Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithSpin implementation << 27 // 26 // 28 // Created: Chris Gong & Peter Gumplinger, 30. << 27 // $Id: G4EqEMFieldWithSpin.cc,v 1.8.2.1 2010/09/08 14:25:35 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-03-patch-02 $ >> 29 // >> 30 // >> 31 // This is the standard right-hand side for equation of motion. >> 32 // >> 33 // 30.08.2007 Chris Gong, Peter Gumplinger >> 34 // 14.02.2009 Kevin Lynch >> 35 // 06.11.2009 Hiromi Iinuma >> 36 // 29 // ------------------------------------------- 37 // ------------------------------------------------------------------- 30 38 31 #include "G4EqEMFieldWithSpin.hh" 39 #include "G4EqEMFieldWithSpin.hh" 32 #include "G4ElectroMagneticField.hh" 40 #include "G4ElectroMagneticField.hh" 33 #include "G4ThreeVector.hh" 41 #include "G4ThreeVector.hh" 34 #include "globals.hh" 42 #include "globals.hh" 35 #include "G4PhysicalConstants.hh" << 36 #include "G4SystemOfUnits.hh" << 37 43 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele 44 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) 39 : G4EquationOfMotion( emField ) << 45 : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.), >> 46 omegac(0.), anomaly(0.0011659208), pcharge(0.), E(0.), gamma(0.), beta(0.) 40 { 47 { 41 } 48 } 42 49 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() = << 50 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() >> 51 { >> 52 } 44 53 45 void 54 void 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C << 55 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4double particleCharge, // e+ units 47 G4d << 56 G4double MomentumXc, 48 G4d << 57 G4double particleMass) 49 { 58 { 50 charge = particleCharge.GetCharge(); << 59 fElectroMagCof = eplus*particleCharge*c_light ; 51 mass = particleMass; << 60 fMassCof = particleMass*particleMass ; 52 magMoment = particleCharge.GetMagneticDipol << 61 53 spin = particleCharge.GetSpin(); << 62 omegac = 0.105658387*GeV/particleMass * 2.837374841e-3*(rad/cm/kilogauss); 54 << 55 fElectroMagCof = eplus*charge*c_light ; << 56 fMassCof = mass*mass; << 57 << 58 omegac = (eplus/mass)*c_light; << 59 << 60 G4double muB = 0.5*eplus*hbar_Planck/(mass/ << 61 << 62 G4double g_BMT; << 63 if ( spin != 0. ) << 64 { << 65 g_BMT = (std::abs(magMoment)/muB)/spin; << 66 } << 67 else << 68 { << 69 g_BMT = 2.; << 70 } << 71 63 72 anomaly = (g_BMT - 2.)/2.; << 64 pcharge = particleCharge; 73 65 74 G4double E = std::sqrt(sqr(MomentumXc)+sqr( << 66 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass)); 75 beta = MomentumXc/E; 67 beta = MomentumXc/E; 76 gamma = E/mass; << 68 gamma = E/particleMass; >> 69 77 } 70 } 78 71 79 void 72 void 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G 73 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], 81 const G 74 const G4double Field[], 82 G 75 G4double dydx[] ) const 83 { 76 { 84 77 85 // Components of y: 78 // Components of y: 86 // 0-2 dr/ds, 79 // 0-2 dr/ds, 87 // 3-5 dp/ds - momentum derivatives 80 // 3-5 dp/ds - momentum derivatives 88 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s 81 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives 89 82 90 // The BMT equation, following J.D.Jackson, 83 // The BMT equation, following J.D.Jackson, Classical 91 // Electrodynamics, Second Edition, 84 // Electrodynamics, Second Edition, 92 // dS/dt = (e/mc) S \cross 85 // dS/dt = (e/mc) S \cross 93 // [ (g/2-1 +1/\gamma) B 86 // [ (g/2-1 +1/\gamma) B 94 // -(g/2-1)\gamma/(\gamma+1) 87 