Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4EqEMFieldWithEDM implementation << 26 // >> 27 // $Id: G4EqEMFieldWithEDM.cc 71664 2013-06-20 08:36:05Z gcosmo $ >> 28 // 27 // 29 // 28 // This is the standard right-hand side for e 30 // This is the standard right-hand side for equation of motion. 29 // 31 // 30 // Created: Kevin Lynch, 19.02.2009 - Based on << 32 // 19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin 31 // Modified: Hiromi Iinuma, 06.11.2009 - see: << 33 // 06.11.2009 Hiromi Iinuma see: 32 // http://hypernews.slac.stanford.edu/HyperN << 34 // http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html >> 35 // 33 // ------------------------------------------- 36 // ------------------------------------------------------------------- 34 37 35 #include "G4EqEMFieldWithEDM.hh" 38 #include "G4EqEMFieldWithEDM.hh" 36 #include "G4ElectroMagneticField.hh" 39 #include "G4ElectroMagneticField.hh" 37 #include "G4ThreeVector.hh" 40 #include "G4ThreeVector.hh" 38 #include "globals.hh" 41 #include "globals.hh" 39 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 41 44 42 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4Elect << 45 G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4ElectroMagneticField *emField ) 43 : G4EquationOfMotion( emField ) << 46 : G4EquationOfMotion( emField ), charge(0.), mass(0.), magMoment(0.), >> 47 spin(0.), fElectroMagCof(0.), fMassCof(0.), omegac(0.), >> 48 anomaly(0.0011659208), eta(0.), beta(0.), gamma(0.) 44 { 49 { 45 } 50 } 46 51 47 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM() = de << 52 G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM() >> 53 { >> 54 } 48 55 49 void 56 void 50 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4Ch 57 G4EqEMFieldWithEDM::SetChargeMomentumMass(G4ChargeState particleCharge, 51 G4do 58 G4double MomentumXc, 52 G4do 59 G4double particleMass) 53 { 60 { 54 charge = particleCharge.GetCharge(); << 61 charge = particleCharge.GetCharge(); 55 mass = particleMass; 62 mass = particleMass; 56 magMoment = particleCharge.GetMagneticDipol 63 magMoment = particleCharge.GetMagneticDipoleMoment(); 57 spin = particleCharge.GetSpin(); 64 spin = particleCharge.GetSpin(); 58 65 59 fElectroMagCof = eplus*charge*c_light; 66 fElectroMagCof = eplus*charge*c_light; 60 fMassCof = mass*mass; 67 fMassCof = mass*mass; 61 68 62 omegac = (eplus/mass)*c_light; 69 omegac = (eplus/mass)*c_light; 63 70 64 G4double muB = 0.5*eplus*hbar_Planck/(mass/ 71 G4double muB = 0.5*eplus*hbar_Planck/(mass/c_squared); 65 72 66 G4double g_BMT; 73 G4double g_BMT; 67 if ( spin != 0. ) << 74 if ( spin != 0. ) g_BMT = (magMoment/muB)/spin; 68 { << 75 else g_BMT = 2.; 69 g_BMT = (std::abs(magMoment)/muB)/spin; << 70 } << 71 else << 72 { << 73 g_BMT = 2.; << 74 } << 75 76 76 anomaly = (g_BMT - 2.)/2.; 77 anomaly = (g_BMT - 2.)/2.; 77 78 78 G4double E = std::sqrt(sqr(MomentumXc)+sqr( 79 G4double E = std::sqrt(sqr(MomentumXc)+sqr(mass)); 79 beta = MomentumXc/E; 80 beta = MomentumXc/E; 80 gamma = E/mass; 81 gamma = E/mass; 81 } 82 } 82 83 83 void 84 void 84 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4 85 G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4double y[], 85 const G4 << 86 const G4double Field[], 86 G4 << 87 G4double dydx[] ) const 87 { 88 { 88 89 89 // Components of y: 90 // Components of y: 90 // 0-2 dr/ds, 91 // 0-2 dr/ds, 91 // 3-5 dp/ds - momentum derivatives 92 // 3-5 dp/ds - momentum derivatives 92 // 9-11 dSpin/ds = (1/beta) dSpin/dt - s 93 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives 93 94 94 // The BMT equation, following J.D.Jackson, 95 // The BMT equation, following J.D.Jackson, Classical 95 // Electrodynamics, Second Edition, with ad 96 // Electrodynamics, Second Edition, with additions for EDM 96 // evolution from 97 // evolution from 97 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 5 98 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005) 98 // or 99 // or 99 // Silenko, Phys.Rev.ST Accel.Beams 9:03400 100 // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006) 100 101 101 // dS/dt = (e/m) S \cross 102 // dS/dt = (e/m) S \cross 102 // MDM: [ (g/2-1 +1/\gamma) B 103 // MDM: [ (g/2-1 +1/\gamma) B 103 // -(g/2-1)\gamma/(\gamma+1) 104 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta 104 // -(g/2-\gamma/(\gamma+1) \b 105 // -(g/2-\gamma/(\gamma+1) \beta \cross E 105 // 106 // 106 // EDM: eta/2( E - gamma/(gamma+1) \ 107 // EDM: eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E) 107 // + \beta \cross B ) ] 108 // + \beta \cross B ) ] 108 // 109 // 109 // where 110 // where 110 // S = \vec{s}, where S^2 = 1 111 // S = \vec{s}, where S^2 = 1 111 // B = \vec{B} 112 // B = \vec{B} 112 // \beta = \vec{\beta} = \beta \vec{u} with 113 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1 113 // E = \vec{E} 114 // E = \vec{E} 114 115 115 G4double pSquared = y[3]*y[3] + y[4]*y[4] + 116 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; 116 117 117 G4double Energy = std::sqrt( pSquared + f 118 G4double Energy = std::sqrt( pSquared + fMassCof ); 118 G4double cof2 = Energy/c_light ; 119 G4double cof2 = Energy/c_light ; 119 120 120 G4double pModuleInverse = 1.0/std::sqrt(pS 121 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; 121 122 122 G4double inverse_velocity = Energy * pModul 123 G4double inverse_velocity = Energy * pModuleInverse / c_light; 123 124 124 G4double cof1 = fElectroMagCof*pModuleI 125 G4double cof1 = fElectroMagCof*pModuleInverse ; 125 126 126 dydx[0] = y[3]*pModuleInverse ; 127 dydx[0] = y[3]*pModuleInverse ; 127 dydx[1] = y[4]*pModuleInverse ; 128 dydx[1] = y[4]*pModuleInverse ; 128 dydx[2] = y[5]*pModuleInverse ; 129 dydx[2] = y[5]*pModuleInverse ; 129 130 130 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field 131 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; 131 132 132 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field 133 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; 133 134 134 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field 135 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; 135 136 136 dydx[6] = dydx[8] = 0.;//not used 137 dydx[6] = dydx[8] = 0.;//not used 137 138 138 // Lab Time of flight 139 // Lab Time of flight 139 dydx[7] = inverse_velocity; 140 dydx[7] = inverse_velocity; 140 141 141 G4ThreeVector BField(Field[0],Field[1],Fiel 142 G4ThreeVector BField(Field[0],Field[1],Field[2]); 142 G4ThreeVector EField(Field[3],Field[4],Fiel 143 G4ThreeVector EField(Field[3],Field[4],Field[5]); 143 144 144 EField /= c_light; 145 EField /= c_light; 145 146 146 G4ThreeVector u(y[3], y[4], y[5]); 147 G4ThreeVector u(y[3], y[4], y[5]); 147 u *= pModuleInverse; 148 u *= pModuleInverse; 148 149 149 G4double udb = anomaly*beta*gamma/(1.+gamma 150 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); 150 G4double ucb = (anomaly+1./gamma)/beta; 151 G4double ucb = (anomaly+1./gamma)/beta; 151 G4double uce = anomaly + 1./(gamma+1.); 152 G4double uce = anomaly + 1./(gamma+1.); 152 G4double ude = beta*gamma/(1.+gamma)*(EFiel 153 G4double ude = beta*gamma/(1.+gamma)*(EField*u); 153 154 154 G4ThreeVector Spin(y[9],y[10],y[11]); 155 G4ThreeVector Spin(y[9],y[10],y[11]); 155 156 156 G4double pcharge; 157 G4double pcharge; 157 if (charge == 0.) << 158 if (charge == 0.) pcharge = 1.; 158 { << 159 else pcharge = charge; 159 pcharge = 1.; << 160 } << 161 else << 162 { << 163 pcharge = charge; << 164 } << 165 160 166 G4ThreeVector dSpin(0.,0.,0.); 161 G4ThreeVector dSpin(0.,0.,0.); 167 if (Spin.mag2() != 0.) << 162 if (Spin.mag2() != 0.) { 168 { << 163 dSpin = 169 dSpin = pcharge*omegac*( ucb*(Spin.cross << 164 pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u)) 170 // from Jacks 165 // from Jackson 171 // -uce*Spin. 166 // -uce*Spin.cross(u.cross(EField)) ) 172 // but this f 167 // but this form has one less operation 173 - uce*(u*(Spin*EField 168 - uce*(u*(Spin*EField) - EField*(Spin*u)) 174 + eta/2.*(Spin.cross( 169 + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u)) 175 // +Spin.cros 170 // +Spin.cross(u.cross(Bfield)) 176 + (u*(Spin*BField) - 171 + (u*(Spin*BField) - BField*(Spin*u)) ) ); 177 } 172 } 178 173 179 dydx[ 9] = dSpin.x(); 174 dydx[ 9] = dSpin.x(); 180 dydx[10] = dSpin.y(); 175 dydx[10] = dSpin.y(); 181 dydx[11] = dSpin.z(); 176 dydx[11] = dSpin.z(); 182 177 183 return; << 178 return ; 184 } 179 } 185 180