Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ChordFinder implementation 26 // G4ChordFinder implementation 27 // 27 // 28 // Author: J.Apostolakis - Design and implemen 28 // Author: J.Apostolakis - Design and implementation - 25.02.1997 29 // ------------------------------------------- 29 // ------------------------------------------------------------------- 30 30 31 #include <iomanip> 31 #include <iomanip> 32 32 33 #include "G4ChordFinder.hh" 33 #include "G4ChordFinder.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4MagneticField.hh" 35 #include "G4MagneticField.hh" 36 #include "G4Mag_UsualEqRhs.hh" 36 #include "G4Mag_UsualEqRhs.hh" 37 #include "G4MagIntegratorDriver.hh" 37 #include "G4MagIntegratorDriver.hh" 38 // #include "G4ClassicalRK4.hh" 38 // #include "G4ClassicalRK4.hh" 39 // #include "G4CashKarpRKF45.hh" 39 // #include "G4CashKarpRKF45.hh" 40 // #include "G4NystromRK4.hh" << 41 // #include "G4BogackiShampine23.hh" 40 // #include "G4BogackiShampine23.hh" 42 // #include "G4BogackiShampine45.hh" 41 // #include "G4BogackiShampine45.hh" 43 << 44 #include "G4DormandPrince745.hh" 42 #include "G4DormandPrince745.hh" 45 43 46 // New templated stepper(s) -- avoid virtual c << 44 // New FSAL type driver / steppers ----- 47 #include "G4TDormandPrince45.hh" << 48 << 49 // FSAL type driver / steppers ----- << 50 #include "G4FSALIntegrationDriver.hh" 45 #include "G4FSALIntegrationDriver.hh" 51 #include "G4VFSALIntegrationStepper.hh" 46 #include "G4VFSALIntegrationStepper.hh" 52 #include "G4RK547FEq1.hh" 47 #include "G4RK547FEq1.hh" 53 // #include "G4RK547FEq2.hh" 48 // #include "G4RK547FEq2.hh" 54 // #include "G4RK547FEq3.hh" 49 // #include "G4RK547FEq3.hh" 55 // #include "G4FSALBogackiShampine45.hh" << 50 #include "G4NystromRK4.hh" 56 // #include "G4FSALDormandPrince745.hh" << 57 51 58 // Templated type drivers ----- << 52 // New FSAL type driver / steppers ----- 59 #include "G4IntegrationDriver.hh" 53 #include "G4IntegrationDriver.hh" 60 #include "G4InterpolationDriver.hh" 54 #include "G4InterpolationDriver.hh" 61 << 55 // #include "G4FSALBogackiShampine45.hh" >> 56 // #include "G4FSALDormandPrince745.hh" 62 #include "G4HelixHeum.hh" 57 #include "G4HelixHeum.hh" 63 #include "G4BFieldIntegrationDriver.hh" 58 #include "G4BFieldIntegrationDriver.hh" 64 59 65 #include "G4QSSDriverCreator.hh" << 66 << 67 #include "G4CachedMagneticField.hh" << 68 << 69 #include <cassert> 60 #include <cassert> 70 #include <memory> << 71 61 72 G4bool G4ChordFinder::gVerboseCtor = false; << 73 // ........................................... 62 // .......................................................................... 74 63 75 G4ChordFinder::G4ChordFinder(G4VIntegrationDri 64 G4ChordFinder::G4ChordFinder(G4VIntegrationDriver* pIntegrationDriver) 76 : fDefaultDeltaChord(0.25 * mm), fIntgrDrive 65 : fDefaultDeltaChord(0.25 * mm), fIntgrDriver(pIntegrationDriver) 77 { 66 { 78 // Simple constructor -- it does not create 67 // Simple constructor -- it does not create equation 79 if( gVerboseCtor ) << 68 80 { << 81 G4cout << "G4ChordFinder: Simple construct << 82 } << 83 << 84 fDeltaChord = fDefaultDeltaChord; // P 69 fDeltaChord = fDefaultDeltaChord; // Parameters 85 } 70 } 86 71 >> 72 87 // ........................................... 73 // .......................................................................... 88 74 89 G4ChordFinder::G4ChordFinder( G4MagneticField* 75 G4ChordFinder::G4ChordFinder( G4MagneticField* theMagField, 90 G4double << 76 G4double stepMinimum, 91 G4MagIntegratorS 77 G4MagIntegratorStepper* pItsStepper, 92 G4int << 78 G4bool useFSALstepper ) 93 : fDefaultDeltaChord(0.25 * mm) 79 : fDefaultDeltaChord(0.25 * mm) 94 { 80 { 95 // Construct the Chord Finder 81 // Construct the Chord Finder 96 // by creating in inverse order the Driver, 82 // by creating in inverse order the Driver, the Stepper and EqRhs ... 