Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4ChordFinder implementation << 27 // 23 // 28 // Author: J.Apostolakis - Design and implemen << 24 // $Id: G4ChordFinder.cc,v 1.27 2002/06/01 02:37:14 japost Exp $ 29 // ------------------------------------------- << 25 // GEANT4 tag $Name: geant4-04-01 $ 30 << 26 // 31 #include <iomanip> << 27 // >> 28 // 25.02.97 John Apostolakis, design and implimentation >> 29 // 05.03.97 V. Grichine , style modification 32 30 33 #include "G4ChordFinder.hh" 31 #include "G4ChordFinder.hh" 34 #include "G4SystemOfUnits.hh" << 32 #include "G4MagIntegratorDriver.hh" 35 #include "G4MagneticField.hh" << 36 #include "G4Mag_UsualEqRhs.hh" 33 #include "G4Mag_UsualEqRhs.hh" >> 34 #include "G4ClassicalRK4.hh" >> 35 // #include "G4Field.hh" >> 36 // #include "G4MagIntegratorStepper.hh" 37 #include "G4MagIntegratorDriver.hh" 37 #include "G4MagIntegratorDriver.hh" 38 // #include "G4ClassicalRK4.hh" << 38 #include "g4std/iomanip" 39 // #include "G4CashKarpRKF45.hh" << 40 // #include "G4NystromRK4.hh" << 41 // #include "G4BogackiShampine23.hh" << 42 // #include "G4BogackiShampine45.hh" << 43 << 44 #include "G4DormandPrince745.hh" << 45 39 46 // New templated stepper(s) -- avoid virtual c << 40 // For the moment fDeltaChord is a constant! 47 #include "G4TDormandPrince45.hh" << 48 41 49 // FSAL type driver / steppers ----- << 42 const G4double G4ChordFinder::fDefaultDeltaChord = 3. * mm; 50 #include "G4FSALIntegrationDriver.hh" << 51 #include "G4VFSALIntegrationStepper.hh" << 52 #include "G4RK547FEq1.hh" << 53 // #include "G4RK547FEq2.hh" << 54 // #include "G4RK547FEq3.hh" << 55 // #include "G4FSALBogackiShampine45.hh" << 56 // #include "G4FSALDormandPrince745.hh" << 57 43 58 // Templated type drivers ----- << 44 // .......................................................................... 59 #include "G4IntegrationDriver.hh" << 60 #include "G4InterpolationDriver.hh" << 61 45 62 #include "G4HelixHeum.hh" << 46 G4ChordFinder::G4ChordFinder( G4MagneticField* theMagField, 63 #include "G4BFieldIntegrationDriver.hh" << 47 G4double stepMinimum, >> 48 G4MagIntegratorStepper* pItsStepper ) // A default one >> 49 : fDeltaChord( fDefaultDeltaChord ) >> 50 { >> 51 // Construct the Chord Finder >> 52 // by creating in inverse order the Driver, the Stepper and EqRhs ... >> 53 G4Mag_EqRhs *pEquation = new G4Mag_UsualEqRhs(theMagField); >> 54 fEquation = pEquation; >> 55 fLastStepEstimate_Unconstrained = DBL_MAX; // Should move q, p to >> 56 // G4FieldTrack ?? >> 57 // --->> Charge Q = 0 >> 58 // --->> Momentum P = 1 NOMINAL VALUES !!!!!!!!!!!!!!!!!! 64 59 65 #include "G4QSSDriverCreator.hh" << 60 if( pItsStepper == 0 ) >> 61 { >> 62 pItsStepper = fDriversStepper = new G4ClassicalRK4(pEquation); >> 63 fAllocatedStepper= true; >> 64 } >> 65 else >> 66 { >> 67 fAllocatedStepper= false; >> 68 } >> 69 fIntgrDriver = new G4MagInt_Driver(stepMinimum, >> 70 pItsStepper, >> 71 pItsStepper->GetNumberOfVariables() ); >> 72 } 66 73 67 #include "G4CachedMagneticField.hh" << 74 // ...................................................................... 68 75 69 #include <cassert> << 76 G4ChordFinder::~G4ChordFinder() 70 #include <memory> << 77 { >> 78 delete fEquation; // fIntgrDriver->pIntStepper->theEquation_Rhs; >> 79 if( fAllocatedStepper) >> 80 { >> 81 delete fDriversStepper; >> 82 } // fIntgrDriver->pIntStepper;} >> 83 delete fIntgrDriver; >> 84 } 71 85 72 G4bool G4ChordFinder::gVerboseCtor = false; << 86 // ...................................................................... 