Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithSpin implementation << 27 // 26 // 28 // Created: Chris Gong & Peter Gumplinger, 30. << 27 // $Id: G4EqEMFieldWithSpin.cc 95822 2016-02-26 08:04:51Z gcosmo $ >> 28 // >> 29 // >> 30 // This is the standard right-hand side for equation of motion. >> 31 // >> 32 // 30.08.2007 Chris Gong, Peter Gumplinger >> 33 // 14.02.2009 Kevin Lynch >> 34 // 06.11.2009 Hiromi Iinuma >> 35 // 29 // ------------------------------------------- 36 // ------------------------------------------------------------------- 30 37 31 #include "G4EqEMFieldWithSpin.hh" 38 #include "G4EqEMFieldWithSpin.hh" 32 #include "G4ElectroMagneticField.hh" 39 #include "G4ElectroMagneticField.hh" 33 #include "G4ThreeVector.hh" 40 #include "G4ThreeVector.hh" 34 #include "globals.hh" 41 #include "globals.hh" 35 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 37 44 38 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4Ele 45 G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) 39 : G4EquationOfMotion( emField ) << 46 : G4EquationOfMotion( emField ), charge(0.), mass(0.), magMoment(0.), >> 47 spin(0.), fElectroMagCof(0.), fMassCof(0.), omegac(0.), >> 48 anomaly(0.0011659208), beta(0.), gamma(0.) 40 { 49 { 41 } 50 } 42 51 43 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() = << 52 G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() >> 53 { >> 54 } 44 55 45 void 56 void 46 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4C 57 G4EqEMFieldWithSpin::SetChargeMomentumMass(G4ChargeState particleCharge, 47 G4d << 58 G4double MomentumXc, 48 G4d << 59 G4double particleMass) 49 { 60 { 50 charge = particleCharge.GetCharge(); 61 charge = particleCharge.GetCharge(); 51 mass = particleMass; 62 mass = particleMass; 52 magMoment = particleCharge.GetMagneticDipol 63 magMoment = particleCharge.GetMagneticDipoleMoment(); 53 spin = particleCharge.GetSpin(); 64 spin = particleCharge.GetSpin(); 54 65 55 fElectroMagCof = eplus*charge*c_light ; 66 fElectroMagCof = eplus*charge*c_light ; 56 fMassCof = mass*mass; 67 fMassCof = mass*mass; 57 68 58 omegac = (eplus/mass)*c_light; 69 omegac = (eplus/mass)*c_light; 59 70 60 G4double muB = 0.5*eplus*hbar_Planck/(mass/ 71 G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared); 61 72 62 G4double g_BMT; 73 G4double g_BMT; 63 if ( spin != 0. ) << 74 if ( spin != 0. ) g_BMT = (std::abs(magMoment)/muB)/spin; 64 { << 75 else g_BMT = 2.; 65 g_BMT = (std::abs(magMoment)/muB)/spin; << 66 } << 67 else << 68 { << 69 g_BMT = 2.; << 70 } << 71 76 72 anomaly = (g_BMT - 2.)/2.; 77 anomaly = (g_BMT - 2.)/2.; 73 78 74 G4double E = std::sqrt(sqr(MomentumXc)+sqr( 79 G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass)); 75 beta = MomentumXc/E; 80 beta = MomentumXc/E; 76 gamma = E/mass; 81 gamma = E/mass; 77 } 82 } 78 83 79 void 84 void 80 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G 85 G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], 81 const G 86 const G4double Field[], 82 G 87 G4double dydx[] ) const 83 { 88 { 84 89 85 // Components of y: 90 // Components of y: 86 // 0-2 dr/ds, 91 // 0-2 dr/ds, 87 // 3-5 dp/ds - momentum derivatives 92 // 3-5 dp/ds - momentum derivatives 88 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s 93 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives 89 94 90 // The BMT equation, following J.D.Jackson, 95 // The BMT equation, following J.D.Jackson, Classical 91 // Electrodynamics, Second Edition, 96 // Electrodynamics, Second Edition, 92 // dS/dt = (e/mc) S \cross 97 // dS/dt = (e/mc) S \cross 93 // [ (g/2-1 +1/\gamma) B 98 // [ (g/2-1 +1/\gamma) B 94 // -(g/2-1)\gamma/(\gamma+1) 