97 constexpr G4int nVar6 = 6; // Components i << 98 << 99 fDeltaChord = fDefaultDeltaChord; // P << 100 << 101 G4cout << " G4ChordFinder: stepperDriverId: << 102 83 103 G4bool useFSALstepper = (stepperDriverId << 84 fDeltaChord = fDefaultDeltaChord; // Parameters 104 G4bool useTemplatedStepper= (stepperDriverId << 105 G4bool useRegularStepper = (stepperDriverId << 106 G4bool useBfieldDriver = (stepperDriverId << 107 G4bool useG4QSSDriver = (stepperDriverId << 108 << 109 if( stepperDriverId == kQss3DriverType) << 110 { << 111 stepperDriverId = kQss2DriverType; << 112 G4cout << " G4ChordFinder: QSS 3 is curren << 113 } << 114 85 115 using EquationType = G4Mag_UsualEqRhs; << 86 using NewFsalStepperType = G4RK547FEq1; // or 2 or 3 116 << 87 const char* NewFSALStepperName = 117 using TemplatedStepperType = << 88 "G4RK574FEq1> FSAL 4th/5th order 7-stage 'Equilibrium-type' #1."; 118 G4TDormandPrince45<EquationType,nVar6 << 119 const char* TemplatedStepperName = << 120 "G4TDormandPrince745 (templated Dormand- << 121 << 122 using RegularStepperType = 89 using RegularStepperType = 123 G4DormandPrince745; // 5th order embe << 90 G4DormandPrince745; // 5th order embedded method. High efficiency. 124 // G4ClassicalRK4; // The old 91 // G4ClassicalRK4; // The old default 125 // G4CashKarpRKF45; // First em 92 // G4CashKarpRKF45; // First embedded method in G4 126 // G4BogackiShampine45; // High eff 93 // G4BogackiShampine45; // High efficiency 5th order embedded method 127 // G4NystromRK4; // Nystrom 94 // G4NystromRK4; // Nystrom stepper 4th order 128 // G4RK547FEq1; // or 2 or 3 95 // G4RK547FEq1; // or 2 or 3 129 const char* RegularStepperName = 96 const char* RegularStepperName = 130 "G4DormandPrince745 (aka DOPRI5): 5th/4t << 97 "G4DormandPrince745 (aka DOPRI5): 5th/4th Order 7-stage embedded stepper"; 131 // "BogackiShampine 45 (Embedded 5th/4th 98 // "BogackiShampine 45 (Embedded 5th/4th Order, 7-stage)"; 132 // "Nystrom stepper 4th order"; 99 // "Nystrom stepper 4th order"; 133 100 134 using NewFsalStepperType = G4DormandPrince74 << 101 // Configurable 135 << 102 G4bool forceFSALstepper = false; // Choice - true to enable !! 136 const char* NewFSALStepperName = << 103 G4bool recallFSALflag = useFSALstepper; 137 "G4RK574FEq1> FSAL 4th/5th order 7-stage << 104 useFSALstepper = forceFSALstepper || useFSALstepper; 138 << 105 139 #ifdef G4DEBUG_FIELD 106 #ifdef G4DEBUG_FIELD 140 static G4bool verboseDebug = true; << 141 if( verboseDebug ) << 142 { << 143 G4cout << "G4ChordFinder 2nd Constructor 107 G4cout << "G4ChordFinder 2nd Constructor called. " << G4endl; 144 G4cout << " Arguments: " << G4endl << 108 G4cout << " Parameters: " << G4endl; 145 << " - min step = " << stepMinimum << 109 G4cout << " useFSAL stepper= " << useFSALstepper 146 << " - stepper ptr provided : " << 110 << " (request = " << recallFSALflag 147 << ( pItsStepper==nullptr ? " no << 111 << " force FSAL = " << forceFSALstepper << " )" << G4endl; 148 if( pItsStepper==nullptr ) << 149 G4cout << " - stepper/driver Id = " << << 150 << " useFSAL = " << useFSALste << 151 << " , useTemplated = " << use << 152 << " , useRegular = " << useRe << 153 << " , useFSAL = " << useFSALs << 154 << G4endl; << 155 } << 156 #endif 112 #endif 157 113 158 // useHigherStepper = forceHigherEffiencySte 114 // useHigherStepper = forceHigherEffiencyStepper || useHigherStepper; 159 << 115 160 auto pEquation = new G4Mag_UsualEqRhs(theMa << 116 G4Mag_EqRhs* pEquation = new G4Mag_UsualEqRhs(theMagField); 161 fEquation = pEquation; 117 fEquation = pEquation; 162 118 163 // G4MagIntegratorStepper* regularStepper = 119 // G4MagIntegratorStepper* regularStepper = nullptr; 164 // G4VFSALIntegrationStepper* fsalStepper = 120 // G4VFSALIntegrationStepper* fsalStepper = nullptr; // for FSAL steppers only 165 // G4MagIntegratorStepper* oldFSALStepper = 121 // G4MagIntegratorStepper* oldFSALStepper = nullptr; 166 122 167 G4bool errorInStepperCreation = false; 123 G4bool errorInStepperCreation = false; 168 124 169 std::ostringstream message; // In case of f 125 std::ostringstream message; // In case of failure, load with description ! 