73 // ........................................... << 74 87 75 G4ChordFinder::G4ChordFinder(G4VIntegrationDri << 88 G4double 76 : fDefaultDeltaChord(0.25 * mm), fIntgrDrive << 89 G4ChordFinder::AdvanceChordLimited( G4FieldTrack& yCurrent, >> 90 G4double stepMax, >> 91 G4double epsStep ) 77 { 92 { 78 // Simple constructor -- it does not create << 93 G4double stepPossible; 79 if( gVerboseCtor ) << 94 G4double dyErr; >> 95 G4FieldTrack yEnd( yCurrent); >> 96 G4double startCurveLen= yCurrent.GetCurveLength(); >> 97 >> 98 #ifdef G4DEBUG_FIELD >> 99 static G4bool dbg= false; >> 100 if( dbg ) >> 101 G4cerr << "Entered AdvanceChordLimited with:\n yCurrent: " << yCurrent >> 102 << " and initial Step=stepMax=" << stepMax << " mm. " << G4endl; >> 103 #endif >> 104 >> 105 stepPossible= FindNextChord(yCurrent, stepMax, yEnd, dyErr, epsStep); >> 106 G4bool good_advance; >> 107 if ( dyErr < epsStep * stepPossible ) >> 108 { >> 109 // Accept this accuracy. >> 110 yCurrent = yEnd; >> 111 good_advance = true; >> 112 } >> 113 else 80 { 114 { 81 G4cout << "G4ChordFinder: Simple construct << 115 // Advance more accurately to "end of chord" >> 116 good_advance = fIntgrDriver->AccurateAdvance(yCurrent, stepPossible, epsStep); >> 117 #ifdef G4DEBUG_FIELD >> 118 if (dbg) G4cerr << "Accurate advance to end of chord attemped" >> 119 << "with result " << good_advance << G4endl ; >> 120 #endif >> 121 if ( ! good_advance ){ >> 122 // In this case the driver could not do the full distance >> 123 stepPossible= yCurrent.GetCurveLength()-startCurveLen; >> 124 } 82 } 125 } 83 << 126 84 fDeltaChord = fDefaultDeltaChord; // P << 127 #ifdef G4DEBUG_FIELD >> 128 if( dbg ) G4cerr << "Exiting FindNextChord Limited with:\n yCurrent: " >> 129 << yCurrent<< G4endl; >> 130 #endif >> 131 >> 132 return stepPossible; 85 } 133 } 86 134 87 // ........................................... << 135 // #define TEST_CHORD_PRINT 1 88 136 89 G4ChordFinder::G4ChordFinder( G4MagneticField* << 137 // .............................................................................. 90 G4double << 138 91 G4MagIntegratorS << 139 G4double 92 G4int << 140 G4ChordFinder::FindNextChord( const G4FieldTrack yStart, 93 : fDefaultDeltaChord(0.25 * mm) << 141 G4double stepMax, >> 142 G4FieldTrack& yEnd, // Endpoint >> 143 G4double& dyErr, // Error of endpoint >> 144 G4double epsStep ) >> 145 >> 146 // Returns Length of Step taken 94 { 147 { 95 // Construct the Chord Finder << 148 // G4int stepRKnumber=0; 96 // by creating in inverse order the Driver, << 149 G4FieldTrack yCurrent= yStart; 97 constexpr G4int nVar6 = 6; // Components i << 150 G4double stepTrial; >> 151 G4double dydx[G4FieldTrack::ncompSVEC]; >> 152 >> 153 // 1.) Try to "leap" to end of interval >> 154 // 2.) Evaluate if resulting chord gives d_chord that is good enough. >> 155 // 2a.) If d_chord is not good enough, find one that is. 98 156 99 fDeltaChord = fDefaultDeltaChord; // P << 157 G4bool validEndPoint= false; >> 158 G4double dChordStep, oldStepTrial, stepOfLastGoodChord; 100 159 101 G4cout << " G4ChordFinder: stepperDriverId: << 160 fIntgrDriver-> GetDerivatives( yCurrent, dydx ) ; 102 161 103 G4bool useFSALstepper = (stepperDriverId << 162 G4int noTrials=0; 104 G4bool useTemplatedStepper= (stepperDriverId << 105 G4bool useRegularStepper = (stepperDriverId << 106 G4bool useBfieldDriver = (stepperDriverId << 107 G4bool useG4QSSDriver = (stepperDriverId << 108 << 109 if( stepperDriverId == kQss3DriverType) << 110 { << 111 stepperDriverId = kQss2DriverType; << 112 G4cout << " G4ChordFinder: QSS 3 is curren << 113 } << 114 163 115 using EquationType = G4Mag_UsualEqRhs; << 164 stepTrial = G4std::min( stepMax, 116 << 165 (1-perThousand)*fLastStepEstimate_Unconstrained ); 117 using TemplatedStepperType = << 118 G4TDormandPrince45<EquationType,nVar6 << 119 const char* TemplatedStepperName = << 120 "G4TDormandPrince745 (templated Dormand- << 121 << 122 using RegularStepperType = << 123 G4DormandPrince745; // 5th order embe << 124 // G4ClassicalRK4; // The old << 125 // G4CashKarpRKF45; // First em << 126 // G4BogackiShampine45; // High eff << 127 // G4NystromRK4; // Nystrom << 128 // G4RK547FEq1; // or 