Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ChordFinder implementation << 27 // 26 // 28 // Author: J.Apostolakis - Design and implemen << 27 // >> 28 // >> 29 // 25.02.97 - John Apostolakis - Design and implementation 29 // ------------------------------------------- 30 // ------------------------------------------------------------------- 30 31 31 #include <iomanip> 32 #include <iomanip> 32 33 33 #include "G4ChordFinder.hh" 34 #include "G4ChordFinder.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 35 #include "G4MagneticField.hh" 36 #include "G4MagneticField.hh" 36 #include "G4Mag_UsualEqRhs.hh" 37 #include "G4Mag_UsualEqRhs.hh" 37 #include "G4MagIntegratorDriver.hh" 38 #include "G4MagIntegratorDriver.hh" 38 // #include "G4ClassicalRK4.hh" 39 // #include "G4ClassicalRK4.hh" 39 // #include "G4CashKarpRKF45.hh" 40 // #include "G4CashKarpRKF45.hh" 40 // #include "G4NystromRK4.hh" << 41 // #include "G4BogackiShampine23.hh" 41 // #include "G4BogackiShampine23.hh" 42 // #include "G4BogackiShampine45.hh" 42 // #include "G4BogackiShampine45.hh" 43 << 44 #include "G4DormandPrince745.hh" 43 #include "G4DormandPrince745.hh" 45 44 46 // New templated stepper(s) -- avoid virtual c << 45 // New FSAL type driver / steppers ----- 47 #include "G4TDormandPrince45.hh" << 48 << 49 // FSAL type driver / steppers ----- << 50 #include "G4FSALIntegrationDriver.hh" 46 #include "G4FSALIntegrationDriver.hh" 51 #include "G4VFSALIntegrationStepper.hh" 47 #include "G4VFSALIntegrationStepper.hh" 52 #include "G4RK547FEq1.hh" 48 #include "G4RK547FEq1.hh" 53 // #include "G4RK547FEq2.hh" 49 // #include "G4RK547FEq2.hh" 54 // #include "G4RK547FEq3.hh" 50 // #include "G4RK547FEq3.hh" 55 // #include "G4FSALBogackiShampine45.hh" << 51 #include "G4NystromRK4.hh" 56 // #include "G4FSALDormandPrince745.hh" << 57 52 58 // Templated type drivers ----- << 53 // New FSAL type driver / steppers ----- 59 #include "G4IntegrationDriver.hh" 54 #include "G4IntegrationDriver.hh" 60 #include "G4InterpolationDriver.hh" << 55 #include "G4FSALBogackiShampine45.hh" 61 << 56 // #include "G4FSALDormandPrince745.hh" 62 #include "G4HelixHeum.hh" << 63 #include "G4BFieldIntegrationDriver.hh" << 64 << 65 #include "G4QSSDriverCreator.hh" << 66 << 67 #include "G4CachedMagneticField.hh" << 68 57 69 #include <cassert> 58 #include <cassert> 70 #include <memory> << 71 59 72 G4bool G4ChordFinder::gVerboseCtor = false; << 60 73 // ........................................... 61 // .......................................................................... 74 62 75 G4ChordFinder::G4ChordFinder(G4VIntegrationDri 63 G4ChordFinder::G4ChordFinder(G4VIntegrationDriver* pIntegrationDriver) 76 : fDefaultDeltaChord(0.25 * mm), fIntgrDrive << 64 : fDefaultDeltaChord( 0.25 * mm ), // Parameters >> 65 fDeltaChord( fDefaultDeltaChord ), // Internal parameters >> 66 fStatsVerbose(0), >> 67 fRegularStepperOwned(nullptr), // Dependent objects >> 68 fEquation(0) 77 { 69 { 78 // Simple constructor -- it does not create 70 // Simple constructor -- it does not create equation 79 if( gVerboseCtor ) << 71 fIntgrDriver= pIntegrationDriver; 80 { << 81 G4cout << "G4ChordFinder: Simple construct << 82 } << 83 << 84 fDeltaChord = fDefaultDeltaChord; // P << 85 } 72 } 86 73 >> 74 87 // ........................................... 75 // .......................................................................... 