99 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 95 // -(g/2-\gamma/(\gamma+1) \b 100 // -(g/2-\gamma/(\gamma+1) \beta \cross E ] 96 // where 101 // where 97 // S = \vec{s}, where S^2 = 1 102 // S = \vec{s}, where S^2 = 1 98 // B = \vec{B} 103 // B = \vec{B} 99 // \beta = \vec{\beta} = \beta \vec{u} with 104 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 100 // E = \vec{E} 105 // E = \vec{E} 101 106 102 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 107 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 103 108 104 G4double Energy = std::sqrt( pSquared + f 109 G4double Energy = std::sqrt( pSquared + fMassCof ); 105 G4double cof2 = Energy/c_light ; 110 G4double cof2 = Energy/c_light ; 106 111 107 G4double pModuleInverse = 1.0/std::sqrt(pS 112 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 108 113 109 G4double inverse_velocity = Energy * pModul 114 G4double inverse_velocity = Energy * pModuleInverse / c_light; 110 115 111 G4double cof1 = fElectroMagCof*pModuleInver << 116 G4double cof1 = fElectroMagCof*pModuleInverse ; 112 117 113 dydx[0] = y[3]*pModuleInverse ; 118 dydx[0] = y[3]*pModuleInverse ; 114 dydx[1] = y[4]*pModuleInverse ; 119 dydx[1] = y[4]*pModuleInverse ; 115 dydx[2] = y[5]*pModuleInverse ; 120 dydx[2] = y[5]*pModuleInverse ; 116 121 117 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 122 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 118 123 119 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 124 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 120 125 121 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 126 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 122 127 123 dydx[6] = dydx[8] = 0.;//not used 128 dydx[6] = dydx[8] = 0.;//not used 124 129 125 // Lab Time of flight 130 // Lab Time of flight 126 dydx[7] = inverse_velocity; 131 dydx[7] = inverse_velocity; 127 132 128 G4ThreeVector BField(Field[0],Field[1],Fiel 133 G4ThreeVector BField(Field[0],Field[1],Field[2]); 129 G4ThreeVector EField(Field[3],Field[4],Fiel 134 G4ThreeVector EField(Field[3],Field[4],Field[5]); 130 135 131 EField /= c_light; 136 EField /= c_light; 132 137 133 G4ThreeVector u(y[3], y[4], y[5]); 138 G4ThreeVector u(y[3], y[4], y[5]); 134 u *= pModuleInverse; 139 u *= pModuleInverse; 135 140 136 G4double udb = anomaly*beta*gamma/(1.+gamma 141 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 137 G4double ucb = (anomaly+1./gamma)/beta; 142 G4double ucb = (anomaly+1./gamma)/beta; 138 G4double uce = anomaly + 1./(gamma+1.); 143 G4double uce = anomaly + 1./(gamma+1.); 139 144 140 G4ThreeVector Spin(y[9],y[10],y[11]); 145 G4ThreeVector Spin(y[9],y[10],y[11]); 141 146 142 G4double pcharge; 147 G4double pcharge; 143 if (charge == 0.) << 148 if (charge == 0.) pcharge = 1.; 144 { << 149 else pcharge = charge; 145 pcharge = 1.; << 146 } << 147 else << 148 { << 149 pcharge = charge; << 150 } << 151 150 152 G4ThreeVector dSpin(0.,0.,0.); 151 G4ThreeVector dSpin(0.,0.,0.); 153 if (Spin.mag2() != 0.) << 152 if (Spin.mag2() != 0.) { 154 { << 153 dSpin = 155 dSpin = pcharge*omegac*( ucb*(Spin.cross << 154 pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) 156 // from Jackson 155 // from Jackson 157 // -uce*Spin.cross( 156 // -uce*Spin.cross(u.cross(EField)) ); 158 // but this form ha 157 // but this form has one less operation 159 - uce*(u*(Spin*EField) - 158 - uce*(u*(Spin*EField) - EField*(Spin*u)) ); 160 } 159 } 161 160 162 dydx[ 9] = dSpin.x(); 161 dydx[ 9] = dSpin.x(); 163 dydx[10] = dSpin.y(); 162 dydx[10] = dSpin.y(); 164 dydx[11] = dSpin.z(); 163 dydx[11] = dSpin.z(); 165 164 166 return; << 165 return ; 167 } 166 } 168 167