170 126 171 if( pItsStepper != nullptr ) 127 if( pItsStepper != nullptr ) 172 { 128 { 173 if( gVerboseCtor ) << 129 // Type is not known - so must use old class 174 { << 130 fIntgrDriver = new G4IntegrationDriver<G4MagIntegratorStepper>( 175 G4cout << " G4ChordFinder: Creating G4I << 131 stepMinimum, pItsStepper, pItsStepper->GetNumberOfVariables()); 176 << " stepMinimum = " << stepMini << 177 << " numVar= " << pItsStepper->G << 178 } << 179 << 180 // Stepper type is not known - so must us << 181 if(pItsStepper->isQSS()) << 182 { << 183 // fIntgrDriver = pItsStepper->build_ << 184 G4Exception("G4ChordFinder::G4ChordFi << 185 "GeomField1001", FatalEx << 186 "Cannot provide QSS ste << 187 } << 188 else << 189 { << 190 fIntgrDriver = new G4IntegrationDrive << 191 pItsStepper, << 192 // Stepper type is not known - so mus << 193 // Non-interpolating driver used by d << 194 // WAS: fIntgrDriver = pItsStepper-> << 195 } << 196 // -- Older: << 197 // G4cout << " G4ChordFinder: Creating G4 << 198 // Type is not known - so must use old cl << 199 // fIntgrDriver = new G4MagInt_Driver( st << 200 // pItsSt << 201 } 132 } 202 else if ( useTemplatedStepper ) << 133 else if ( !useFSALstepper ) 203 { 134 { 204 if( gVerboseCtor ) << 205 { << 206 G4cout << " G4ChordFinder: Creating Te << 207 << TemplatedStepperName << G4en << 208 } << 209 // RegularStepperType* regularStepper = n 135 // RegularStepperType* regularStepper = nullptr; // To check the exception 210 auto templatedStepper = new TemplatedStep << 136 auto regularStepper = new RegularStepperType(pEquation); 211 // *** *************** 137 // *** ****************** 212 // 138 // 213 // Alternative - for G4NystromRK4: 139 // Alternative - for G4NystromRK4: 214 // = new G4NystromRK4(pEquation, 0.1*mm ) 140 // = new G4NystromRK4(pEquation, 0.1*mm ); 215 fRegularStepperOwned = templatedStepper; << 216 if( templatedStepper == nullptr ) << 217 { << 218 message << "Templated Stepper instanti << 219 message << "G4ChordFinder: Attempted t << 220 << TemplatedStepperName << " t << 221 errorInStepperCreation = true; << 222 } << 223 else << 224 { << 225 fIntgrDriver = new G4IntegrationDriver << 226 stepMinimum, templatedStepper, nVar << 227 if( gVerboseCtor ) << 228 { << 229 G4cout << " G4ChordFinder: Using G4 << 230 } << 231 } << 232 << 233 } << 234 else if ( useRegularStepper ) // Plain st << 235 { << 236 auto regularStepper = new RegularStepperT << 237 // *** *************** << 238 fRegularStepperOwned = regularStepper; 141 fRegularStepperOwned = regularStepper; 239 142 240 if( gVerboseCtor ) << 241 { << 242 G4cout << " G4ChordFinder: Creating Dr << 243 } << 244 << 245 if( regularStepper == nullptr ) 143 if( regularStepper == nullptr ) 246 { 144 { 247 message << "Regular Stepper instantiat << 145 message << "Stepper instantiation FAILED." << G4endl; 248 message << "G4ChordFinder: Attempted t 146 message << "G4ChordFinder: Attempted to instantiate " 249 << RegularStepperName << " typ 147 << RegularStepperName << " type stepper " << G4endl; >> 148 G4Exception("G4ChordFinder::G4ChordFinder()", >> 149 "GeomField1001", JustWarning, message); 250 errorInStepperCreation = true; 150 errorInStepperCreation = true; 251 } 151 } 252 else 152 else 253 { 153 { 254 auto dp5= dynamic_cast<G4DormandPrince << 255 if( dp5 != nullptr ) << 256 { << 257 fIntgrDriver = new G4InterpolationD << 258 stepMinimum, << 259 if( gVerboseCtor ) << 260 { << 261 G4cout << " Using InterpolationD << 262 } << 263 } << 264 else << 265 { << 266 fIntgrDriver = new G4IntegrationDri << 267 stepMinimum, << 268 if( gVerboseCtor ) << 269 { << 270 G4cout << " Using IntegrationDri << 271 } << 272 } << 273 } << 274 } << 275 else if ( useBfieldDriver ) << 276 { << 277 auto regularStepper = new G4DormandPrince << 278 // *** *************** << 279 // << 280 fRegularStepperOwned = regularStepper; << 281 << 282 { << 283 using SmallStepDriver = G4Interpolatio 154 using SmallStepDriver = G4InterpolationDriver<G4DormandPrince745>; 284 using LargeStepDriver = G4IntegrationD 155 using LargeStepDriver = G4IntegrationDriver<G4HelixHeum>; 285 156 286 fLongStepper = std::make_unique<G4Heli << 157 