88 76 89 G4ChordFinder::G4ChordFinder( G4MagneticField* 77 G4ChordFinder::G4ChordFinder( G4MagneticField* theMagField, 90 G4double << 78 G4double stepMinimum, 91 G4MagIntegratorS << 79 G4MagIntegratorStepper* pItsStepper, // nullptr is default 92 G4int << 80 G4bool useFSALstepper ) // false by default 93 : fDefaultDeltaChord(0.25 * mm) << 81 : fDefaultDeltaChord( 0.25 * mm ), // Constants >> 82 fDeltaChord( fDefaultDeltaChord ), // Parameters >> 83 fStatsVerbose(0), >> 84 // fRegularStepperOwned(nullptr), // Dependent objects >> 85 fEquation(0) 94 { 86 { 95 // Construct the Chord Finder << 87 // Construct the Chord Finder 96 // by creating in inverse order the Driver, << 88 // by creating in inverse order the Driver, the Stepper and EqRhs ... 97 constexpr G4int nVar6 = 6; // Components i << 98 << 99 fDeltaChord = fDefaultDeltaChord; // P << 100 << 101 G4cout << " G4ChordFinder: stepperDriverId: << 102 89 103 G4bool useFSALstepper = (stepperDriverId << 90 using NewFsalStepperType = G4RK547FEq1; // or 2 or 3 104 G4bool useTemplatedStepper= (stepperDriverId << 91 const char* NewFSALStepperName = "G4RK574FEq1> FSAL 4th/5th order 7-stage 'Equilibrium-type' #1."; 105 G4bool useRegularStepper = (stepperDriverId << 106 G4bool useBfieldDriver = (stepperDriverId << 107 G4bool useG4QSSDriver = (stepperDriverId << 108 << 109 if( stepperDriverId == kQss3DriverType) << 110 { << 111 stepperDriverId = kQss2DriverType; << 112 G4cout << " G4ChordFinder: QSS 3 is curren << 113 } << 114 << 115 using EquationType = G4Mag_UsualEqRhs; << 116 << 117 using TemplatedStepperType = << 118 G4TDormandPrince45<EquationType,nVar6 << 119 const char* TemplatedStepperName = << 120 "G4TDormandPrince745 (templated Dormand- << 121 << 122 using RegularStepperType = 92 using RegularStepperType = 123 G4DormandPrince745; // 5th order embe << 93 G4DormandPrince745; // 124 // G4ClassicalRK4; // The old 94 // G4ClassicalRK4; // The old default 125 // G4CashKarpRKF45; // First em 95 // G4CashKarpRKF45; // First embedded method in G4 126 // G4BogackiShampine45; // High eff 96 // G4BogackiShampine45; // High efficiency 5th order embedded method 127 // G4NystromRK4; // Nystrom << 97 // G4DormandPrince745 // Famous DOPRI5 (MatLab) 5th order embedded method. High efficiency. 128 // G4RK547FEq1; // or 2 or 3 98 // G4RK547FEq1; // or 2 or 3 129 const char* RegularStepperName = << 99 const char* RegularStepperName = "Nystrom stepper 4th order"; 130 "G4DormandPrince745 (aka DOPRI5): 5th/4t << 100 //"G4DormandPrince745 (aka DOPRI5): 5th/4th Order 7-stage embedded stepper"; 131 // "BogackiShampine 45 (Embedded 5th/4th 101 // "BogackiShampine 45 (Embedded 5th/4th Order, 7-stage)"; 132 // "Nystrom stepper 4th order"; << 133 102 134 using NewFsalStepperType = G4DormandPrince74 << 103 // Configurable 135 << 104 G4bool forceFSALstepper= false; // Choice - true to enable !! 136 const char* NewFSALStepperName = << 105 G4bool recallFSALflag = useFSALstepper; 137 "G4RK574FEq1> FSAL 4th/5th order 7-stage << 106 useFSALstepper = forceFSALstepper || useFSALstepper; 138 << 107 139 #ifdef G4DEBUG_FIELD 108 #ifdef G4DEBUG_FIELD 140 static G4bool verboseDebug = true; << 141 if( verboseDebug ) << 142 { << 143 G4cout << "G4ChordFinder 2nd Constructor 109 G4cout << "G4ChordFinder 2nd Constructor called. " << G4endl; 144 G4cout << " Arguments: " << G4endl << 110 G4cout << " Parameters: " << G4endl; 145 << " - min step = " << stepMinimum << 111 G4cout << " useFSAL stepper= " << useFSALstepper 146 << " - stepper ptr provided : " << 112 << " (request = " << recallFSALflag 147 << ( pItsStepper==nullptr ? " no << 113 << " force FSAL = " << forceFSALstepper << " )" << G4endl; 148 