Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4EqEMFieldWithSpin.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4EqEMFieldWithSpin.cc (Version 11.3.0) and /geometry/magneticfield/src/G4EqEMFieldWithSpin.cc (Version 10.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4EqEMFieldWithSpin implementation          << 
 27 //                                                 26 //
 28 // Created: Chris Gong & Peter Gumplinger, 30. <<  27 //
                                                   >>  28 //
                                                   >>  29 //  This is the standard right-hand side for equation of motion.
                                                   >>  30 //
                                                   >>  31 //  30.08.2007 Chris Gong, Peter Gumplinger
                                                   >>  32 //  14.02.2009 Kevin Lynch
                                                   >>  33 //  06.11.2009 Hiromi Iinuma
                                                   >>  34 //
 29 // -------------------------------------------     35 // -------------------------------------------------------------------
 30                                                    36 
 31 #include "G4EqEMFieldWithSpin.hh"                  37 #include "G4EqEMFieldWithSpin.hh"
 32 #include "G4ElectroMagneticField.hh"               38 #include "G4ElectroMagneticField.hh"
 33 #include "G4ThreeVector.hh"                        39 #include "G4ThreeVector.hh"
 34 #include "globals.hh"                              40 #include "globals.hh"
 35 #include "G4PhysicalConstants.hh"                  41 #include "G4PhysicalConstants.hh"
 36 #include "G4SystemOfUnits.hh"                      42 #include "G4SystemOfUnits.hh"
 37                                                    43 
 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele     44 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField )
 39   : G4EquationOfMotion( emField )              <<  45   : G4EquationOfMotion( emField ), charge(0.), mass(0.), magMoment(0.),
                                                   >>  46     spin(0.), fElectroMagCof(0.), fMassCof(0.), omegac(0.), 
                                                   >>  47     anomaly(0.0011659208), beta(0.), gamma(0.)
 40 {                                                  48 {
 41 }                                                  49 }
 42                                                    50 
 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() =  <<  51 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin()
                                                   >>  52 {
                                                   >>  53 } 
 44                                                    54 
 45 void                                               55 void  
 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C     56 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4ChargeState particleCharge,
 47                                            G4d <<  57                                             G4double MomentumXc,
 48                                            G4d <<  58                                             G4double particleMass)
 49 {                                                  59 {
 50    charge    = particleCharge.GetCharge();         60    charge    = particleCharge.GetCharge();
 51    mass      = particleMass;                       61    mass      = particleMass;
 52    magMoment = particleCharge.GetMagneticDipol     62    magMoment = particleCharge.GetMagneticDipoleMoment();
 53    spin      = particleCharge.GetSpin();           63    spin      = particleCharge.GetSpin();
 54                                                    64 
 55    fElectroMagCof =  eplus*charge*c_light ;        65    fElectroMagCof =  eplus*charge*c_light ;
 56    fMassCof = mass*mass;                           66    fMassCof = mass*mass;
 57                                                    67 
 58    omegac = (eplus/mass)*c_light;                  68    omegac = (eplus/mass)*c_light;
 59                                                    69 
 60    G4double muB = 0.5*eplus*hbar_Planck/(mass/     70    G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared);
 61                                                    71 
 62    G4double g_BMT;                                 72    G4double g_BMT;
 63    if ( spin != 0. )                           <<  73    if ( spin != 0. ) g_BMT = (std::abs(magMoment)/muB)/spin;
 64    {                                           <<  74    else g_BMT = 2.;
 65      g_BMT = (std::abs(magMoment)/muB)/spin;   << 
 66    }                                           << 
 67    else                                        << 
 68    {                                           << 
 69      g_BMT = 2.;                               << 
 70    }                                           << 
 71                                                    75 
 72    anomaly = (g_BMT - 2.)/2.;                      76    anomaly = (g_BMT - 2.)/2.;
 73                                                    77 
 74    G4double E = std::sqrt(sqr(MomentumXc)+sqr(     78    G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass));
 75    beta  = MomentumXc/E;                           79    beta  = MomentumXc/E;
 76    gamma = E/mass;                                 80    gamma = E/mass;
 77 }                                                  81 }
 78                                                    82 
 79 void                                               83 void
 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G     84 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[],
 81                                        const G     85                                        const G4double Field[],
 82                                              G     86                                              G4double dydx[] ) const
 83 {                                                  87 {
 84                                                    88 
 85    // Components of y:                             89    // Components of y:
 86    //    0-2 dr/ds,                                90    //    0-2 dr/ds,
 87    //    3-5 dp/ds - momentum derivatives          91    //    3-5 dp/ds - momentum derivatives
 88    //    9-11 dSpin/ds = (1/beta) dSpin/dt - s     92    //    9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
 89                                                    93 
 90    // The BMT equation, following J.D.Jackson,     94    // The BMT equation, following J.D.Jackson, Classical