fLongStepper = std::unique_ptr<G4HelixHeum>(new G4HelixHeum(pEquation)); 287 158 288 fIntgrDriver = new G4BFieldIntegration 159 fIntgrDriver = new G4BFieldIntegrationDriver( 289 std::make_unique<SmallStepDriver>(st << 160 std::unique_ptr<SmallStepDriver>(new SmallStepDriver(stepMinimum, 290 regularStepper, regularStepper-> << 161 regularStepper, regularStepper->GetNumberOfVariables())), 291 std::make_unique<LargeStepDriver>(st << 162 std::unique_ptr<LargeStepDriver>(new LargeStepDriver(stepMinimum, 292 fLongStepper.get(), regularStepp << 163 fLongStepper.get(), regularStepper->GetNumberOfVariables())) ); 293 164 294 if( fIntgrDriver == nullptr) 165 if( fIntgrDriver == nullptr) 295 { 166 { 296 message << "Using G4BFieldIntegrati 167 message << "Using G4BFieldIntegrationDriver with " 297 << RegularStepperName << " 168 << RegularStepperName << " type stepper " << G4endl; 298 message << "Driver instantiation FA 169 message << "Driver instantiation FAILED." << G4endl; 299 G4Exception("G4ChordFinder::G4Chord 170 G4Exception("G4ChordFinder::G4ChordFinder()", 300 "GeomField1001", JustWa 171 "GeomField1001", JustWarning, message); 301 } 172 } 302 } 173 } 303 } 174 } 304 else if( useG4QSSDriver ) << 305 { << 306 if( stepperDriverId == kQss2DriverType ) << 307 { << 308 auto qssStepper2 = G4QSSDriverCreator:: << 309 if( gVerboseCtor ) << 310 { << 311 G4cout << "-- Created QSS-2 stepper" << 312 } << 313 fIntgrDriver = G4QSSDriverCreator::Crea << 314 } << 315 else << 316 { << 317 auto qssStepper3 = G4QSSDriverCreator:: << 318 if( gVerboseCtor ) << 319 { << 320 G4cout << "-- Created QSS-3 stepper" << 321 } << 322 fIntgrDriver = G4QSSDriverCreator::Crea << 323 } << 324 if( gVerboseCtor ) << 325 { << 326 G4cout << "-- G4ChordFinder: Using QSS << 327 } << 328 } << 329 else 175 else 330 { 176 { 331 auto fsalStepper= new NewFsalStepperType 177 auto fsalStepper= new NewFsalStepperType(pEquation); 332 // *** ****************** 178 // *** ****************** 333 fNewFSALStepperOwned = fsalStepper; 179 fNewFSALStepperOwned = fsalStepper; 334 180 335 if( fsalStepper == nullptr ) 181 if( fsalStepper == nullptr ) 336 { 182 { 337 message << "Stepper instantiation FAIL 183 message << "Stepper instantiation FAILED." << G4endl; 338 message << "Attempted to instantiate " 184 message << "Attempted to instantiate " 339 << NewFSALStepperName << " typ 185 << NewFSALStepperName << " type stepper " << G4endl; 340 G4Exception("G4ChordFinder::G4ChordFin 186 G4Exception("G4ChordFinder::G4ChordFinder()", 341 "GeomField1001", JustWarni 187 "GeomField1001", JustWarning, message); 342 errorInStepperCreation = true; 188 errorInStepperCreation = true; 343 } 189 } 344 else 190 else 345 { 191 { 346 fIntgrDriver = new 192 fIntgrDriver = new 347 G4FSALIntegrationDriver<NewFsalStep 193 G4FSALIntegrationDriver<NewFsalStepperType>(stepMinimum, fsalStepper, 348 fsal 194 fsalStepper->GetNumberOfVariables() ); 349 // ==== Create the driver which k 195 // ==== Create the driver which knows the class type 350 196 351 if( fIntgrDriver == nullptr ) 197 if( fIntgrDriver == nullptr ) 352 { 198 { 353 message << "Using G4FSALIntegration 199 message << "Using G4FSALIntegrationDriver with stepper type: " 354 << NewFSALStepperName << G4 200 << NewFSALStepperName << G4endl; 355 message << "Integration Driver inst 201 message << "Integration Driver instantiation FAILED." << G4endl; 356 G4Exception("G4ChordFinder::G4Chord 202 G4Exception("G4ChordFinder::G4ChordFinder()", 357 "GeomField1001", JustWa 203 "GeomField1001", JustWarning, message); 358 } 204 } 359 } 205 } 360 } 206 } 361 207 362 // -- Main work is now done 208 // -- Main work is now done 363 209 364 // Now check that no error occured, and r 210 // Now check that no error occured, and report it if one did. 365 211 366 // To test failure to create driver 212 // To test failure to create driver 367 // delete fIntgrDriver; 213 // delete fIntgrDriver; 368 // fIntgrDriver = nullptr; 214 // fIntgrDriver = nullptr; 369 215 370 // Detect and report Error conditions 216 // Detect and report Error