if( pItsStepper==nullptr ) << 149 G4cout << " - stepper/driver Id = " << << 150 << " useFSAL = " << useFSALste << 151 << " , useTemplated = " << use << 152 << " , useRegular = " << useRe << 153 << " , useFSAL = " << useFSALs << 154 << G4endl; << 155 } << 156 #endif 114 #endif 157 115 158 // useHigherStepper = forceHigherEffiencySte 116 // useHigherStepper = forceHigherEffiencyStepper || useHigherStepper; 159 << 117 160 auto pEquation = new G4Mag_UsualEqRhs(theMa << 118 G4Mag_EqRhs *pEquation = new G4Mag_UsualEqRhs(theMagField); 161 fEquation = pEquation; 119 fEquation = pEquation; 162 120 163 // G4MagIntegratorStepper* regularStepper = << 121 // G4MagIntegratorStepper* regularStepper = nullptr; 164 // G4VFSALIntegrationStepper* fsalStepper = << 122 // G4VFSALIntegrationStepper* fsalSepper = nullptr; // for new-type FSAL steppers only 165 // G4MagIntegratorStepper* oldFSALStepper = << 123 // NewFsalStepperType* fsalStepper =nullptr; >> 124 // G4MagIntegratorStepper* oldFSALStepper =nullptr; 166 125 167 G4bool errorInStepperCreation = false; 126 G4bool errorInStepperCreation = false; 168 127 169 std::ostringstream message; // In case of f 128 std::ostringstream message; // In case of failure, load with description ! 170 129 171 if( pItsStepper != nullptr ) 130 if( pItsStepper != nullptr ) 172 { 131 { 173 if( gVerboseCtor ) << 132 // Type is not known - so must use old class 174 { << 133 fIntgrDriver = new G4IntegrationDriver<G4MagIntegratorStepper>( 175 G4cout << " G4ChordFinder: Creating G4I << 134 stepMinimum, pItsStepper, pItsStepper->GetNumberOfVariables()); 176 << " stepMinimum = " << stepMini << 177 << " numVar= " << pItsStepper->G << 178 } << 179 << 180 // Stepper type is not known - so must us << 181 if(pItsStepper->isQSS()) << 182 { << 183 // fIntgrDriver = pItsStepper->build_ << 184 G4Exception("G4ChordFinder::G4ChordFi << 185 "GeomField1001", FatalEx << 186 "Cannot provide QSS ste << 187 } << 188 else << 189 { << 190 fIntgrDriver = new G4IntegrationDrive << 191 pItsStepper, << 192 // Stepper type is not known - so mus << 193 // Non-interpolating driver used by d << 194 // WAS: fIntgrDriver = pItsStepper-> << 195 } << 196 // -- Older: << 197 // G4cout << " G4ChordFinder: Creating G4 << 198 // Type is not known - so must use old cl << 199 // fIntgrDriver = new G4MagInt_Driver( st << 200 // pItsSt << 201 } 135 } 202 else if ( useTemplatedStepper ) << 136 else if ( !useFSALstepper ) 203 { 137 { 204 if( gVerboseCtor ) << 138 // RegularStepperType* regularStepper =nullptr; // To check the exception 205 { << 139 auto regularStepper = new RegularStepperType(pEquation); 206 G4cout << " G4ChordFinder: Creating Te << 140 // *** ****************** 207 << TemplatedStepperName << G4en << 208 } << 209 // RegularStepperType* regularStepper = n << 210 auto templatedStepper = new TemplatedStep << 211 // *** *************** << 212 // 141 // 213 // Alternative - for G4NystromRK4: 142 // Alternative - for G4NystromRK4: 214 // = new G4NystromRK4(pEquation, 0.1*mm ) << 143 // = new G4NystromRK4(pEquation, 0.1*millimeter ); // *clhep::millimeter ); 215 fRegularStepperOwned = templatedStepper; << 216 if( templatedStepper == nullptr ) << 217 { << 218 message << "Templated Stepper instanti << 219 message << "G4ChordFinder: Attempted t << 220 << TemplatedStepperName << " t << 221 errorInStepperCreation = true; << 222 } << 223 else << 224 { << 225 fIntgrDriver = new G4IntegrationDriver << 226 stepMinimum, templatedStepper, nVar << 227 if( gVerboseCtor ) << 228 { << 229 G4cout << " G4ChordFinder: Using G4 << 230 } << 231 } << 232 << 233 } << 234 else if ( useRegularStepper ) // Plain st << 235 { << 236 auto regularStepper = new RegularStepperT << 237 // *** *************** << 238 fRegularStepperOwned = regularStepper; 144 fRegularStepperOwned = regularStepper; 239 145 240 if( gVerboseCtor ) << 241 { << 242 G4cout << " G4ChordFinder: Creating Dr << 243 } << 244 << 245 if( regularStepper == nullptr ) 146 if( regularStepper == nullptr ) 246 { 147 { 247 message << "Regular Stepper instantiat << 148 message << "Stepper instantiation FAILED." << G4endl; 248 message << "G4ChordFinder: Attempted t 149 message << "G4ChordFinder: Attempted to instantiate " 249 << RegularStepperName << " typ 150 << RegularStepperName << " type stepper " << G4endl; >> 151 G4Exception("G4ChordFinder::G4ChordFinder()", >> 152 "GeomField1001", JustWarning, message); 250 errorInStepperCreation = true; 153 errorInStepperCreation = true; 251 } 154 } 252 else 155 else 253 { 156 { 254 auto dp5= dynamic_cast<G4DormandPrince << 157 fIntgrDriver = new G4IntegrationDriver<G4MagIntegratorStepper>( 255 if( dp5 != nullptr ) << 158 stepMinimum, regularStepper, regularStepper->GetNumberOfVariables()); 256 { << 257 fIntgrDriver = new G4InterpolationD << 258 stepMinimum, << 259 if( gVerboseCtor ) << 260 { << 261 G4cout << " Using InterpolationD << 262 } << 263 } << 264 else << 265 { << 266 fIntgrDriver = new G4IntegrationDri << 267 stepMinimum, << 268 if( gVerboseCtor ) << 269 { << 270 G4cout << " Using IntegrationDri << 271 } << 272 } << 273 } << 274 } << 275 else if ( useBfieldDriver ) << 276 { << 277 auto regularStepper = new G4DormandPrince << 278 // *** *************** << 279 // << 280 fRegularStepperOwned = regularStepper; << 281 << 282 { << 283 using SmallStepDriver = G4Interpolatio << 284 using LargeStepDriver = G4IntegrationD << 285 << 286 fLongStepper = std::make_unique<G4Heli << 287 159 288 fIntgrDriver = new G4BFieldIntegration << 160 if( fIntgrDriver==nullptr) 289 std::make_unique<SmallStepDriver>(st << 290 regularStepper, regularStepper-> << 291 std::make_unique<LargeStepDriver>(st << 292 fLongStepper.get(), regularStepp << 293 << 294 if( fIntgrDriver == nullptr) << 295 { 161 { 296 message << "Using G4BFieldIntegrati << 162 message << "Using G4IntegrationDriver with " 297 << RegularStepperName << " 163 << RegularStepperName << " type stepper " << G4endl; 298 message << "Driver instantiation FA 164 message << "Driver instantiation FAILED." << G4endl; 299 G4Exception("G4ChordFinder::G4Chord 165 G4Exception("G4ChordFinder::G4ChordFinder()", 300 "GeomField1001", JustWa 166 "GeomField1001", JustWarning, message); 301 } 167 } 302 } 168 } 303 } 169 } 304 else if( useG4QSSDriver ) << 305 { << 306 if( stepperDriverId == kQss2DriverType ) << 307 { << 308 auto qssStepper2 = G4QSSDriverCreator:: << 309 if( gVerboseCtor ) << 310 { << 311 G4cout << "-- Created QSS-2 stepper" << 312 } << 313 fIntgrDriver = G4QSSDriverCreator::Crea << 314 } << 315 else << 316 { << 317 auto qssStepper3 = G4QSSDriverCreator:: << 318 if( gVerboseCtor ) << 319 { << 320 G4cout << "-- Created QSS-3 stepper" << 321 } << 322 fIntgrDriver = G4QSSDriverCreator::Crea << 323 } << 324 if( gVerboseCtor ) << 325 { << 326 G4cout << "-- G4ChordFinder: Using QSS << 327 } << 328 } << 329 else 170 else 330 { 171 { 331 auto fsalStepper= new NewFsalStepperType 172 auto fsalStepper= new NewFsalStepperType(pEquation); 332 // *** ****************** << 173 // ****************** 333 fNewFSALStepperOwned = fsalStepper; 174 