 91    // Electrodynamics, Second Edition,             95    // Electrodynamics, Second Edition,
 92    // dS/dt = (e/mc) S \cross                      96    // dS/dt = (e/mc) S \cross
 93    //              [ (g/2-1 +1/\gamma) B           97    //              [ (g/2-1 +1/\gamma) B
 94    //               -(g/2-1)\gamma/(\gamma+1)      98    //               -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
 95    //               -(g/2-\gamma/(\gamma+1) \b     99    //               -(g/2-\gamma/(\gamma+1) \beta \cross E ]
 96    // where                                       100    // where
 97    // S = \vec{s}, where S^2 = 1                  101    // S = \vec{s}, where S^2 = 1
 98    // B = \vec{B}                                 102    // B = \vec{B}
 99    // \beta = \vec{\beta} = \beta \vec{u} with    103    // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
100    // E = \vec{E}                                 104    // E = \vec{E}
101                                                   105 
102    G4double pSquared = y[3]*y[3] + y[4]*y[4] +    106    G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
103                                                   107 
104    G4double Energy   = std::sqrt( pSquared + f    108    G4double Energy   = std::sqrt( pSquared + fMassCof );
105    G4double cof2     = Energy/c_light ;           109    G4double cof2     = Energy/c_light ;
106                                                   110 
107    G4double pModuleInverse  = 1.0/std::sqrt(pS    111    G4double pModuleInverse  = 1.0/std::sqrt(pSquared) ;
108                                                   112 
109    G4double inverse_velocity = Energy * pModul    113    G4double inverse_velocity = Energy * pModuleInverse / c_light;
110                                                   114 
111    G4double cof1 = fElectroMagCof*pModuleInver << 115    G4double cof1     = fElectroMagCof*pModuleInverse ;
112                                                   116 
113    dydx[0] = y[3]*pModuleInverse ;                117    dydx[0] = y[3]*pModuleInverse ;                         
114    dydx[1] = y[4]*pModuleInverse ;                118    dydx[1] = y[4]*pModuleInverse ;                         
115    dydx[2] = y[5]*pModuleInverse ;                119    dydx[2] = y[5]*pModuleInverse ;                        
116                                                   120 
117    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field    121    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
118                                                   122    
119    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field    123    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 
120                                                   124  
121    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field    125    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;  
122                                                   126    
123    dydx[6] = dydx[8] = 0.;//not used              127    dydx[6] = dydx[8] = 0.;//not used
124                                                   128 
125    // Lab Time of flight                          129    // Lab Time of flight
126    dydx[7] = inverse_velocity;                    130    dydx[7] = inverse_velocity;
127                                                   131    
128    G4ThreeVector BField(Field[0],Field[1],Fiel    132    G4ThreeVector BField(Field[0],Field[1],Field[2]);
129    G4ThreeVector EField(Field[3],Field[4],Fiel    133    G4ThreeVector EField(Field[3],Field[4],Field[5]);
130                                                   134 
131    EField /= c_light;                             135    EField /= c_light;
132                                                   136 
133    G4ThreeVector u(y[3], y[4], y[5]);             137    G4ThreeVector u(y[3], y[4], y[5]);
134    u *= pModuleInverse;                           138    u *= pModuleInverse;
135                                                   139 
136    G4double udb = anomaly*beta*gamma/(1.+gamma    140    G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
137    G4double ucb = (anomaly+1./gamma)/beta;        141    G4double ucb = (anomaly+1./gamma)/beta;
138    G4double uce = anomaly + 1./(gamma+1.);        142    G4double uce = anomaly + 1./(gamma+1.);
139                                                   143 
140    G4ThreeVector Spin(y[9],y[10],y[11]);          144    G4ThreeVector Spin(y[9],y[10],y[11]);
141                                                   145 
142    G4double pcharge;                              146    G4double pcharge;
143    if (charge == 0.)                           << 147    if (charge == 0.) pcharge = 1.;
144    {                                           << 148    else pcharge = charge;
145      pcharge = 1.;                             << 
146    }                                           << 
147    else                                        << 
148    {                                           << 
149      pcharge = charge;                         << 
150    }                                           << 
151                                                   149 
152    G4ThreeVector dSpin(0.,0.,0.);                 150    G4ThreeVector dSpin(0.,0.,0.);
153    if (Spin.mag2() != 0.)                      << 151    if (Spin.mag2() != 0.) {
154    {                                           << 152       dSpin =
155       dSpin = pcharge*omegac*( ucb*(Spin.cross << 153       pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
156                            // from Jackson        154                            // from Jackson
157                            // -uce*Spin.cross(    155                            // -uce*Spin.cross(u.cross(EField)) );
158                            // but this form ha    156                            // but this form has one less operation
159                      - uce*(u*(Spin*EField) -     157                      - uce*(u*(Spin*EField) - EField*(Spin*u)) );
160    }                                              158    }
161                                                   159 
162    dydx[ 9] = dSpin.x();                          160    dydx[ 9] = dSpin.x();
163    dydx[10] = dSpin.y();                          161    dydx[10] = dSpin.y();
164    dydx[11] = dSpin.z();                          162    dydx[11] = dSpin.z();
165                                                   163 
166    return;                                     << 164    return ;
167 }                                                 165 }
168                                                   166