2 or 3 << 129 const char* RegularStepperName = << 130 "G4DormandPrince745 (aka DOPRI5): 5th/4t << 131 // "BogackiShampine 45 (Embedded 5th/4th << 132 // "Nystrom stepper 4th order"; << 133 << 134 using NewFsalStepperType = G4DormandPrince74 << 135 << 136 const char* NewFSALStepperName = << 137 "G4RK574FEq1> FSAL 4th/5th order 7-stage << 138 << 139 #ifdef G4DEBUG_FIELD << 140 static G4bool verboseDebug = true; << 141 if( verboseDebug ) << 142 { << 143 G4cout << "G4ChordFinder 2nd Constructor << 144 G4cout << " Arguments: " << G4endl << 145 << " - min step = " << stepMinimum << 146 << " - stepper ptr provided : " << 147 << ( pItsStepper==nullptr ? " no << 148 if( pItsStepper==nullptr ) << 149 G4cout << " - stepper/driver Id = " << << 150 << " useFSAL = " << useFSALste << 151 << " , useTemplated = " << use << 152 << " , useRegular = " << useRe << 153 << " , useFSAL = " << useFSALs << 154 << G4endl; << 155 } << 156 #endif << 157 166 158 // useHigherStepper = forceHigherEffiencySte << 167 do >> 168 { >> 169 G4double stepForChord; // , stepForAccuracy; >> 170 >> 171 yCurrent = yStart; // Always start from initial point 159 172 160 auto pEquation = new G4Mag_UsualEqRhs(theMa << 173 fIntgrDriver->QuickAdvance( yCurrent, dydx, stepTrial, dChordStep, dyErr); 161 fEquation = pEquation; << 162 174 163 // G4MagIntegratorStepper* regularStepper = << 175 // First debug print 164 // G4VFSALIntegrationStepper* fsalStepper = << 165 // G4MagIntegratorStepper* oldFSALStepper = << 166 176 167 G4bool errorInStepperCreation = false; << 177 // We check whether the criterion is met here. >> 178 validEndPoint = AcceptableMissDist(dChordStep); >> 179 // && (dyErr < eps) ; 168 180 169 std::ostringstream message; // In case of f << 181 oldStepTrial = stepTrial; 170 182 171 if( pItsStepper != nullptr ) << 183 // This method estimates to step size for a good chord. 172 { << 184 stepForChord = NewStep(stepTrial, dChordStep, fLastStepEstimate_Unconstrained ); 173 if( gVerboseCtor ) << 174 { << 175 G4cout << " G4ChordFinder: Creating G4I << 176 << " stepMinimum = " << stepMini << 177 << " numVar= " << pItsStepper->G << 178 } << 179 185 180 // Stepper type is not known - so must us << 186 if( ! validEndPoint ) { 181 if(pItsStepper->isQSS()) << 187 if( stepForChord <= oldStepTrial ) 182 { << 188 stepTrial = stepForChord; 183 // fIntgrDriver = pItsStepper->build_ << 184 G4Exception("G4ChordFinder::G4ChordFi << 185 "GeomField1001", FatalEx << 186 "Cannot provide QSS ste << 187 } << 188 else << 189 { << 190 fIntgrDriver = new G4IntegrationDrive << 191 pItsStepper, << 192 // Stepper type is not known - so mus << 193 // Non-interpolating driver used by d << 194 // WAS: fIntgrDriver = pItsStepper-> << 195 } << 196 // -- Older: << 197 // G4cout << " G4ChordFinder: Creating G4 << 198 // Type is not known - so must use old cl << 199 // fIntgrDriver = new G4MagInt_Driver( st << 200 // pItsSt << 201 } << 202 else if ( useTemplatedStepper ) << 203 { << 204 if( gVerboseCtor ) << 205 { << 206 G4cout << " G4ChordFinder: Creating Te << 207 << TemplatedStepperName << G4en << 208 } << 209 // RegularStepperType* regularStepper = n << 210 auto templatedStepper = new TemplatedStep << 211 // *** *************** << 212 // << 213 // Alternative - for G4NystromRK4: << 214 // = new G4NystromRK4(pEquation, 0.1*mm ) << 215 fRegularStepperOwned = templatedStepper; << 216 if( templatedStepper == nullptr ) << 217 { << 218 message << "Templated Stepper instanti << 219 message << "G4ChordFinder: Attempted t << 220 << TemplatedStepperName << " t << 221 errorInStepperCreation = true; << 222 } << 223 else << 224 { << 225 fIntgrDriver = new G4IntegrationDriver << 226 stepMinimum, templatedStepper, nVar << 227 if( gVerboseCtor ) << 228 { << 229 G4cout << " G4ChordFinder: Using G4 << 230 } << 231 } << 232 << 233 } << 234 else if ( useRegularStepper ) // Plain st << 235 { << 236 auto regularStepper = new RegularStepperT << 237 // *** *************** << 238 fRegularStepperOwned = regularStepper; << 239 << 240 if( gVerboseCtor ) << 241 { << 242 G4cout << " G4ChordFinder: Creating Dr << 243 } << 244 << 245 if( regularStepper == nullptr ) << 246 { << 247 message << "Regular Stepper instantiat << 248 message << "G4ChordFinder: Attempted t << 249 << RegularStepperName << " typ << 250 errorInStepperCreation = true; << 251 } << 252 else << 253 { << 254 auto dp5= dynamic_cast<G4DormandPrince << 255 if( dp5 != nullptr ) << 256 { << 257 fIntgrDriver = new G4InterpolationD << 258 stepMinimum, << 259 if( gVerboseCtor ) << 260 { << 261 G4cout << " Using InterpolationD << 262 } << 263 } << 264 else 189 else 265 { << 190 stepTrial *= 0.1; 266 fIntgrDriver = new G4IntegrationDri << 191 #if 0 267 stepMinimum, << 192 // Possible complementary approach: 268 if( gVerboseCtor ) << 193 // Get the driver to calculate the new step size, if it is needed 269 { << 194 stepForAccuracy = fIntgrDriver->ComputeNewStepSize( dyErr/(epsStep*oldStepTrial), 270 G4cout << " Using IntegrationDri << 195 stepTrial); 271 } << 196 stepTrial = G4std::min(stepForChord, stepForAccuracy); 272 } << 197 #endif 273 } << 198 274 } << 199 // if(dbg) G4cerr<<"Dchord too big. Try new hstep="<<stepTrial<<G4endl; 275 else if ( useBfieldDriver ) << 276 { << 277 auto regularStepper = new G4DormandPrince << 278 // *** *************** << 279 // << 280 fRegularStepperOwned = regularStepper; << 281 << 282 { << 283 using SmallStepDriver = G4Interpolatio << 284 using LargeStepDriver = G4IntegrationD << 285 << 286 fLongStepper = std::make_unique<G4Heli << 287 << 288 fIntgrDriver = new G4BFieldIntegration << 289 std::make_unique<SmallStepDriver>(st << 290 regularStepper, regularStepper-> << 291 std::make_unique<LargeStepDriver>(st << 292 fLongStepper.get(), regularStepp << 293 << 294 if( fIntgrDriver == nullptr) << 295 { << 296 message << "Using G4BFieldIntegrati << 297 << RegularStepperName << " << 298 message << "Driver instantiation FA << 299 G4Exception("G4ChordFinder::G4Chord << 300 "GeomField1001", JustWa << 301 } << 302 } << 303 } << 304 else if( useG4QSSDriver ) << 305 { << 306 if( stepperDriverId == kQss2DriverType ) << 307 { << 308 auto qssStepper2 = G4QSSDriverCreator:: << 309 if( gVerboseCtor ) << 310 { << 311 G4cout << "-- Created QSS-2 stepper" << 312 } << 313 fIntgrDriver = G4QSSDriverCreator::Crea << 314 } << 315 else << 316 { << 317 auto qssStepper3 = G4QSSDriverCreator:: << 318 if( gVerboseCtor ) << 319 { << 320 G4cout << "-- Created QSS-3 stepper" << 321 } << 322 fIntgrDriver = G4QSSDriverCreator::Crea << 323 } << 324 if( gVerboseCtor ) << 325 { << 326 G4cout << "-- G4ChordFinder: Using QSS << 327 } 200 } 328 } << 201 #ifdef TEST_CHORD_PRINT 329 else << 202 G4cout.precision(5); 330 { << 203 G4cout << " ChF/fnc: notrial " << G4std::setw( 3) << noTrials 331 auto fsalStepper= new NewFsalStepperType << 204 << " this_step= " << G4std::setw(10) << oldStepTrial; 332 // *** ****************** << 205 if( fabs( (dChordStep / fDeltaChord) - 1.0 ) < 0.001 ){ 333 fNewFSALStepperOwned = fsalStepper; << 206 G4cout.precision(8); 334 << 207 G4cout << " dChordStep= " << G4std::setw(12) << dChordStep; 335 if( fsalStepper == nullptr ) << 208 }else{ 336 { << 209 G4cout.precision(6); 337 message << "Stepper instantiation FAIL << 210 G4cout << " dChordStep= " << G4std::setw(12) << dChordStep; 338 message << "Attempted to instantiate " << 339 << NewFSALStepperName << " typ << 340 G4Exception("G4ChordFinder::G4ChordFin << 341 "GeomField1001", JustWarni << 342 errorInStepperCreation = true; << 343 } 211 } >> 212 if( dChordStep > fDeltaChord ) >> 213 G4cout << " d+"; 344 else 214 else 345 { << 215 G4cout << " d-"; 346 fIntgrDriver = new << 216 G4cout.precision(5); 347 G4FSALIntegrationDriver<NewFsalStep << 217 G4cout << " new_step= " << G4std::setw(10) << fLastStepEstimate_Unconstrained 348 fsal << 218 << " new_step_constr= " << G4std::setw(10) << stepTrial << G4endl; 349 // ==== Create the driver which k << 219 #endif 350 << 220 noTrials++; 351 if( fIntgrDriver == nullptr ) << 352 { << 353 message << "Using G4FSALIntegration << 354 << NewFSALStepperName << G4 << 355 message << "Integration Driver inst << 356 G4Exception("G4ChordFinder::G4Chord << 357 "GeomField1001", JustWa << 358 } << 359 } << 360 } 221 } >> 222 while( ! validEndPoint ); // End of do-while RKD 361 223 362 // -- Main work is now done << 224 stepOfLastGoodChord = stepTrial; 363 << 225 #ifdef TEST_CHORD_PRINT 364 // Now check that no error occured, and r << 226 if( dbg ) 365 << 227 G4cout << "ChordF/FindNextChord: NoTrials= " << noTrials 366 // To test failure to create driver << 228 << " StepForGoodChord=" << G4std::setw(10) << stepTrial << G4endl; 367 // delete fIntgrDriver; << 229 #endif 368 // fIntgrDriver = nullptr; << 369 << 370 // Detect and report Error conditions << 371 // << 372 if( errorInStepperCreation || (fIntgrDriver << 373 { << 374 std::ostringstream errmsg; << 375 << 376 if( errorInStepperCreation ) << 377 { << 378 errmsg << "ERROR> Failure to create S << 379 << " ------------------- << 380 } << 381 if (fIntgrDriver == nullptr ) << 382 { << 383 errmsg << "ERROR> Failure to create I << 384 << G4endl << 385 << " ------------------- << 386 << G4endl; << 387 } << 388 const std::string BoolName[2]= { "False", << 389 errmsg << " Configuration: (constructor << 390 << " provided Stepper = " << pI << 391 << " stepper/driver Id = " << step << 392 << " useTemplated = " << BoolNam << 393 << " useRegular = " << BoolName[ << 394 << " useFSAL = " << BoolName[use << 395 << " using combo BField Driver = << 396 BoolName[ ! (useFSALstepper << 397 || useRegularSt << 398 << G4endl; << 399 errmsg << message.str(); << 400 errmsg << "Aborting."; << 401 G4Exception("G4ChordFinder::G4ChordFinder << 402 "GeomField0003", FatalExcepti << 403 } << 404 << 405 assert( ( pItsStepper != nullptr ) << 406 || ( fRegularStepperOwned != nullptr << 407 || ( fNewFSALStepperOwned != nullptr << 408 || useG4QSSDriver << 409 ); << 410 assert( fIntgrDriver != nullptr ); << 411 } << 412 230 413 // ........................................... << 231 yEnd= yCurrent; >> 232 return stepTrial; >> 233 } 414 234 415 G4ChordFinder::~G4ChordFinder() << 235 // ---------------------------------------------------------------------------- 416 { << 236 #if 0 417 delete fEquation; << 237 // #ifdef G4VERBOSE 418 delete fRegularStepperOwned; << 238 if( dbg ) { 419 delete fNewFSALStepperOwned; << 239 G4cerr << "Returned from QuickAdvance with: yCur=" << yCurrent <<G4endl; 420 delete fCachedField; << 240 G4cerr << " dChordStep= "<< dChordStep <<" dyErr=" << dyErr << G4endl; 421 delete fIntgrDriver; << 422 } 241 } >> 242 #endif >> 243 // ---------------------------------------------------------------------------- 423 244 424 // ........................................... 245 // ........................................................................... 425 246 426 G4FieldTrack << 247 G4double G4ChordFinder::NewStep(G4double stepTrialOld, 427 G4ChordFinder::ApproxCurvePointS( const G4Fiel << 248 G4double dChordStep, // Current dchord achieved. 