Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4EqEMFieldWithEDM.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4EqEMFieldWithEDM.cc (Version 11.3.0) and /geometry/magneticfield/src/G4EqEMFieldWithEDM.cc (Version 9.5)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4EqEMFieldWithEDM implementation           <<  26 //
                                                   >>  27 // $Id: G4EqEMFieldWithEDM.cc,v 1.3 2010-07-14 10:00:36 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: not supported by cvs2svn $
                                                   >>  29 //
 27 //                                                 30 //
 28 //  This is the standard right-hand side for e     31 //  This is the standard right-hand side for equation of motion.
 29 //                                                 32 //
 30 // Created: Kevin Lynch, 19.02.2009 - Based on <<  33 //  19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin
 31 // Modified: Hiromi Iinuma, 06.11.2009 - see:  <<  34 //  06.11.2009 Hiromi Iinuma see:
 32 //   http://hypernews.slac.stanford.edu/HyperN <<  35 //  http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html
                                                   >>  36 //
 33 // -------------------------------------------     37 // -------------------------------------------------------------------
 34                                                    38 
 35 #include "G4EqEMFieldWithEDM.hh"                   39 #include "G4EqEMFieldWithEDM.hh"
 36 #include "G4ElectroMagneticField.hh"               40 #include "G4ElectroMagneticField.hh"
 37 #include "G4ThreeVector.hh"                        41 #include "G4ThreeVector.hh"
 38 #include "globals.hh"                              42 #include "globals.hh"
 39 #include "G4PhysicalConstants.hh"              << 
 40 #include "G4SystemOfUnits.hh"                  << 
 41                                                    43 
 42 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4Elect <<  44 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4ElectroMagneticField *emField )
 43   : G4EquationOfMotion( emField )              <<  45       : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.),
                                                   >>  46         omegac(0.), anomaly(0.0011659208), eta(0.), pcharge(0.), E(0.),
                                                   >>  47         gamma(0.), beta(0.)
 44 {                                                  48 {
 45 }                                                  49 }
 46                                                    50 
 47 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM() = de <<  51 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM()
                                                   >>  52 {
                                                   >>  53 } 
 48                                                    54 
 49 void                                               55 void  
 50 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4Ch <<  56 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4double particleCharge, // e+ units
 51                                           G4do <<  57                                             G4double MomentumXc,
 52                                           G4do <<  58                                             G4double particleMass)
 53 {                                                  59 {
 54    charge    = particleCharge.GetCharge();     <<  60    fElectroMagCof =  eplus*particleCharge*c_light ;
 55    mass      = particleMass;                   <<  61    fMassCof = particleMass*particleMass ;
 56    magMoment = particleCharge.GetMagneticDipol <<  62 
 57    spin      = particleCharge.GetSpin();       <<  63    omegac = (eplus/particleMass)*c_light;
 58                                                << 
 59    fElectroMagCof =  eplus*charge*c_light;     << 
 60    fMassCof = mass*mass;                       << 
 61                                                << 
 62    omegac = (eplus/mass)*c_light;              << 
 63                                                << 
 64    G4double muB = 0.5*eplus*hbar_Planck/(mass/ << 
 65                                                << 
 66    G4double g_BMT;                             << 
 67    if ( spin != 0. )                           << 
 68    {                                           << 
 69      g_BMT = (std::abs(magMoment)/muB)/spin;   << 
 70    }                                           << 
 71    else                                        << 
 72    {                                           << 
 73      g_BMT = 2.;                               << 
 74    }                                           << 
 75                                                    64 
 76    anomaly = (g_BMT - 2.)/2.;                  <<  65    pcharge = particleCharge;
 77                                                    66 
 78    G4double E = std::sqrt(sqr(MomentumXc)+sqr( <<  67    E = std::sqrt(sqr(MomentumXc)+sqr(particleMass));
 79    beta  = MomentumXc/E;                           68    beta  = MomentumXc/E;
 80    gamma = E/mass;                             <<  69    gamma = E/particleMass;
                                                   >>  70 
 81 }                                                  71 }
 82                                                    72 
 83 void                                               73 void
 84 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4     74 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4double y[],
 85                                       const G4 <<  75                                        const G4double Field[],
 86                                             G4 <<  76                                              G4double dydx[] ) const
 87 {                                                  77 {
 88                                                    78 
 89    // Components of y:                             79    // Components of y:
 90    //    0-2 dr/ds,                                80    //    0-2 dr/ds,
 91    //    3-5 dp/ds - momentum derivatives          81    //    3-5 dp/ds - momentum derivatives
 92    //    9-11 dSpin/ds = (1/beta) dSpin/dt - s     82    //    9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
 93                                                    83 
 94    // The BMT equation, following J.D.Jackson,     84    // The BMT equation, following J.D.Jackson, Classical
 95    // Electrodynamics, Second Edition, with ad     85    // Electrodynamics, Second Edition, with additions for EDM
 96    // evolution from                               86    // evolution from 
 97    // M.Nowakowski, et.al. Eur.J.Phys.26, pp 5     87    // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005)
 98    // or                                           88    // or
 99    // Silenko, Phys.Rev.ST Accel.Beams 9:03400     89    // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006)
100                                                    90 
101    // dS/dt = (e/m) S \cross                       91    // dS/dt = (e/m) S \cross 
