Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithSpin implementation << 27 // 26 // 28 // Created: Chris Gong & Peter Gumplinger, 30. << 27 // $Id: G4EqEMFieldWithSpin.cc,v 1.1.2.1 2008/04/24 12:43:57 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ >> 29 // >> 30 // >> 31 // This is the standard right-hand side for equation of motion. >> 32 // >> 33 // The only case another is required is when using a moving reference >> 34 // frame ... or extending the class to include additional Forces, >> 35 // eg an electric field >> 36 // >> 37 // 30.08.2007 Chris Gong, Peter Gumplinger >> 38 // 29 // ------------------------------------------- 39 // ------------------------------------------------------------------- 30 40 31 #include "G4EqEMFieldWithSpin.hh" 41 #include "G4EqEMFieldWithSpin.hh" 32 #include "G4ElectroMagneticField.hh" << 33 #include "G4ThreeVector.hh" 42 #include "G4ThreeVector.hh" 34 #include "globals.hh" 43 #include "globals.hh" 35 #include "G4PhysicalConstants.hh" << 36 #include "G4SystemOfUnits.hh" << 37 44 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele 45 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) 39 : G4EquationOfMotion( emField ) << 46 : G4EquationOfMotion( emField ) { anomaly = 1.165923e-3; } 40 { << 41 } << 42 << 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() = << 44 47 45 void 48 void 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C << 49 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4double particleCharge, // e+ units 47 G4d << 50 G4double MomentumXc, 48 G4d << 51 G4double particleMass) 49 { 52 { 50 charge = particleCharge.GetCharge(); << 53 fElectroMagCof = eplus*particleCharge*c_light ; 51 mass = particleMass; << 54 fMassCof = particleMass*particleMass ; 52 magMoment = particleCharge.GetMagneticDipol << 55 53 spin = particleCharge.GetSpin(); << 56 omegac = 0.105658387*GeV/particleMass * 2.837374841e-3*(rad/cm/kilogauss); 54 << 55 fElectroMagCof = eplus*charge*c_light ; << 56 fMassCof = mass*mass; << 57 << 58 omegac = (eplus/mass)*c_light; << 59 << 60 G4double muB = 0.5*eplus*hbar_Planck/(mass/ << 61 << 62 G4double g_BMT; << 63 if ( spin != 0. ) << 64 { << 65 g_BMT = (std::abs(magMoment)/muB)/spin; << 66 } << 67 else << 68 { << 69 g_BMT = 2.; << 70 } << 71 57 72 anomaly = (g_BMT - 2.)/2.; << 58 ParticleCharge = particleCharge; 73 59 74 G4double E = std::sqrt(sqr(MomentumXc)+sqr( << 60 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass)); 75 beta = MomentumXc/E; 61 beta = MomentumXc/E; 76 gamma = E/mass; << 62 gamma = E/particleMass; 77 } 63 } 78 64 >> 65 >> 66 79 void 67 void 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G 68 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], 81 const G << 69 const G4double Field[], 82 G << 70 G4double dydx[] ) const 83 { 71 { 84 72 85 // Components of y: 73 // Components of y: 86 // 0-2 dr/ds, << 74 // 0-2 dr/ds, 87 // 3-5 dp/ds - momentum derivatives << 75 // 3-5 dp/ds - momentum derivatives 88 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s << 89 << 90 // The BMT equation, following J.D.Jackson, << 91 // Electrodynamics, Second Edition, << 92 // dS/dt = (e/mc) S \cross << 93 // [ (g/2-1 +1/\gamma) B << 94 // -(g/2-1)\gamma/(\gamma+1) << 95 // -(g/2-\gamma/(\gamma+1) \b << 96 // where << 97 // S = \vec{s}, where S^2 = 1 << 98 // B = \vec{B} << 99 // \beta = \vec{\beta} = \beta \vec{u} with << 100 // E = \vec{E} << 101 76 102 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 77 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 103 78 104 G4double Energy = std::sqrt( pSquared + f 79 G4double Energy = std::sqrt( pSquared + fMassCof ); 105 G4double cof2 = Energy/c_light ; 80 G4double cof2 = Energy/c_light ; 106 81 107 G4double pModuleInverse = 1.0/std::sqrt(pS 82 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 108 83 >> 84 // G4double inverse_velocity = Energy * c_light * pModuleInverse; 109 G4double inverse_velocity = Energy * pModul 85 G4double inverse_velocity = Energy * pModuleInverse / c_light; 110 86 111 G4double cof1 = fElectroMagCof*pModuleInver << 87 G4double cof1 = fElectroMagCof*pModuleInverse ; >> 88 >> 89 // G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ; >> 90 112 91 113 dydx[0] = y[3]*pModuleInverse ; 92 dydx[0] = y[3]*pModuleInverse ; 114 dydx[1] = y[4]*pModuleInverse ; 93 dydx[1] = y[4]*pModuleInverse ; 115 dydx[2] = y[5]*pModuleInverse ; 94 dydx[2] = y[5]*pModuleInverse ; 116 95 117 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 96 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 118 97 119 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 98 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 120 99 121 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 100 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 122 101 123 dydx[6] = dydx[8] = 0.;//not used 102 dydx[6] = dydx[8] = 0.;//not used 124 103 125 // Lab Time of flight 104 // Lab Time of flight 126 dydx[7] = inverse_velocity; 105 dydx[7] = inverse_velocity; 127 106 128 G4ThreeVector BField(Field[0],Field[1],Fiel 107 G4ThreeVector BField(Field[0],Field[1],Field[2]); 129 G4ThreeVector EField(Field[3],Field[4],Fiel << 130 << 131 EField /= c_light; << 132 108 133 G4ThreeVector u(y[3], y[4], y[5]); 109 G4ThreeVector u(y[3], y[4], y[5]); 134 u *= pModuleInverse; 110 u *= pModuleInverse; 135 111 136 G4double udb = anomaly*beta*gamma/(1.+gamma 112 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 137 G4double ucb = (anomaly+1./gamma)/beta; 113 G4double ucb = (anomaly+1./gamma)/beta; 138 G4double uce = anomaly + 1./(gamma+1.); << 139 114 140 G4ThreeVector Spin(y[9],y[10],y[11]); 115 G4ThreeVector Spin(y[9],y[10],y[11]); >> 116 G4ThreeVector dSpin; 141 117 142 G4double pcharge; << 118 dSpin = ParticleCharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u))); 143 if (charge == 0.) << 144 { << 145 pcharge = 1.; << 146 } << 147 else << 148 { << 149 pcharge = charge; << 150 } << 151 << 152 G4ThreeVector dSpin(0.,0.,0.); << 153 if (Spin.mag2() != 0.) << 154 { << 155 dSpin = pcharge*omegac*( ucb*(Spin.cross << 156 // from Jackson << 157 // -uce*Spin.cross( << 158 // but this form ha << 159 - uce*(u*(Spin*EField) - << 160 } << 161 119 162 dydx[ 9] = dSpin.x(); 120 dydx[ 9] = dSpin.x(); 163 dydx[10] = dSpin.y(); 121 dydx[10] = dSpin.y(); 164 dydx[11] = dSpin.z(); 122 dydx[11] = dSpin.z(); 165 123 166 return; << 124 return ; 167 } 125 } 168 126