conditions 371 // 217 // 372 if( errorInStepperCreation || (fIntgrDriver 218 if( errorInStepperCreation || (fIntgrDriver == nullptr )) 373 { 219 { 374 std::ostringstream errmsg; 220 std::ostringstream errmsg; 375 221 376 if( errorInStepperCreation ) 222 if( errorInStepperCreation ) 377 { 223 { 378 errmsg << "ERROR> Failure to create S 224 errmsg << "ERROR> Failure to create Stepper object." << G4endl 379 << " ------------------- 225 << " --------------------------------" << G4endl; 380 } 226 } 381 if (fIntgrDriver == nullptr ) 227 if (fIntgrDriver == nullptr ) 382 { 228 { 383 errmsg << "ERROR> Failure to create I 229 errmsg << "ERROR> Failure to create Integration-Driver object." 384 << G4endl 230 << G4endl 385 << " ------------------- 231 << " -------------------------------------------" 386 << G4endl; 232 << G4endl; 387 } 233 } 388 const std::string BoolName[2]= { "False", 234 const std::string BoolName[2]= { "False", "True" }; 389 errmsg << " Configuration: (constructor 235 errmsg << " Configuration: (constructor arguments) " << G4endl 390 << " provided Stepper = " << pI 236 << " provided Stepper = " << pItsStepper << G4endl 391 << " stepper/driver Id = " << step << 237 << " use FSAL stepper = " << BoolName[useFSALstepper] 392 << " useTemplated = " << BoolNam << 238 << " (request = " << BoolName[recallFSALflag] 393 << " useRegular = " << BoolName[ << 239 << " force FSAL = " << BoolName[forceFSALstepper] << " )" 394 << " useFSAL = " << BoolName[use << 395 << " using combo BField Driver = << 396 BoolName[ ! (useFSALstepper << 397 || useRegularSt << 398 << G4endl; 240 << G4endl; 399 errmsg << message.str(); 241 errmsg << message.str(); 400 errmsg << "Aborting."; 242 errmsg << "Aborting."; 401 G4Exception("G4ChordFinder::G4ChordFinder 243 G4Exception("G4ChordFinder::G4ChordFinder() - constructor 2", 402 "GeomField0003", FatalExcepti 244 "GeomField0003", FatalException, errmsg); 403 } 245 } 404 246 405 assert( ( pItsStepper != nullptr ) 247 assert( ( pItsStepper != nullptr ) 406 || ( fRegularStepperOwned != nullptr 248 || ( fRegularStepperOwned != nullptr ) 407 || ( fNewFSALStepperOwned != nullptr 249 || ( fNewFSALStepperOwned != nullptr ) 408 || useG4QSSDriver << 409 ); 250 ); 410 assert( fIntgrDriver != nullptr ); 251 assert( fIntgrDriver != nullptr ); 411 } 252 } 412 253 >> 254 413 // ........................................... 255 // ...................................................................... 414 256 415 G4ChordFinder::~G4ChordFinder() 257 G4ChordFinder::~G4ChordFinder() 416 { 258 { 417 delete fEquation; 259 delete fEquation; 418 delete fRegularStepperOwned; 260 delete fRegularStepperOwned; 419 delete fNewFSALStepperOwned; 261 delete fNewFSALStepperOwned; 420 delete fCachedField; 262 delete fCachedField; 421 delete fIntgrDriver; 263 delete fIntgrDriver; 422 } 264 } 423 265 424 // ........................................... 266 // ........................................................................... 425 267 426 G4FieldTrack 268 G4FieldTrack 427 G4ChordFinder::ApproxCurvePointS( const G4Fiel 269 G4ChordFinder::ApproxCurvePointS( const G4FieldTrack& CurveA_PointVelocity, 428 const G4Fiel 270 const G4FieldTrack& CurveB_PointVelocity, 429 const G4Fiel 271 const G4FieldTrack& ApproxCurveV, 430 const G4Thre 272 const G4ThreeVector& CurrentE_Point, 431 const G4Thre 273 const G4ThreeVector& CurrentF_Point, 432 const G4Thre 274 const G4ThreeVector& PointG, 433 G4bool 275 G4bool first, G4double eps_step) 434 { 276 { 435 // ApproxCurvePointS is 2nd implementation o 277 // ApproxCurvePointS is 2nd implementation of ApproxCurvePoint. 436 // Use Brent Algorithm (or InvParabolic) whe 278 // Use Brent Algorithm (or InvParabolic) when possible. 