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 95 // -(g/2-\gamma/(\gamma+1) \b 88 // -(g/2-\gamma/(\gamma+1) \beta \cross E ] 96 // where 89 // where 97 // S = \vec{s}, where S^2 = 1 90 // S = \vec{s}, where S^2 = 1 98 // B = \vec{B} 91 // B = \vec{B} 99 // \beta = \vec{\beta} = \beta \vec{u} with 92 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 100 // E = \vec{E} 93 // E = \vec{E} 101 94 102 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 95 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 103 96 104 G4double Energy = std::sqrt( pSquared + f 97 G4double Energy = std::sqrt( pSquared + fMassCof ); 105 G4double cof2 = Energy/c_light ; 98 G4double cof2 = Energy/c_light ; 106 99 107 G4double pModuleInverse = 1.0/std::sqrt(pS 100 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 108 101 109 G4double inverse_velocity = Energy * pModul 102 G4double inverse_velocity = Energy * pModuleInverse / c_light; 110 103 111 G4double cof1 = fElectroMagCof*pModuleInver << 104 G4double cof1 = fElectroMagCof*pModuleInverse ; 112 105 113 dydx[0] = y[3]*pModuleInverse ; 106 dydx[0] = y[3]*pModuleInverse ; 114 dydx[1] = y[4]*pModuleInverse ; 107 dydx[1] = y[4]*pModuleInverse ; 115 dydx[2] = y[5]*pModuleInverse ; 108 dydx[2] = y[5]*pModuleInverse ; 116 109 117 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 110 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 118 111 119 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 112 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 120 113 121 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 114 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 122 115 123 dydx[6] = dydx[8] = 0.;//not used 116 dydx[6] = dydx[8] = 0.;//not used 124 117 125 // Lab Time of flight 118 // Lab Time of flight 126 dydx[7] = inverse_velocity; 119 dydx[7] = inverse_velocity; 127 120 128 G4ThreeVector BField(Field[0],Field[1],Fiel 121 G4ThreeVector BField(Field[0],Field[1],Field[2]); 129 G4ThreeVector EField(Field[3],Field[4],Fiel 122 G4ThreeVector EField(Field[3],Field[4],Field[5]); 130 123 131 EField /= c_light; 124 EField /= c_light; 132 125 133 G4ThreeVector u(y[3], y[4], y[5]); 126 G4ThreeVector u(y[3], y[4], y[5]); 134 u *= pModuleInverse; 127 u *= pModuleInverse; 135 128 136 G4double udb = anomaly*beta*gamma/(1.+gamma 129 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 137 G4double ucb = (anomaly+1./gamma)/beta; 130 G4double ucb = (anomaly+1./gamma)/beta; 138 G4double uce = anomaly + 1./(gamma+1.); 131 G4double uce = anomaly + 1./(gamma+1.); 139 132 140 G4ThreeVector Spin(y[9],y[10],y[11]); 133 G4ThreeVector Spin(y[9],y[10],y[11]); 141 134 142 G4double pcharge; << 135 G4ThreeVector dSpin 143 if (charge == 0.) << 136 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) 144 { << 137 // from Jackson 145 pcharge = 1.; << 138 // -uce*Spin.cross(u.cross(EField)) ); 146 } << 139 // but this form has one less operation 147 else << 140 - uce*(u*(Spin*EField) - EField*(Spin*u)) ); 148 { << 149 pcharge = charge; << 150 } << 151 << 152 G4ThreeVector dSpin(0.,0.,0.); << 153 if (Spin.mag2() != 0.) << 154 { << 155 dSpin = pcharge*omegac*( ucb*(Spin.cross << 156 // from Jackson << 157 // -uce*Spin.cross( << 158 // but this form ha << 159 - uce*(u*(Spin*EField) - << 160 } << 161 141 162 dydx[ 9] = dSpin.x(); 142 dydx[ 9] = dSpin.x(); 163 dydx[10] = dSpin.y(); 143 dydx[10] = dSpin.y(); 164 dydx[11] = dSpin.z(); 144 dydx[11] = dSpin.z(); 165 145 166 return; << 146 return ; 167 } 147 } 168 148