Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithEDM implementation << 26 // >> 27 // 27 // 28 // 28 // This is the standard right-hand side for e 29 // This is the standard right-hand side for equation of motion. 29 // 30 // 30 // Created: Kevin Lynch, 19.02.2009 - Based on << 31 // 19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin 31 // Modified: Hiromi Iinuma, 06.11.2009 - see: << 32 // 06.11.2009 Hiromi Iinuma see: 32 // http://hypernews.slac.stanford.edu/HyperN << 33 // http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html >> 34 // 33 // ------------------------------------------- 35 // ------------------------------------------------------------------- 34 36 35 #include "G4EqEMFieldWithEDM.hh" 37 #include "G4EqEMFieldWithEDM.hh" 36 #include "G4ElectroMagneticField.hh" 38 #include "G4ElectroMagneticField.hh" 37 #include "G4ThreeVector.hh" 39 #include "G4ThreeVector.hh" 38 #include "globals.hh" 40 #include "globals.hh" 39 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 42 #include "G4SystemOfUnits.hh" 41 43 42 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4Elect << 44 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4ElectroMagneticField *emField ) 43 : G4EquationOfMotion( emField ) << 45 : G4EquationOfMotion( emField ), charge(0.), mass(0.), magMoment(0.), >> 46 spin(0.), fElectroMagCof(0.), fMassCof(0.), omegac(0.), >> 47 anomaly(0.0011659208), eta(0.), beta(0.), gamma(0.) 44 { 48 { 45 } 49 } 46 50 47 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM() = de << 51 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM() >> 52 { >> 53 } 48 54 49 void 55 void 50 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4Ch 56 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4ChargeState particleCharge, 51 G4do 57 G4double MomentumXc, 52 G4do 58 G4double particleMass) 53 { 59 { 54 charge = particleCharge.GetCharge(); << 60 charge = particleCharge.GetCharge(); 55 mass = particleMass; 61 mass = particleMass; 56 magMoment = particleCharge.GetMagneticDipol 62 magMoment = particleCharge.GetMagneticDipoleMoment(); 57 spin = particleCharge.GetSpin(); 63 spin = particleCharge.GetSpin(); 58 64 59 fElectroMagCof = eplus*charge*c_light; 65 fElectroMagCof = eplus*charge*c_light; 60 fMassCof = mass*mass; 66 fMassCof = mass*mass; 61 67 62 omegac = (eplus/mass)*c_light; 68 omegac = (eplus/mass)*c_light; 63 69 64 G4double muB = 0.5*eplus*hbar_Planck/(mass/ 70 G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared); 65 71 66 G4double g_BMT; 72 G4double g_BMT; 67 if ( spin != 0. ) << 73 if ( spin != 0. ) g_BMT = (std::abs(magMoment)/muB)/spin; 68 { << 74 else g_BMT = 2.; 69 g_BMT = (std::abs(magMoment)/muB)/spin; << 70 } << 71 else << 72 { << 73 g_BMT = 2.; << 74 } << 75 75 76 anomaly = (g_BMT - 2.)/2.; 76 anomaly = (g_BMT - 2.)/2.; 77 77 78 G4double E = std::sqrt(sqr(MomentumXc)+sqr( 78 G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass)); 79 beta = MomentumXc/E; 79 beta = MomentumXc/E; 80 gamma = E/mass; 80 gamma = E/mass; 81 } 81 } 82 82 83 void 83 void 84 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4 84 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4double y[], 85 const G4 << 85 const G4double Field[], 86 G4 << 86 G4double dydx[] ) const 87 { 87 { 88 88 89 // Components of y: 89 // Components of y: 90 // 0-2 dr/ds, 90 // 0-2 dr/ds, 91 // 3-5 dp/ds - momentum derivatives 91 // 3-5 dp/ds - momentum derivatives 92 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s 92 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives 93 93 94 // The BMT equation, following J.D.Jackson, 94 // The BMT equation, following J.D.Jackson, Classical 95 // Electrodynamics, Second Edition, with ad 95 // Electrodynamics, Second Edition, with additions for EDM 96 // evolution from 96 // evolution from 97 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 5 97 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005) 98 // or 98 // or 99 // Silenko, Phys.Rev.ST Accel.Beams 9:03400 99 // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006) 100 100 101 // dS/dt = (e/m) S \cross 101 // dS/dt = (e/m) S \cross 102 // MDM: [ (g/2-1 +1/\gamma) B 102 // MDM: [ (g/2-1 +1/\gamma) B 103 // -(g/2-1)\gamma/(\gamma+1) 103 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 104 // -(g/2-\gamma/(\gamma+1) \b 104 // -(g/2-\gamma/(\gamma+1) \beta \cross E 105 // 105 // 106 // EDM: eta/2( E - gamma/(gamma+1) \ 106 // EDM: eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E) 107 // + \beta \cross B ) ] 107 // + \beta \cross B ) ] 108 // 108 // 109 // where 109 // where 110 // S = \vec{s}, where S^2 = 1 110 // S = \vec{s}, where S^2 = 1 111 // B = \vec{B} 111 // B = \vec{B} 112 // \beta = \vec{\beta} = \beta \vec{u} with 112 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 113 // E = \vec{E} 113 // E = \vec{E} 114 114 115 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 115 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 116 116 117 G4double Energy = std::sqrt( pSquared + f 117 G4double Energy = std::sqrt( pSquared + fMassCof ); 118 G4double cof2 = Energy/c_light ; 118 G4double cof2 = Energy/c_light ; 119 119 120 G4double pModuleInverse = 1.0/std::sqrt(pS 120 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 121 121 122 G4double inverse_velocity = Energy * pModul 122 G4double inverse_velocity = Energy * pModuleInverse / c_light; 123 123 124 G4double cof1 = fElectroMagCof*pModuleI 124 G4double cof1 = fElectroMagCof*pModuleInverse ; 125 125 126 dydx[0] = y[3]*pModuleInverse ; 126 dydx[0] = y[3]*pModuleInverse ; 127 dydx[1] = y[4]*pModuleInverse ; 127 dydx[1] = y[4]*pModuleInverse ; 128 dydx[2] = y[5]*pModuleInverse ; 128 dydx[2] = y[5]*pModuleInverse ; 129 129 130 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 130 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 131 131 132 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 132 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 133 133 134 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 134 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 135 135 136 dydx[6] = dydx[8] = 0.;//not used 136 dydx[6] = dydx[8] = 0.;//not used 137 137 138 // Lab Time of flight 138 // Lab Time of flight 139 dydx[7] = inverse_velocity; 139 dydx[7] = inverse_velocity; 140 140 141 G4ThreeVector BField(Field[0],Field[1],Fiel 141 G4ThreeVector BField(Field[0],Field[1],Field[2]); 142 G4ThreeVector EField(Field[3],Field[4],Fiel 142 G4ThreeVector EField(Field[3],Field[4],Field[5]); 143 143 144 EField /= c_light; 144 EField /= c_light; 145 145 146 G4ThreeVector u(y[3], y[4], y[5]); 146 G4ThreeVector u(y[3], y[4], y[5]); 147 u *= pModuleInverse; 147 u *= pModuleInverse; 148 148 149 G4double udb = anomaly*beta*gamma/(1.+gamma 149 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 150 G4double ucb = (anomaly+1./gamma)/beta; 150 G4double ucb = (anomaly+1./gamma)/beta; 151 G4double uce = anomaly + 1./(gamma+1.); 151 G4double uce = anomaly + 1./(gamma+1.); 152 G4double ude = beta*gamma/(1.+gamma)*(EFiel 152 G4double ude = beta*gamma/(1.+gamma)*(EField*u); 153 153 154 G4ThreeVector Spin(y[9],y[10],y[11]); 154 G4ThreeVector Spin(y[9],y[10],y[11]); 155 155 156 G4double pcharge; 156 G4double pcharge; 157 if (charge == 0.) << 157 if (charge == 0.) pcharge = 1.; 158 { << 158 else pcharge = charge; 159 pcharge = 1.; << 160 } << 161 else << 162 { << 163 pcharge = charge; << 164 } << 165 159 166 G4ThreeVector dSpin(0.,0.,0.); 160 G4ThreeVector dSpin(0.,0.,0.); 167 if (Spin.mag2() != 0.) << 161 if (Spin.mag2() != 0.) { 168 { << 162 dSpin = 169 dSpin = pcharge*omegac*( ucb*(Spin.cross << 163 pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) 170 // from Jacks 164 // from Jackson 171 // -uce*Spin. 165 // -uce*Spin.cross(u.cross(EField)) ) 172 // but this f 166 // but this form has one less operation 173 - uce*(u*(Spin*EField 167 - uce*(u*(Spin*EField) - EField*(Spin*u)) 174 + eta/2.*(Spin.cross( 168 + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u)) 175 // +Spin.cros 169 // +Spin.cross(u.cross(Bfield)) 176 + (u*(Spin*BField) - 170 + (u*(Spin*BField) - BField*(Spin*u)) ) ); 177 } 171 } 178 172 179 dydx[ 9] = dSpin.x(); 173 dydx[ 9] = dSpin.x(); 180 dydx[10] = dSpin.y(); 174 dydx[10] = dSpin.y(); 181 dydx[11] = dSpin.z(); 175 dydx[11] = dSpin.z(); 182 176 183 return; << 177 return ; 184 } 178 } 185 179