437 // Given a starting curve point A (CurveA_Po 279 // Given a starting curve point A (CurveA_PointVelocity), curve point B 438 // (CurveB_PointVelocity), a point E which i 280 // (CurveB_PointVelocity), a point E which is (generally) not on the curve 439 // and a point F which is on the curve (fir 281 // and a point F which is on the curve (first approximation), find new 440 // point S on the curve closer to point E. 282 // point S on the curve closer to point E. 441 // While advancing towards S utilise 'eps_st 283 // While advancing towards S utilise 'eps_step' as a measure of the 442 // relative accuracy of each Step. 284 // relative accuracy of each Step. 443 285 444 G4FieldTrack EndPoint(CurveA_PointVelocity); 286 G4FieldTrack EndPoint(CurveA_PointVelocity); 445 if(!first) { EndPoint = ApproxCurveV; } 287 if(!first) { EndPoint = ApproxCurveV; } 446 288 447 G4ThreeVector Point_A,Point_B; 289 G4ThreeVector Point_A,Point_B; 448 Point_A=CurveA_PointVelocity.GetPosition(); 290 Point_A=CurveA_PointVelocity.GetPosition(); 449 Point_B=CurveB_PointVelocity.GetPosition(); 291 Point_B=CurveB_PointVelocity.GetPosition(); 450 292 451 G4double xa,xb,xc,ya,yb,yc; 293 G4double xa,xb,xc,ya,yb,yc; 452 294 453 // InverseParabolic. AF Intersects (First Pa 295 // InverseParabolic. AF Intersects (First Part of Curve) 454 296 455 if(first) 297 if(first) 456 { 298 { 457 xa=0.; 299 xa=0.; 458 ya=(PointG-Point_A).mag(); 300 ya=(PointG-Point_A).mag(); 459 xb=(Point_A-CurrentF_Point).mag(); 301 xb=(Point_A-CurrentF_Point).mag(); 460 yb=-(PointG-CurrentF_Point).mag(); 302 yb=-(PointG-CurrentF_Point).mag(); 461 xc=(Point_A-Point_B).mag(); 303 xc=(Point_A-Point_B).mag(); 462 yc=-(CurrentE_Point-Point_B).mag(); 304 yc=-(CurrentE_Point-Point_B).mag(); 463 } 305 } 464 else 306 else 465 { 307 { 466 xa=0.; 308 xa=0.; 467 ya=(Point_A-CurrentE_Point).mag(); 309 ya=(Point_A-CurrentE_Point).mag(); 468 xb=(Point_A-CurrentF_Point).mag(); 310 xb=(Point_A-CurrentF_Point).mag(); 469 yb=(PointG-CurrentF_Point).mag(); 311 yb=(PointG-CurrentF_Point).mag(); 470 xc=(Point_A-Point_B).mag(); 312 xc=(Point_A-Point_B).mag(); 471 yc=-(Point_B-PointG).mag(); 313 yc=-(Point_B-PointG).mag(); 472 if(xb==0.) 314 if(xb==0.) 473 { 315 { 474 EndPoint = ApproxCurvePointV(CurveA_Poin 316 EndPoint = ApproxCurvePointV(CurveA_PointVelocity, CurveB_PointVelocity, 475 CurrentE_Po 317 CurrentE_Point, eps_step); 476 return EndPoint; 318 return EndPoint; 477 } 319 } 478 } 320 } 479 321 480 const G4double tolerance = 1.e-12; 322 const G4double tolerance = 1.e-12; 481 if(std::abs(ya)<=tolerance||std::abs(yc)<=to 323 if(std::abs(ya)<=tolerance||std::abs(yc)<=tolerance) 482 { 324 { 483 ; // What to do for the moment: return the 325 ; // What to do for the moment: return the same point as at start 484 // then PropagatorInField will take care 326 // then PropagatorInField will take care 485 } 327 } 486 else 328 else 487 { 329 { 488 G4double test_step = InvParabolic(xa,ya,xb 330 G4double test_step = InvParabolic(xa,ya,xb,yb,xc,yc); 489 G4double curve; 331 G4double curve; 490 if(first) 332 if(first) 491 { 333 { 492 curve=std::abs(EndPoint.GetCurveLength() 334 curve=std::abs(EndPoint.GetCurveLength() 493 -ApproxCurveV.GetCurveLeng 335 -ApproxCurveV.GetCurveLength()); 494 } 336 } 495 else 337 else 496 { 338 { 497 test_step = test_step - xb; 339 test_step = test_step - xb; 498 curve=std::abs(EndPoint.GetCurveLength() 340 curve=std::abs(EndPoint.GetCurveLength() 499 -CurveB_PointVelocity.GetC 341 -CurveB_PointVelocity.GetCurveLength()); 500 xb = (CurrentF_Point-Point_B).mag(); 342 xb = (CurrentF_Point-Point_B).mag(); 501 } 343 } 502 344 503 if(test_step<=0) { test_step=0.1*xb; } 345 if(test_step<=0) { test_step=0.1*xb; } 504 if(test_step>=xb) { test_step=0.5*xb; } 346 if(test_step>=xb) { test_step=0.5*xb; } 505 if(test_step>=curve){ test_step=0.5*curve; 347 if(test_step>=curve){ test_step=0.5*curve; } 506 348 507 if(curve*(1.+eps_step)<xb) // Similar to R 349 if(curve*(1.