // G4EqMagElectricField implementation << 4 // The only case another is required is when using a moving reference >> 5 // frame ... or extending the class to include additional Forces, >> 6 // eg an electric field 27 // 7 // 28 // This is the standard right-hand side for eq << 8 // 10.11.98 V.Grichine 29 // 9 // 30 // The only case another is required is when u << 31 // frame ... or extending the class to include << 32 // e.g., an electric field << 33 // << 34 // Created: V.Grichine, 10.11.1998 << 35 // ------------------------------------------- << 36 << 37 #include "G4EqMagElectricField.hh" 10 #include "G4EqMagElectricField.hh" 38 #include "globals.hh" << 39 #include "G4PhysicalConstants.hh" << 40 #include "G4SystemOfUnits.hh" << 41 11 42 G4EqMagElectricField::G4EqMagElectricField(G4E << 12 void 43 : G4EquationOfMotion( emField ) << 13 G4EqMagElectricField:: >> 14 SetChargeMomentumMass( const G4double particleCharge, // e+ units >> 15 const G4double MomentumXc, >> 16 const G4double particleMass) 44 { 17 { >> 18 fElectroMagCof = eplus*c_squared ; >> 19 fElectroMagCof *= particleCharge/particleMass; >> 20 45 } 21 } 46 22 47 G4EqMagElectricField::~G4EqMagElectricField() << 48 23 49 void << 50 G4EqMagElectricField::SetChargeMomentumMass(G4 << 51 G4 << 52 G4 << 53 { << 54 G4double pcharge = particleCharge.GetCharge << 55 fElectroMagCof = eplus*pcharge*c_light ; << 56 fMassCof = particleMass*particleMass ; << 57 } << 58 24 59 void 25 void 60 G4EqMagElectricField::EvaluateRhsGivenB(const << 26 G4EqMagElectricField::EvaluateRhsGivenB( const G4double y[], 61 const << 27 const G4double Field[], 62 << 28 G4double dydx[] ) const 63 { 29 { >> 30 64 // Components of y: 31 // Components of y: 65 // 0-2 dr/ds, 32 // 0-2 dr/ds, 66 // 3-5 dp/ds - momentum derivatives << 33 // 3-5 dv/ds 67 << 34 // FCof() = charge/mass 68 G4double pSquared = y[3]*y[3] + y[4]*y[4] + << 69 35 70 G4double Energy = std::sqrt( pSquared + f << 36 G4double vSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 71 G4double cof2 = Energy/c_light ; << 72 37 73 G4double pModuleInverse = 1.0/std::sqrt(pS << 38 G4double vModule = sqrt(vSquared) ; 74 39 75 G4double inverse_velocity = Energy * pModul << 40 G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ; 76 41 77 G4double cof1 = fElectroMagCof*pModuleI << 42 G4double gammaReci = sqrt(1 - vSquared/c_squared) ; 78 43 79 dydx[0] = y[3]*pModuleInverse ; << 44 dydx[0] = y[3]/vModule ; 80 dydx[1] = y[4]*pModuleInverse ; << 45 dydx[1] = y[4]/vModule ; 81 dydx[2] = y[5]*pModuleInverse ; << 46 dydx[2] = y[5]/vModule ; 82 47 83 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field << 48 dydx[3] = fElectroMagCof*(Field[3] + (y[4]*Field[2] - y[5]*Field[1])/c_light - >> 49 y[3]*vDotE/c_light/c_light )*gammaReci/vModule ; 84 50 85 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field << 51 dydx[4] = fElectroMagCof*(Field[4] + (y[5]*Field[0] - y[3]*Field[2])/c_light - >> 52 y[4]*vDotE/c_light/c_light )*gammaReci/vModule ; 86 53 87 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field << 54 dydx[5] = fElectroMagCof*(Field[5] + (y[3]*Field[1] - y[4]*Field[0])/c_light - 88 << 55 y[5]*vDotE/c_light/c_light)*gammaReci/vModule ; 89 dydx[6] = 0.;//not used << 56 return ; 90 << 91 // Lab Time of flight << 92 // << 93 dydx[7] = inverse_velocity; << 94 << 95 return; << 96 } 57 } 97 58