fNewFSALStepperOwned = fsalStepper; 334 175 335 if( fsalStepper == nullptr ) 176 if( fsalStepper == nullptr ) 336 { 177 { 337 message << "Stepper instantiation FAIL 178 message << "Stepper instantiation FAILED." << G4endl; 338 message << "Attempted to instantiate " 179 message << "Attempted to instantiate " 339 << NewFSALStepperName << " typ 180 << NewFSALStepperName << " type stepper " << G4endl; 340 G4Exception("G4ChordFinder::G4ChordFin 181 G4Exception("G4ChordFinder::G4ChordFinder()", 341 "GeomField1001", JustWarni 182 "GeomField1001", JustWarning, message); 342 errorInStepperCreation = true; 183 errorInStepperCreation = true; 343 } 184 } 344 else 185 else 345 { 186 { 346 fIntgrDriver = new 187 fIntgrDriver = new 347 G4FSALIntegrationDriver<NewFsalStep << 188 G4FSALIntegrationDriver<NewFsalStepperType>(stepMinimum, 348 fsal << 189 fsalStepper, >> 190 fsalStepper->GetNumberOfVariables() ); 349 // ==== Create the driver which k 191 // ==== Create the driver which knows the class type 350 192 351 if( fIntgrDriver == nullptr ) << 193 if( fIntgrDriver==nullptr ) 352 { 194 { 353 message << "Using G4FSALIntegration 195 message << "Using G4FSALIntegrationDriver with stepper type: " 354 << NewFSALStepperName << G4 196 << NewFSALStepperName << G4endl; 355 message << "Integration Driver inst 197 message << "Integration Driver instantiation FAILED." << G4endl; 356 G4Exception("G4ChordFinder::G4Chord 198 G4Exception("G4ChordFinder::G4ChordFinder()", 357 "GeomField1001", JustWa 199 "GeomField1001", JustWarning, message); 358 } 200 } 359 } 201 } 360 } 202 } 361 203 362 // -- Main work is now done 204 // -- Main work is now done 363 205 364 // Now check that no error occured, and r 206 // Now check that no error occured, and report it if one did. 365 207 366 // To test failure to create driver 208 // To test failure to create driver 367 // delete fIntgrDriver; 209 // delete fIntgrDriver; 368 // fIntgrDriver = nullptr; << 210 // fIntgrDriver= nullptr; 369 211 370 // Detect and report Error conditions 212 // Detect and report Error conditions 371 // << 372 if( errorInStepperCreation || (fIntgrDriver 213 if( errorInStepperCreation || (fIntgrDriver == nullptr )) 373 { 214 { 374 std::ostringstream errmsg; 215 std::ostringstream errmsg; 375 216 376 if( errorInStepperCreation ) 217 if( errorInStepperCreation ) 377 { 218 { 378 errmsg << "ERROR> Failure to create S 219 errmsg << "ERROR> Failure to create Stepper object." << G4endl 379 << " ------------------- 220 << " --------------------------------" << G4endl; 380 } 221 } 381 if (fIntgrDriver == nullptr ) 222 if (fIntgrDriver == nullptr ) 382 { 223 { 383 errmsg << "ERROR> Failure to create I << 224 errmsg << "ERROR> Failure to create Integration-Driver object." << G4endl 384 << G4endl << 225 << " -------------------------------------------" << G4endl; 385 << " ------------------- << 386 << G4endl; << 387 } 226 } 388 const std::string BoolName[2]= { "False", 227 const std::string BoolName[2]= { "False", "True" }; 389 errmsg << " Configuration: (constructor 228 errmsg << " Configuration: (constructor arguments) " << G4endl 390 << " provided Stepper = " << pI 229 << " provided Stepper = " << pItsStepper << G4endl 391 << " stepper/driver Id = " << step << 230 << " use FSAL stepper = " << BoolName[useFSALstepper] 392 << " useTemplated = " << BoolNam << 231 << " (request = " << BoolName[recallFSALflag] 393 << " useRegular = " << BoolName[ << 232 << " force FSAL = " << BoolName[forceFSALstepper] << " )" << G4endl; 394 << " useFSAL = " << BoolName[use << 395 << " using combo BField Driver = << 396 BoolName[ ! (useFSALstepper << 397 || useRegularSt << 398 << G4endl; << 399 errmsg << message.str(); 233 errmsg << message.str(); 400 errmsg << "Aborting."; 234 errmsg << "Aborting."; 401 G4Exception("G4ChordFinder::G4ChordFinder 235 G4Exception("G4ChordFinder::G4ChordFinder() - constructor 2", 402 "GeomField0003", FatalExcepti 236 "GeomField0003", FatalException, errmsg); 403 } 237 } 404 238 405 assert( ( pItsStepper != nullptr ) << 239 assert( ( pItsStepper != nullptr ) 406 || ( fRegularStepperOwned != nullptr 240 || ( fRegularStepperOwned != nullptr ) 407 || ( fNewFSALStepperOwned != nullptr << 241 || ( fNewFSALStepperOwned != nullptr ) 408 || useG4QSSDriver << 409 ); 242 ); 410 assert( fIntgrDriver != nullptr ); 243 assert( fIntgrDriver != nullptr ); 411 } 244 } 412 245 >> 246 413 // ........................................... 247 // ...................................................................... 414 248 415 G4ChordFinder::~G4ChordFinder() 249 G4ChordFinder::~G4ChordFinder() 416 { 250 { 417 delete fEquation; << 251 delete fEquation; 418 delete fRegularStepperOwned; << 252 delete fRegularStepperOwned; 419 delete fNewFSALStepperOwned; << 253 delete fNewFSALStepperOwned; 420 delete fCachedField; << 254 delete fCachedField; 421 delete fIntgrDriver; << 255 delete fIntgrDriver; 422 } 256 } 423 257 424 // ........................................... 258 // ........................................................................... 425 259 426 G4FieldTrack 260 G4FieldTrack 427 G4ChordFinder::ApproxCurvePointS( const G4Fiel 261 G4ChordFinder::ApproxCurvePointS( const G4FieldTrack& CurveA_PointVelocity, 428 const G4Fiel 262 const G4FieldTrack& CurveB_PointVelocity, 429 const G4Fiel 263 const G4FieldTrack& ApproxCurveV, 430 const G4Thre 264 const G4ThreeVector& CurrentE_Point, 431 const G4Thre 265 const G4ThreeVector& CurrentF_Point, 432 const G4Thre 266 const G4ThreeVector& PointG, 433 G4bool << 267 G4bool first, G4double eps_step) 434 { 268 { 435 // ApproxCurvePointS is 2nd implementation o 269 // ApproxCurvePointS is 2nd implementation of ApproxCurvePoint. 436 // Use Brent Algorithm (or InvParabolic) whe 270 // Use Brent Algorithm (or InvParabolic) when possible. 437 // Given a starting curve point A (CurveA_Po 271 // Given a starting curve point A (CurveA_PointVelocity), curve point B 438 // (CurveB_PointVelocity), a point E which i 272 // (CurveB_PointVelocity), a point E which is (generally) not on the curve 439 // and a point F which is on the curve (fir 273 // and a point F which is on the curve (first approximation), find new 440 // point S on the curve closer to point E. 274 // point S on the curve closer to point E. 441 // While advancing towards S utilise 'eps_st 275 // While advancing towards S utilise 'eps_step' as a measure of the 442 // relative accuracy of each Step. 276 // relative accuracy of each Step. 443 277 444 G4FieldTrack EndPoint(CurveA_PointVelocity); 278 G4FieldTrack EndPoint(CurveA_PointVelocity); 445 if(!first) { EndPoint = ApproxCurveV; } << 279 if(!first){EndPoint= ApproxCurveV;} 446 280 447 G4ThreeVector Point_A,Point_B; 281 G4ThreeVector Point_A,Point_B; 448 Point_A=CurveA_PointVelocity.GetPosition(); 282 Point_A=CurveA_PointVelocity.GetPosition(); 449 Point_B=CurveB_PointVelocity.GetPosition(); 283 Point_B=CurveB_PointVelocity.GetPosition(); 450 284 451 G4double xa,xb,xc,ya,yb,yc; 285 G4double xa,xb,xc,ya,yb,yc; 452 286 453 // InverseParabolic. AF Intersects (First Pa 287 // InverseParabolic. AF Intersects (First Part of Curve) 454 288 455 if(first) 289 if(first) 456 { 290 { 457 xa=0.; 291 xa=0.; 458 ya=(PointG-Point_A).mag(); 292 ya=(PointG-Point_A).mag(); 459 xb=(Point_A-CurrentF_Point).mag(); 293 xb=(Point_A-CurrentF_Point).mag(); 460 yb=-(PointG-CurrentF_Point).mag(); 294 yb=-(PointG-CurrentF_Point).mag(); 461 xc=(Point_A-Point_B).mag(); 295 xc=(Point_A-Point_B).mag(); 462 yc=-(CurrentE_Point-Point_B).mag(); 296 yc=-(CurrentE_Point-Point_B).mag(); 463 } 297 } 464 else 298 else 465 { 299 { 466 xa=0.; 300 xa=0.; 467 ya=(Point_A-CurrentE_Point).mag(); 301 ya=(Point_A-CurrentE_Point).mag(); 468 xb=(Point_A-CurrentF_Point).mag(); 302 xb=(Point_A-CurrentF_Point).mag(); 469 yb=(PointG-CurrentF_Point).mag(); 303 yb=(PointG-CurrentF_Point).mag(); 470 xc=(Point_A-Point_B).mag(); 304 xc=(Point_A-Point_B).mag(); 471 yc=-(Point_B-PointG).mag(); 305 yc=-(Point_B-PointG).mag(); 472 if(xb==0.) 306 if(xb==0.) 473 { 307 { 474 EndPoint = ApproxCurvePointV(CurveA_Poin << 308 EndPoint= 475 CurrentE_Po << 309 ApproxCurvePointV(CurveA_PointVelocity, CurveB_PointVelocity, >> 310 CurrentE_Point, eps_step); 476 return EndPoint; 311 return EndPoint; 477 } 312 } 478 } 313 } 479 314 480 const G4double tolerance = 1.e-12; << 315 const G4double tolerance= 1.e-12; 481 if(std::abs(ya)<=tolerance||std::abs(yc)<=to 316 if(std::abs(ya)<=tolerance||std::abs(yc)<=tolerance) 482 { 317 { 483 ; // What to do for the moment: return the 318 ; // What to do for the moment: return the same point as at start 484 // then PropagatorInField will take care 319 // then PropagatorInField will take care 485 } 320 } 486 else 321 else 487 { 322 { 488 G4double test_step = InvParabolic(xa,ya,xb 323 G4double test_step = InvParabolic(xa,ya,xb,yb,xc,yc); 489 G4double curve; 324 G4double curve; 490 if(first) 325 if(first) 491 { 326 { 492 curve=std::abs(EndPoint.GetCurveLength() 327 curve=std::abs(EndPoint.GetCurveLength() 493 -ApproxCurveV.GetCurveLeng 328 -ApproxCurveV.GetCurveLength()); 494 } 329 } 495 else 330 else 496 { 331 { 497 test_step = test_step - xb; << 332 test_step=(test_step-xb); 498 curve=std::abs(EndPoint.GetCurveLength() 333 curve=std::abs(EndPoint.GetCurveLength() 499 -CurveB_PointVelocity.GetC 334 -CurveB_PointVelocity.GetCurveLength()); 500 xb = (CurrentF_Point-Point_B).mag(); << 335 xb=(CurrentF_Point-Point_B).mag(); 501 } 336 } 502 337 503 if(test_step<=0) { test_step=0.1*xb; } 338 if(test_step<=0) { test_step=0.1*xb; } 504 if(test_step>=xb) { test_step=0.5*xb; } 339 if(test_step>=xb) { test_step=0.5*xb; } 505 if(test_step>=curve){ test_step=0.5*curve; 340 if(test_step>=curve){ test_step=0.5*curve; } 506 341 507 if(curve*(1.+eps_step)<xb) // Similar to R 342 if(curve*(1.+eps_step)<xb) // Similar to ReEstimate Step from 508 { // G4VIntersect 343 { // G4VIntersectionLocator 509 test_step=0.5*curve; 344 test_step=0.5*curve; 510 } 345 } 511 346 512 fIntgrDriver->AccurateAdvance(EndPoint,tes 347 fIntgrDriver->AccurateAdvance(EndPoint,test_step, eps_step); 513 348 514 #ifdef G4DEBUG_FIELD 349 #ifdef G4DEBUG_FIELD 515 // Printing Brent and Linear Approximation 350 // Printing Brent and Linear Approximation 516 // 351 // 517 G4cout << "G4ChordFinder::ApproxCurvePoint 352 G4cout << "G4ChordFinder::ApproxCurvePointS() - test-step ShF = " 518 << test_step << " EndPoint = " << 353 << test_step << " EndPoint = " << EndPoint << G4endl; 519 354 520 // Test Track 355 // Test Track 521 // 356 // 522 G4FieldTrack TestTrack( CurveA_PointVeloci 357 G4FieldTrack TestTrack( CurveA_PointVelocity); 