+eps_step)<xb) // Similar to ReEstimate Step from 508 { // G4VIntersect 350 { // G4VIntersectionLocator 509 test_step=0.5*curve; 351 test_step=0.5*curve; 510 } 352 } 511 353 512 fIntgrDriver->AccurateAdvance(EndPoint,tes 354 fIntgrDriver->AccurateAdvance(EndPoint,test_step, eps_step); 513 355 514 #ifdef G4DEBUG_FIELD 356 #ifdef G4DEBUG_FIELD 515 // Printing Brent and Linear Approximation 357 // Printing Brent and Linear Approximation 516 // 358 // 517 G4cout << "G4ChordFinder::ApproxCurvePoint 359 G4cout << "G4ChordFinder::ApproxCurvePointS() - test-step ShF = " 518 << test_step << " EndPoint = " << 360 << test_step << " EndPoint = " << EndPoint << G4endl; 519 361 520 // Test Track 362 // Test Track 521 // 363 // 522 G4FieldTrack TestTrack( CurveA_PointVeloci 364 G4FieldTrack TestTrack( CurveA_PointVelocity); 523 TestTrack = ApproxCurvePointV( CurveA_Poin 365 TestTrack = ApproxCurvePointV( CurveA_PointVelocity, 524 CurveB_Poin 366 CurveB_PointVelocity, 525 CurrentE_Po 367 CurrentE_Point, eps_step ); 526 G4cout.precision(14); 368 G4cout.precision(14); 527 G4cout << "G4ChordFinder::BrentApprox = " 369 G4cout << "G4ChordFinder::BrentApprox = " << EndPoint << G4endl; 528 G4cout << "G4ChordFinder::LinearApprox= " 370 G4cout << "G4ChordFinder::LinearApprox= " << TestTrack << G4endl; 529 #endif 371 #endif 530 } 372 } 531 return EndPoint; 373 return EndPoint; 532 } 374 } 533 375 534 376 535 // ........................................... 377 // ........................................................................... 536 378 537 G4FieldTrack G4ChordFinder:: 379 G4FieldTrack G4ChordFinder:: 538 ApproxCurvePointV( const G4FieldTrack& CurveA_ 380 ApproxCurvePointV( const G4FieldTrack& CurveA_PointVelocity, 539 const G4FieldTrack& CurveB_ 381 const G4FieldTrack& CurveB_PointVelocity, 540 const G4ThreeVector& Curren 382 const G4ThreeVector& CurrentE_Point, 541 G4double eps_step) 383 G4double eps_step) 542 { 384 { 543 // If r=|AE|/|AB|, and s=true path lenght (A 385 // If r=|AE|/|AB|, and s=true path lenght (AB) 544 // return the point that is r*s along the cu 386 // return the point that is r*s along the curve! 545 387 546 G4FieldTrack Current_PointVelocity = Curve 388 G4FieldTrack Current_PointVelocity = CurveA_PointVelocity; 547 389 548 G4ThreeVector CurveA_Point= CurveA_PointVel 390 G4ThreeVector CurveA_Point= CurveA_PointVelocity.GetPosition(); 549 G4ThreeVector CurveB_Point= CurveB_PointVel 391 G4ThreeVector CurveB_Point= CurveB_PointVelocity.GetPosition(); 550 392 551 G4ThreeVector ChordAB_Vector= CurveB_Point 393 G4ThreeVector ChordAB_Vector= CurveB_Point - CurveA_Point; 552 G4ThreeVector ChordAE_Vector= CurrentE_Poin 394 G4ThreeVector ChordAE_Vector= CurrentE_Point - CurveA_Point; 553 395 554 G4double ABdist= ChordAB_Vector.mag(); 396 G4double ABdist= ChordAB_Vector.mag(); 555 G4double curve_length; // A curve length 397 G4double curve_length; // A curve length of AB 556 G4double AE_fraction; 398 G4double AE_fraction; 557 399 558 curve_length= CurveB_PointVelocity.GetCurveL 400 curve_length= CurveB_PointVelocity.GetCurveLength() 559 - CurveA_PointVelocity.GetCurveL 401 - CurveA_PointVelocity.GetCurveLength(); 560 402 561 G4double integrationInaccuracyLimit= std::ma 403 G4double integrationInaccuracyLimit= std::max( perMillion, 0.5*eps_step ); 562 if( curve_length < ABdist * (1. - integratio 404 if( curve_length < ABdist * (1. - integrationInaccuracyLimit) ) 563 { 405 { 564 #ifdef G4DEBUG_FIELD 406 #ifdef G4DEBUG_FIELD 565 G4cerr << " Warning in G4ChordFinder::Appr 407 G4cerr << " Warning in G4ChordFinder::ApproxCurvePoint: " 566 << G4endl 408 << G4endl 567 << " The two points are further apa 409 << " The two points are further apart than the curve length " 568 << G4endl 410 << G4endl 569 << " Dist = " << ABdist 411 << " Dist = " << ABdist 570 << " curve length = " << curve_leng 412 << " curve length = " << curve_length 571 << " relativeDiff = " << (curve_len 413 << " relativeDiff = " << (curve_length-ABdist)/ABdist 572 << G4endl; 414 << G4endl; 573 if( curve_length < ABdist * (1. - 10*eps_s 415 if( curve_length < ABdist * (1. - 10*eps_step) ) 574 { 416 { 575 std::ostringstream message; 417 std::ostringstream message; 576 message << "Unphysical curve length." << 418 message << "Unphysical curve length." << G4endl 577 << "The size of the above differ 419 << "The size of the above difference exceeds allowed limits." 