428 const G4Fiel << 249 G4double& stepEstimate_Unconstrained ) 429 const G4Fiel << 250 430 const G4Thre << 431 const G4Thre << 432 const G4Thre << 433 G4bool << 434 { 251 { 435 // ApproxCurvePointS is 2nd implementation o << 252 G4double stepTrial; 436 // Use Brent Algorithm (or InvParabolic) whe << 253 static G4double lastStepTrial = 1., lastDchordStep= 1.; 437 // Given a starting curve point A (CurveA_Po << 438 // (CurveB_PointVelocity), a point E which i << 439 // and a point F which is on the curve (fir << 440 // point S on the curve closer to point E. << 441 // While advancing towards S utilise 'eps_st << 442 // relative accuracy of each Step. << 443 << 444 G4FieldTrack EndPoint(CurveA_PointVelocity); << 445 if(!first) { EndPoint = ApproxCurveV; } << 446 << 447 G4ThreeVector Point_A,Point_B; << 448 Point_A=CurveA_PointVelocity.GetPosition(); << 449 Point_B=CurveB_PointVelocity.GetPosition(); << 450 << 451 G4double xa,xb,xc,ya,yb,yc; << 452 << 453 // InverseParabolic. AF Intersects (First Pa << 454 254 455 if(first) << 255 #if 1 456 { << 256 // const G4double threshold = 1.21, multiplier = 0.9; // 0.9 < 1 / sqrt(1.21) 457 xa=0.; << 458 ya=(PointG-Point_A).mag(); << 459 xb=(Point_A-CurrentF_Point).mag(); << 460 yb=-(PointG-CurrentF_Point).mag(); << 461 xc=(Point_A-Point_B).mag(); << 462 yc=-(CurrentE_Point-Point_B).mag(); << 463 } << 464 else << 465 { << 466 xa=0.; << 467 ya=(Point_A-CurrentE_Point).mag(); << 468 xb=(Point_A-CurrentF_Point).mag(); << 469 yb=(PointG-CurrentF_Point).mag(); << 470 xc=(Point_A-Point_B).mag(); << 471 yc=-(Point_B-PointG).mag(); << 472 if(xb==0.) << 473 { << 474 EndPoint = ApproxCurvePointV(CurveA_Poin << 475 CurrentE_Po << 476 return EndPoint; << 477 } << 478 } << 479 257 480 const G4double tolerance = 1.e-12; << 258 stepEstimate_Unconstrained = stepTrialOld * sqrt( fDeltaChord / dChordStep ); 481 if(std::abs(ya)<=tolerance||std::abs(yc)<=to << 259 stepTrial = 0.98 * stepEstimate_Unconstrained; 482 { << 483 ; // What to do for the moment: return the << 484 // then PropagatorInField will take care << 485 } << 486 else << 487 { << 488 G4double test_step = InvParabolic(xa,ya,xb << 489 G4double curve; << 490 if(first) << 491 { << 492 curve=std::abs(EndPoint.GetCurveLength() << 493 -ApproxCurveV.GetCurveLeng << 494 } << 495 else << 496 { << 497 test_step = test_step - xb; << 498 curve=std::abs(EndPoint.GetCurveLength() << 499 -CurveB_PointVelocity.GetC << 500 xb = (CurrentF_Point-Point_B).mag(); << 501 } << 502 << 503 if(test_step<=0) { test_step=0.1*xb; } << 504 if(test_step>=xb) { test_step=0.5*xb; } << 505 if(test_step>=curve){ test_step=0.5*curve; << 506 << 507 if(curve*(1.+eps_step)<xb) // Similar to R << 508 { // G4VIntersect << 509 test_step=0.5*curve; << 510 } << 511 260 512 fIntgrDriver->AccurateAdvance(EndPoint,tes << 261 // if ( dChordStep < threshold * fDeltaChord ){ 513 << 262 // stepTrial= stepTrialOld * multiplier; 514 #ifdef G4DEBUG_FIELD << 263 // } 515 // Printing Brent and Linear Approximation << 264 if( (stepTrial < 0.001 * stepTrialOld) 516 // << 265 || (stepTrial > 1000.0 * stepTrialOld) 517 G4cout << "G4ChordFinder::ApproxCurvePoint << 266 ){ 518 << test_step << " EndPoint = " << << 267 if ( dChordStep > 1000.0 * fDeltaChord ){ 519 << 268 stepTrial= stepTrialOld * 0.03; 520 // Test Track << 269 }else{ 521 // << 270 if ( dChordStep > 100. * fDeltaChord ){ 522 G4FieldTrack TestTrack( CurveA_PointVeloci << 271 stepTrial= stepTrialOld * 0.1; 523 TestTrack = ApproxCurvePointV( CurveA_Poin << 272 }else{ 524 CurveB_Poin << 273 // Try halving the length until dChordStep OK 525 CurrentE_Po << 274 stepTrial= stepTrialOld * 0.5; 526 G4cout.precision(14); << 275 } 527 G4cout << "G4ChordFinder::BrentApprox = " << 276 } 528 G4cout << "G4ChordFinder::LinearApprox= " << 529 #endif << 530 } 277 } 531 return EndPoint; << 532 } << 533 278 >> 279 lastStepTrial = stepTrialOld; >> 280 lastDchordStep= dChordStep; >> 281 #else >> 282 if ( dChordStep > 1000. * fDeltaChord ){ >> 283 stepTrial= stepTrialOld * 0.03; >> 284 }else{ >> 285 if ( dChordStep > 100. * fDeltaChord ){ >> 286 stepTrial= stepTrialOld * 0.1; >> 287 }else{ >> 288 // Keep halving the length until dChordStep OK >> 289 stepTrial= stepTrialOld * 0.5; >> 290 } >> 291 } >> 292 #endif >> 293 >> 294 // A more sophisticated chord-finder could figure out a better >> 295 // stepTrial, from dChordStep and the required d_geometry >> 296 // eg >> 297 // Calculate R, r_helix (eg at orig point) >> 298 // if( stepTrial < 2 pi R ) >> 299 // stepTrial = R arc_cos( 1 - fDeltaChord / r_helix ) >> 300 // else >> 301 // ?? 