Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4EqEMFieldWithSpin.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4EqEMFieldWithSpin.cc (Version 11.3.0) and /geometry/magneticfield/src/G4EqEMFieldWithSpin.cc (Version 5.2.p1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // G4EqEMFieldWithSpin implementation             
 27 //                                                
 28 // Created: Chris Gong & Peter Gumplinger, 30.    
 29 // -------------------------------------------    
 30                                                   
 31 #include "G4EqEMFieldWithSpin.hh"                 
 32 #include "G4ElectroMagneticField.hh"              
 33 #include "G4ThreeVector.hh"                       
 34 #include "globals.hh"                             
 35 #include "G4PhysicalConstants.hh"                 
 36 #include "G4SystemOfUnits.hh"                     
 37                                                   
 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele    
 39   : G4EquationOfMotion( emField )                 
 40 {                                                 
 41 }                                                 
 42                                                   
 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() =     
 44                                                   
 45 void                                              
 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C    
 47                                            G4d    
 48                                            G4d    
 49 {                                                 
 50    charge    = particleCharge.GetCharge();        
 51    mass      = particleMass;                      
 52    magMoment = particleCharge.GetMagneticDipol    
 53    spin      = particleCharge.GetSpin();          
 54                                                   
 55    fElectroMagCof =  eplus*charge*c_light ;       
 56    fMassCof = mass*mass;                          
 57                                                   
 58    omegac = (eplus/mass)*c_light;                 
 59                                                   
 60    G4double muB = 0.5*eplus*hbar_Planck/(mass/    
 61                                                   
 62    G4double g_BMT;                                
 63    if ( spin != 0. )                              
 64    {                                              
 65      g_BMT = (std::abs(magMoment)/muB)/spin;      
 66    }                                              
 67    else                                           
 68    {                                              
 69      g_BMT = 2.;                                  
 70    }                                              
 71                                                   
 72    anomaly = (g_BMT - 2.)/2.;                     
 73                                                   
 74    G4double E = std::sqrt(sqr(MomentumXc)+sqr(    
 75    beta  = MomentumXc/E;                          
 76    gamma = E/mass;                                
 77 }                                                 
 78                                                   
 79 void                                              
 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G    
 81                                        const G    
 82                                              G    
 83 {                                                 
 84                                                   
 85    // Components of y:                            
 86    //    0-2 dr/ds,                               
 87    //    3-5 dp/ds - momentum derivatives         
 88    //    9-11 dSpin/ds = (1/beta) dSpin/dt - s    
 89                                                   
 90    // The BMT equation, following J.D.Jackson,    
 91    // Electrodynamics, Second Edition,            
 92    // dS/dt = (e/mc) S \cross                     
 93    //              [ (g/2-1 +1/\gamma) B          
 94    //               -(g/2-1)\gamma/(\gamma+1)     
 95    //               -(g/2-\gamma/(\gamma+1) \b    
 96    // where                                       
 97    // S = \vec{s}, where S^2 = 1                  
 98    // B = \vec{B}                                 
 99    // \beta = \vec{\beta} = \beta \vec{u} with    
100    // E = \vec{E}                                 
101                                                   
102    G4double pSquared = y[3]*y[3] + y[4]*y[4] +    
103                                                   
104    G4double Energy   = std::sqrt( pSquared + f    
105    G4double cof2     = Energy/c_light ;           
106                                                   
107    G4double pModuleInverse  = 1.0/std::sqrt(pS    
108                                                   
109    G4double inverse_velocity = Energy * pModul    
110                                                   
111    G4double cof1 = fElectroMagCof*pModuleInver    
112                                                   
113    dydx[0] = y[3]*pModuleInverse ;                
114    dydx[1] = y[4]*pModuleInverse ;                
115    dydx[2] = y[5]*pModuleInverse ;                
116                                                   
117    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field    
118                                                   
119    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field    
120                                                   
121    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field    
122                                                   
123    dydx[6] = dydx[8] = 0.;//not used              
124                                                   
125    // Lab Time of flight                          
126    dydx[7] = inverse_velocity;                    
127                                                   
128    G4ThreeVector BField(Field[0],Field[1],Fiel    
129    G4ThreeVector EField(Field[3],Field[4],Fiel    
130                                                   
131    EField /= c_light;                             
132                                                   
133    G4ThreeVector u(y[3], y[4], y[5]);             
134    u *= pModuleInverse;                           
135                                                   
136    G4double udb = anomaly*beta*gamma/(1.+gamma    
137    G4double ucb = (anomaly+1./gamma)/beta;        
138    G4double uce = anomaly + 1./(gamma+1.);        
139                                                   
140    G4ThreeVector Spin(y[9],y[10],y[11]);          
141                                                   
142    G4double pcharge;                              
143    if (charge == 0.)                              
144    {                                              
145      pcharge = 1.;                                
146    }                                              
147    else                                           
148    {                                              
149      pcharge = charge;                            
150    }                                              
151                                                   
152    G4ThreeVector dSpin(0.,0.,0.);                 
153    if (Spin.mag2() != 0.)                         
154    {                                              
155       dSpin = pcharge*omegac*( ucb*(Spin.cross    
156                            // from Jackson        
157                            // -uce*Spin.cross(    
158                            // but this form ha    
159                      - uce*(u*(Spin*EField) -     
160    }                                              
161                                                   
162    dydx[ 9] = dSpin.x();                          
163    dydx[10] = dSpin.y();                          
164    dydx[11] = dSpin.z();                          
165                                                   
166    return;                                        
167 }                                                 
168