Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithSpin implementation << 27 // 26 // 28 // Created: Chris Gong & Peter Gumplinger, 30. << 27 // $Id$ >> 28 // >> 29 // >> 30 // This is the standard right-hand side for equation of motion. >> 31 // >> 32 // 30.08.2007 Chris Gong, Peter Gumplinger >> 33 // 14.02.2009 Kevin Lynch >> 34 // 06.11.2009 Hiromi Iinuma >> 35 // 29 // ------------------------------------------- 36 // ------------------------------------------------------------------- 30 37 31 #include "G4EqEMFieldWithSpin.hh" 38 #include "G4EqEMFieldWithSpin.hh" 32 #include "G4ElectroMagneticField.hh" 39 #include "G4ElectroMagneticField.hh" 33 #include "G4ThreeVector.hh" 40 #include "G4ThreeVector.hh" 34 #include "globals.hh" 41 #include "globals.hh" 35 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 37 44 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele 45 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) 39 : G4EquationOfMotion( emField ) << 46 : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.), >> 47 omegac(0.), anomaly(0.0011659208), pcharge(0.), E(0.), gamma(0.), beta(0.) 40 { 48 { 41 } 49 } 42 50 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() = << 51 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() >> 52 { >> 53 } 44 54 45 void 55 void 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C << 56 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4double particleCharge, // e+ units 47 G4d << 57 G4double MomentumXc, 48 G4d << 58 G4double particleMass) 49 { 59 { 50 charge = particleCharge.GetCharge(); << 60 fElectroMagCof = eplus*particleCharge*c_light ; 51 mass = particleMass; << 61 fMassCof = particleMass*particleMass ; 52 magMoment = particleCharge.GetMagneticDipol << 62 53 spin = particleCharge.GetSpin(); << 63 omegac = (eplus/particleMass)*c_light; 54 << 55 fElectroMagCof = eplus*charge*c_light ; << 56 fMassCof = mass*mass; << 57 << 58 omegac = (eplus/mass)*c_light; << 59 << 60 G4double muB = 0.5*eplus*hbar_Planck/(mass/ << 61 << 62 G4double g_BMT; << 63 if ( spin != 0. ) << 64 { << 65 g_BMT = (std::abs(magMoment)/muB)/spin; << 66 } << 67 else << 68 { << 69 g_BMT = 2.; << 70 } << 71 64 72 anomaly = (g_BMT - 2.)/2.; << 65 pcharge = particleCharge; 73 66 74 G4double E = std::sqrt(sqr(MomentumXc)+sqr( << 67 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass)); 75 beta = MomentumXc/E; 68 beta = MomentumXc/E; 76 gamma = E/mass; << 69 gamma = E/particleMass; >> 70 77 } 71 } 78 72 79 void 73 void 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G 74 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], 81 const G 75 const G4double Field[], 82 G 76 G4double dydx[] ) const 83 { 77 { 84 78 85 // Components of y: 79 // Components of y: 86 // 0-2 dr/ds, 80 // 0-2 dr/ds, 87 // 3-5 dp/ds - momentum derivatives 81 // 3-5 dp/ds - momentum derivatives 88 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s 82 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives 89 83 90 // The BMT equation, following J.D.Jackson, 84 // The BMT equation, following J.D.Jackson, Classical 91 // Electrodynamics, Second Edition, 85 // Electrodynamics, Second Edition, 92 // dS/dt = (e/mc) S \cross 86 // dS/dt = (e/mc) S \cross 93 // [ (g/2-1 +1/\gamma) B 87 // [ (g/2-1 +1/\gamma) B 94 // -(g/2-1)\gamma/(\gamma+1) 88 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 95 // -(g/2-\gamma/(\gamma+1) \b 89 // -(g/2-\gamma/(\gamma+1) \beta \cross E ] 96 // where 90 // where 97 // S = \vec{s}, where S^2 = 1 91 // S = \vec{s}, where S^2 = 1 98 // B = \vec{B} 92 // B = \vec{B} 99 // \beta = \vec{\beta} = \beta \vec{u} with 93 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 100 // E = \vec{E} 94 // E = \vec{E} 101 95 102 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 96 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 103 97 104 G4double Energy = std::sqrt( pSquared + f 98 G4double Energy = std::sqrt( pSquared + fMassCof ); 105 G4double cof2 = Energy/c_light ; 99 G4double cof2 = Energy/c_light ; 106 100 107 G4double pModuleInverse = 1.0/std::sqrt(pS 101 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 108 102 109 G4double inverse_velocity = Energy * pModul 103 G4double inverse_velocity = Energy * pModuleInverse / c_light; 110 104 111 G4double cof1 = fElectroMagCof*pModuleInver << 105 G4double cof1 = fElectroMagCof*pModuleInverse ; 112 106 113 dydx[0] = y[3]*pModuleInverse ; 107 dydx[0] = y[3]*pModuleInverse ; 114 dydx[1] = y[4]*pModuleInverse ; 108 dydx[1] = y[4]*pModuleInverse ; 115 dydx[2] = y[5]*pModuleInverse ; 109 dydx[2] = y[5]*pModuleInverse ; 116 110 117 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 111 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 118 112 119 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 113 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 120 114 121 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 115 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 122 116 123 dydx[6] = dydx[8] = 0.;//not used 117 dydx[6] = dydx[8] = 0.;//not used 124 118 125 // Lab Time of flight 119 // Lab Time of flight 126 dydx[7] = inverse_velocity; 120 dydx[7] = inverse_velocity; 127 121 128 G4ThreeVector BField(Field[0],Field[1],Fiel 122 G4ThreeVector BField(Field[0],Field[1],Field[2]); 129 G4ThreeVector EField(Field[3],Field[4],Fiel 123 G4ThreeVector EField(Field[3],Field[4],Field[5]); 130 124 131 EField /= c_light; 125 EField /= c_light; 132 126 133 G4ThreeVector u(y[3], y[4], y[5]); 127 G4ThreeVector u(y[3], y[4], y[5]); 134 u *= pModuleInverse; 128 u *= pModuleInverse; 135 129 136 G4double udb = anomaly*beta*gamma/(1.+gamma 130 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 137 G4double ucb = (anomaly+1./gamma)/beta; 131 G4double ucb = (anomaly+1./gamma)/beta; 138 G4double uce = anomaly + 1./(gamma+1.); 132 G4double uce = anomaly + 1./(gamma+1.); 139 133 140 G4ThreeVector Spin(y[9],y[10],y[11]); 134 G4ThreeVector Spin(y[9],y[10],y[11]); 141 135 142 G4double pcharge; << 136 G4ThreeVector dSpin 143 if (charge == 0.) << 137 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) 144 { << 138 // from Jackson 145 pcharge = 1.; << 139 // -uce*Spin.cross(u.cross(EField)) ); 146 } << 140 // but this form has one less operation 147 else << 141 - uce*(u*(Spin*EField) - EField*(Spin*u)) ); 148 { << 149 pcharge = charge; << 150 } << 151 << 152 G4ThreeVector dSpin(0.,0.,0.); << 153 if (Spin.mag2() != 0.) << 154 { << 155 dSpin = pcharge*omegac*( ucb*(Spin.cross << 156 // from Jackson << 157 // -uce*Spin.cross( << 158 // but this form ha << 159 - uce*(u*(Spin*EField) - << 160 } << 161 142 162 dydx[ 9] = dSpin.x(); 143 dydx[ 9] = dSpin.x(); 163 dydx[10] = dSpin.y(); 144 dydx[10] = dSpin.y(); 164 dydx[11] = dSpin.z(); 145 dydx[11] = dSpin.z(); 165 146 166 return; << 147 return ; 167 } 148 } 168 149