578 << G4endl 420 << G4endl 579 << "Aborting."; 421 << "Aborting."; 580 G4Exception("G4ChordFinder::ApproxCurveP 422 G4Exception("G4ChordFinder::ApproxCurvePointV()", "GeomField0003", 581 FatalException, message); 423 FatalException, message); 582 } 424 } 583 #endif 425 #endif 584 // Take default corrective action: adjust 426 // Take default corrective action: adjust the maximum curve length. 585 // NOTE: this case only happens for relati 427 // NOTE: this case only happens for relatively straight paths. 586 // curve_length = ABdist; 428 // curve_length = ABdist; 587 } 429 } 588 430 589 G4double new_st_length; 431 G4double new_st_length; 590 432 591 if ( ABdist > 0.0 ) 433 if ( ABdist > 0.0 ) 592 { 434 { 593 AE_fraction = ChordAE_Vector.mag() / ABdi 435 AE_fraction = ChordAE_Vector.mag() / ABdist; 594 } 436 } 595 else 437 else 596 { 438 { 597 AE_fraction = 0.5; 439 AE_fraction = 0.5; // Guess .. ?; 598 #ifdef G4DEBUG_FIELD 440 #ifdef G4DEBUG_FIELD 599 G4cout << "Warning in G4ChordFinder::Appr 441 G4cout << "Warning in G4ChordFinder::ApproxCurvePointV():" 600 << " A and B are the same point!" 442 << " A and B are the same point!" << G4endl 601 << " Chord AB length = " << ChordA 443 << " Chord AB length = " << ChordAE_Vector.mag() << G4endl 602 << G4endl; 444 << G4endl; 603 #endif 445 #endif 604 } 446 } 605 447 606 if( (AE_fraction> 1.0 + perMillion) || (AE_f 448 if( (AE_fraction> 1.0 + perMillion) || (AE_fraction< 0.) ) 607 { 449 { 608 #ifdef G4DEBUG_FIELD 450 #ifdef G4DEBUG_FIELD 609 G4cerr << " G4ChordFinder::ApproxCurvePoin 451 G4cerr << " G4ChordFinder::ApproxCurvePointV() - Warning:" 610 << " Anomalous condition:AE > AB or 452 << " Anomalous condition:AE > AB or AE/AB <= 0 " << G4endl 611 << " AE_fraction = " << AE_fract 453 << " AE_fraction = " << AE_fraction << G4endl 612 << " Chord AE length = " << Chord 454 << " Chord AE length = " << ChordAE_Vector.mag() << G4endl 613 << " Chord AB length = " << ABdis 455 << " Chord AB length = " << ABdist << G4endl << G4endl; 614 G4cerr << " OK if this condition occurs af 456 G4cerr << " OK if this condition occurs after a recalculation of 'B'" 615 << G4endl << " Otherwise it is an e 457 << G4endl << " Otherwise it is an error. " << G4endl ; 616 #endif 458 #endif 617 // This course can now result if B has be 459 // This course can now result if B has been re-evaluated, 618 // without E being recomputed (1 July 99) 460 // without E being recomputed (1 July 99). 619 // In this case this is not a "real error 461 // In this case this is not a "real error" - but it is undesired 620 // and we cope with it by a default corre 462 // and we cope with it by a default corrective action ... 621 // 463 // 622 AE_fraction = 0.5; 464 AE_fraction = 0.5; // Default value 623 } 465 } 624 466 625 new_st_length = AE_fraction * curve_length; 467 new_st_length = AE_fraction * curve_length; 626 468 627 if ( AE_fraction > 0.0 ) 469 if ( AE_fraction > 0.0 ) 628 { 470 { 629 fIntgrDriver->AccurateAdvance(Current_Poi 471 fIntgrDriver->AccurateAdvance(Current_PointVelocity, 630 new_st_leng 472 new_st_length, eps_step ); 631 // 473 // 632 // In this case it does not matter if it 474 // In this case it does not matter if it cannot advance the full distance 633 } 475 } 634 476 635 // If there was a memory of the step_length 477 // If there was a memory of the step_length actually required at the start 636 // of the integration Step, this could be re 478 // of the integration Step, this could be re-used ... 637 479 638 G4cout.precision(14); 480 G4cout.precision(14); 639 481 640 return Current_PointVelocity; 482 return Current_PointVelocity; 641 } 483 } 642 484 643 // ........................................... 485 // ........................................................................... 644 << 645 std::ostream& operator<<( std::ostream& os, co << 646 { << 647 // Dumping the state of G4ChordFinder << 648 os << "State of G4ChordFinder : " << std::e << 649 os << " delta_chord = " << cf.fDeltaCh << 650 os << " Default d_c = " << cf.fDefault << 651 << 652 os << " stats-verbose = " << cf.fStatsVe << 653 << 654 return os; << 655 } << 656 486