102    // MDM:         [ (g/2-1 +1/\gamma) B           92    // MDM:         [ (g/2-1 +1/\gamma) B
103    //               -(g/2-1)\gamma/(\gamma+1)      93    //               -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 
104    //               -(g/2-\gamma/(\gamma+1) \b     94    //               -(g/2-\gamma/(\gamma+1) \beta \cross E 
105    //                                              95    //
106    // EDM:        eta/2( E - gamma/(gamma+1) \     96    // EDM:        eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E)
107    //                    + \beta \cross B ) ]      97    //                    + \beta \cross B ) ]
108    //                                              98    //
109    // where                                        99    // where
110    // S = \vec{s}, where S^2 = 1                  100    // S = \vec{s}, where S^2 = 1
111    // B = \vec{B}                                 101    // B = \vec{B}
112    // \beta = \vec{\beta} = \beta \vec{u} with    102    // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
113    // E = \vec{E}                                 103    // E = \vec{E}
114                                                   104 
115    G4double pSquared = y[3]*y[3] + y[4]*y[4] +    105    G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
116                                                   106 
117    G4double Energy   = std::sqrt( pSquared + f    107    G4double Energy   = std::sqrt( pSquared + fMassCof );
118    G4double cof2     = Energy/c_light ;           108    G4double cof2     = Energy/c_light ;
119                                                   109 
120    G4double pModuleInverse  = 1.0/std::sqrt(pS    110    G4double pModuleInverse  = 1.0/std::sqrt(pSquared) ;
121                                                   111 
122    G4double inverse_velocity = Energy * pModul    112    G4double inverse_velocity = Energy * pModuleInverse / c_light;
123                                                   113 
124    G4double cof1     = fElectroMagCof*pModuleI    114    G4double cof1     = fElectroMagCof*pModuleInverse ;
125                                                   115 
126    dydx[0] = y[3]*pModuleInverse ;                116    dydx[0] = y[3]*pModuleInverse ;                         
127    dydx[1] = y[4]*pModuleInverse ;                117    dydx[1] = y[4]*pModuleInverse ;                         
128    dydx[2] = y[5]*pModuleInverse ;                118    dydx[2] = y[5]*pModuleInverse ;                        
129                                                   119 
130    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field    120    dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
131                                                   121    
132    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field    122    dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 
133                                                   123  
134    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field    124    dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;  
135                                                   125    
136    dydx[6] = dydx[8] = 0.;//not used              126    dydx[6] = dydx[8] = 0.;//not used
137                                                   127 
138    // Lab Time of flight                          128    // Lab Time of flight
139    dydx[7] = inverse_velocity;                    129    dydx[7] = inverse_velocity;
140                                                   130    
141    G4ThreeVector BField(Field[0],Field[1],Fiel    131    G4ThreeVector BField(Field[0],Field[1],Field[2]);
142    G4ThreeVector EField(Field[3],Field[4],Fiel    132    G4ThreeVector EField(Field[3],Field[4],Field[5]);
143                                                   133 
144    EField /= c_light;                             134    EField /= c_light;
145                                                   135 
146    G4ThreeVector u(y[3], y[4], y[5]);             136    G4ThreeVector u(y[3], y[4], y[5]);
147    u *= pModuleInverse;                           137    u *= pModuleInverse;
148                                                   138 
149    G4double udb = anomaly*beta*gamma/(1.+gamma    139    G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
150    G4double ucb = (anomaly+1./gamma)/beta;        140    G4double ucb = (anomaly+1./gamma)/beta;
151    G4double uce = anomaly + 1./(gamma+1.);        141    G4double uce = anomaly + 1./(gamma+1.);
152    G4double ude = beta*gamma/(1.+gamma)*(EFiel    142    G4double ude = beta*gamma/(1.+gamma)*(EField*u);
153                                                   143 
154    G4ThreeVector Spin(y[9],y[10],y[11]);          144    G4ThreeVector Spin(y[9],y[10],y[11]);
155                                                   145 
156    G4double pcharge;                           << 146    G4ThreeVector dSpin
157    if (charge == 0.)                           << 147      = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
158    {                                           << 148                                // from Jackson
159      pcharge = 1.;                             << 149                                // -uce*Spin.cross(u.cross(EField)) )
160    }                                           << 150                                // but this form has one less operation
161    else                                        << 151                        - uce*(u*(Spin*EField) - EField*(Spin*u))
162    {                                           << 152                        + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u))
163      pcharge = charge;                         << 153                                // +Spin.cross(u.cross(Bfield))
164    }                                           << 154                        + (u*(Spin*BField) - BField*(Spin*u)) ) );
165                                                << 
166    G4ThreeVector dSpin(0.,0.,0.);              << 
167    if (Spin.mag2() != 0.)                      << 
168    {                                           << 
169       dSpin = pcharge*omegac*( ucb*(Spin.cross << 
170                                  // from Jacks << 
171                                  // -uce*Spin. << 
172                                  // but this f << 
173                          - uce*(u*(Spin*EField << 
174                          + eta/2.*(Spin.cross( << 
175                                  // +Spin.cros << 
176                          + (u*(Spin*BField) -  << 
177    }                                           << 
178                                                   155       
179    dydx[ 9] = dSpin.x();                          156    dydx[ 9] = dSpin.x();
180    dydx[10] = dSpin.y();                          157    dydx[10] = dSpin.y();
181    dydx[11] = dSpin.z();                          158    dydx[11] = dSpin.z();
182                                                   159 
183    return;                                     << 160    return ;
184 }                                                 161 }
185                                                   162