534 302 535 // ........................................... << 303 return stepTrial; >> 304 } 536 305 537 G4FieldTrack G4ChordFinder:: << 306 // 538 ApproxCurvePointV( const G4FieldTrack& CurveA_ << 307 // Given a starting curve point A (CurveA_PointVelocity), a later 539 const G4FieldTrack& CurveB_ << 308 // curve point B (CurveB_PointVelocity) and a point E which is (generally) 540 const G4ThreeVector& Curren << 309 // not on the curve, find and return a point F which is on the curve and 541 G4double eps_step) << 310 // which is close to E. While advancing towards F utilise eps_step >> 311 // as a measure of the relative accuracy of each Step. >> 312 >> 313 G4FieldTrack G4ChordFinder::ApproxCurvePointV( >> 314 const G4FieldTrack& CurveA_PointVelocity, >> 315 const G4FieldTrack& CurveB_PointVelocity, >> 316 const G4ThreeVector& CurrentE_Point, >> 317 G4double eps_step) 542 { 318 { 543 // If r=|AE|/|AB|, and s=true path lenght (A << 319 // 1st implementation: 544 // return the point that is r*s along the cu << 320 // if r=|AE|/|AB|, and s=true path lenght (AB) 545 << 321 // return the point that is r*s along the curve! 546 G4FieldTrack Current_PointVelocity = Curve << 322 >> 323 G4FieldTrack Current_PointVelocity= CurveA_PointVelocity; 547 324 548 G4ThreeVector CurveA_Point= CurveA_PointVel 325 G4ThreeVector CurveA_Point= CurveA_PointVelocity.GetPosition(); 549 G4ThreeVector CurveB_Point= CurveB_PointVel 326 G4ThreeVector CurveB_Point= CurveB_PointVelocity.GetPosition(); 550 327 551 G4ThreeVector ChordAB_Vector= CurveB_Point 328 G4ThreeVector ChordAB_Vector= CurveB_Point - CurveA_Point; 552 G4ThreeVector ChordAE_Vector= CurrentE_Poin 329 G4ThreeVector ChordAE_Vector= CurrentE_Point - CurveA_Point; 553 330 554 G4double ABdist= ChordAB_Vector.mag(); 331 G4double ABdist= ChordAB_Vector.mag(); 555 G4double curve_length; // A curve length 332 G4double curve_length; // A curve length of AB 556 G4double AE_fraction; 333 G4double AE_fraction; 557 334 558 curve_length= CurveB_PointVelocity.GetCurveL << 335 curve_length= 559 - CurveA_PointVelocity.GetCurveL << 336 CurveB_PointVelocity.GetCurveLength() - CurveA_PointVelocity.GetCurveLength(); 560 << 337 561 G4double integrationInaccuracyLimit= std::ma << 338 // const 562 if( curve_length < ABdist * (1. - integratio << 339 G4double integrationInaccuracyLimit= G4std::max( perMillion, 0.5*eps_step ); 563 { << 340 if( curve_length < ABdist * (1. - integrationInaccuracyLimit) ){ 564 #ifdef G4DEBUG_FIELD 341 #ifdef G4DEBUG_FIELD 565 G4cerr << " Warning in G4ChordFinder::Appr << 342 G4cerr << " Warning in G4ChordFinder::ApproxCurvePoint: " << G4endl << 566 << G4endl << 343 " The two points are further apart than the curve length " << G4endl << 567 << " The two points are further apa << 344 " Dist = " << ABdist << 568 << G4endl << 345 " curve length = " << curve_length 569 << " Dist = " << ABdist << 346 << " relativeDiff = " << (curve_length-ABdist)/ABdist 570 << " curve length = " << curve_leng << 347 << G4endl; 571 << " relativeDiff = " << (curve_len << 348 if( curve_length < ABdist * (1. - 10*eps_step) ) { 572 << G4endl; << 349 G4cerr << " ERROR: the size of the above difference exceeds allowed limits. Aborting." 573 if( curve_length < ABdist * (1. - 10*eps_s << 350 << G4endl; 574 { << 351 G4Exception("G4ChordFinder::ApproxCurvePoint> Unphysical curve length."); 575 std::ostringstream message; << 576 message << "Unphysical curve length." << << 577 << "The size of the above differ << 578 << G4endl << 579 << "Aborting."; << 580 G4Exception("G4ChordFinder::ApproxCurveP << 581 FatalException, message); << 582 } 352 } 583 #endif 353 #endif 584 // Take default corrective action: adjust << 354 // Take default corrective action: 585 // NOTE: this case only happens for relati << 355 // --> adjust the maximum curve length. 586 // curve_length = ABdist; << 356 // NOTE: this case only happens for relatively straight paths. >> 357 curve_length = ABdist; 587 } 358 } 588 359 589 G4double new_st_length; << 360 G4double new_st_length; 590 361 591 if ( ABdist > 0.0 ) << 362 if ( ABdist > 0.0 ){ 592 { << 593 AE_fraction = ChordAE_Vector.mag() / ABdi 363 AE_fraction = ChordAE_Vector.mag() / ABdist; 594 } << 364 }else{ 595 else << 596 { << 597 AE_fraction = 0.5; 365 AE_fraction = 0.5; // Guess .. ?; 598 #ifdef G4DEBUG_FIELD 366 #ifdef G4DEBUG_FIELD 599 G4cout << "Warning in G4ChordFinder::Appr << 367 G4cout << "Warning in G4ChordFinder::ApproxCurvePoint: A and B are the same point\n" << 600 << " A and B are the same point!" << 368 " Chord AB length = " << ChordAE_Vector.mag() << G4endl << G4endl; 601 << " Chord AB length = " << ChordA << 602 << G4endl; << 603 #endif 369 #endif 604 } 370 } 605 371 606 if( (AE_fraction> 1.0 + perMillion) || (AE_f << 372 if( (AE_fraction> 1.0 + perMillion) || (AE_fraction< 0.) ){ 607 { << 608 #ifdef G4DEBUG_FIELD 373 #ifdef G4DEBUG_FIELD 609 G4cerr << " G4ChordFinder::ApproxCurvePoin << 374 G4cerr << " G4ChordFinder::ApproxCurvePointV: Warning: Anomalous condition:AE > AB or AE/AB <= 0 " << G4endl << 610 << " Anomalous condition:AE > AB or << 375 " AE_fraction = " << AE_fraction << G4endl << 611 << " AE_fraction = " << AE_fract << 376 " Chord AE length = " << ChordAE_Vector.mag() << G4endl << 612 << " Chord AE length = " << Chord << 377 " Chord AB length = " << ABdist << G4endl << G4endl; 613 << " Chord AB length = " << ABdis << 378 G4cerr << " OK if this condition occurs after a recalculation of 'B'" << G4endl 614 G4cerr << " OK if this condition occurs af << 379 << " Otherwise it is an error. " << G4endl ; 615 << G4endl << " Otherwise it is an e << 616 #endif 380 #endif 617 // This course can now result if B has be 381 // This course can now result if B has been re-evaluated, 618 // without E being recomputed (1 July 99) << 382 // without E being recomputed (1 July 99) 619 // In this case this is not a "real error << 383 // In this case this is not a "real error" - but it undesired 620 // and we cope with it by a default corre << 384 // and we cope with it by a default corrective action ... 621 // << 622 AE_fraction = 0.5; 385 AE_fraction = 0.5; // Default value 623 } 386 } 624 387 625 new_st_length = AE_fraction * curve_length; << 388 new_st_length= AE_fraction * curve_length; 626 389 627 if ( AE_fraction > 0.0 ) << 390 G4bool good_advance; 628 { << 391 if ( AE_fraction > 0.0 ) { 629 fIntgrDriver->AccurateAdvance(Current_Poi << 392 good_advance = 630 new_st_leng << 393 fIntgrDriver->AccurateAdvance(Current_PointVelocity, 631 // << 394 new_st_length, >> 395 eps_step ); // Relative accuracy 632 // In this case it does not matter if it 396 // In this case it does not matter if it cannot advance the full distance 633 } 397 } 634 398 635 // If there was a memory of the step_length << 399 // If there was a memory of the step_length actually require at the start 636 // of the integration Step, this could be re 400 // of the integration Step, this could be re-used ... 637 401 638 G4cout.precision(14); << 639 << 640 return Current_PointVelocity; 402 return Current_PointVelocity; 641 } 403 } 642 404 643 // ........................................... << 644 << 645 std::ostream& operator<<( std::ostream& os, co << 646 { << 647 // Dumping the state of G4ChordFinder << 648 os << "State of G4ChordFinder : " << std::e << 649 os << " delta_chord = " << cf.fDeltaCh << 650 os << " Default d_c = " << cf.fDefault << 651 << 652 os << " stats-verbose = " << cf.fStatsVe << 653 405 654 return os; << 655 } << 656 406