523 TestTrack = ApproxCurvePointV( CurveA_Poin 358 TestTrack = ApproxCurvePointV( CurveA_PointVelocity, 524 CurveB_Poin 359 CurveB_PointVelocity, 525 CurrentE_Po 360 CurrentE_Point, eps_step ); 526 G4cout.precision(14); 361 G4cout.precision(14); 527 G4cout << "G4ChordFinder::BrentApprox = " 362 G4cout << "G4ChordFinder::BrentApprox = " << EndPoint << G4endl; 528 G4cout << "G4ChordFinder::LinearApprox= " 363 G4cout << "G4ChordFinder::LinearApprox= " << TestTrack << G4endl; 529 #endif 364 #endif 530 } 365 } 531 return EndPoint; 366 return EndPoint; 532 } 367 } 533 368 534 369 535 // ........................................... 370 // ........................................................................... 536 371 537 G4FieldTrack G4ChordFinder:: 372 G4FieldTrack G4ChordFinder:: 538 ApproxCurvePointV( const G4FieldTrack& CurveA_ 373 ApproxCurvePointV( const G4FieldTrack& CurveA_PointVelocity, 539 const G4FieldTrack& CurveB_ 374 const G4FieldTrack& CurveB_PointVelocity, 540 const G4ThreeVector& Curren 375 const G4ThreeVector& CurrentE_Point, 541 G4double eps_step) 376 G4double eps_step) 542 { 377 { 543 // If r=|AE|/|AB|, and s=true path lenght (A 378 // If r=|AE|/|AB|, and s=true path lenght (AB) 544 // return the point that is r*s along the cu 379 // return the point that is r*s along the curve! 545 380 546 G4FieldTrack Current_PointVelocity = Curve 381 G4FieldTrack Current_PointVelocity = CurveA_PointVelocity; 547 382 548 G4ThreeVector CurveA_Point= CurveA_PointVel 383 G4ThreeVector CurveA_Point= CurveA_PointVelocity.GetPosition(); 549 G4ThreeVector CurveB_Point= CurveB_PointVel 384 G4ThreeVector CurveB_Point= CurveB_PointVelocity.GetPosition(); 550 385 551 G4ThreeVector ChordAB_Vector= CurveB_Point 386 G4ThreeVector ChordAB_Vector= CurveB_Point - CurveA_Point; 552 G4ThreeVector ChordAE_Vector= CurrentE_Poin 387 G4ThreeVector ChordAE_Vector= CurrentE_Point - CurveA_Point; 553 388 554 G4double ABdist= ChordAB_Vector.mag(); 389 G4double ABdist= ChordAB_Vector.mag(); 555 G4double curve_length; // A curve length 390 G4double curve_length; // A curve length of AB 556 G4double AE_fraction; 391 G4double AE_fraction; 557 392 558 curve_length= CurveB_PointVelocity.GetCurveL 393 curve_length= CurveB_PointVelocity.GetCurveLength() 559 - CurveA_PointVelocity.GetCurveL 394 - CurveA_PointVelocity.GetCurveLength(); 560 395 561 G4double integrationInaccuracyLimit= std::ma << 396 G4double integrationInaccuracyLimit= std::max( perMillion, 0.5*eps_step ); 562 if( curve_length < ABdist * (1. - integratio 397 if( curve_length < ABdist * (1. - integrationInaccuracyLimit) ) 563 { 398 { 564 #ifdef G4DEBUG_FIELD 399 #ifdef G4DEBUG_FIELD 565 G4cerr << " Warning in G4ChordFinder::Appr 400 G4cerr << " Warning in G4ChordFinder::ApproxCurvePoint: " 566 << G4endl 401 << G4endl 567 << " The two points are further apa 402 << " The two points are further apart than the curve length " 568 << G4endl 403 << G4endl 569 << " Dist = " << ABdist 404 << " Dist = " << ABdist 570 << " curve length = " << curve_leng 405 << " curve length = " << curve_length 571 << " relativeDiff = " << (curve_len 406 << " relativeDiff = " << (curve_length-ABdist)/ABdist 572 << G4endl; 407 << G4endl; 573 if( curve_length < ABdist * (1. - 10*eps_s 408 if( curve_length < ABdist * (1. - 10*eps_step) ) 574 { 409 { 575 std::ostringstream message; 410 std::ostringstream message; 576 message << "Unphysical curve length." << 411 message << "Unphysical curve length." << G4endl 577 << "The size of the above differ 412 << "The size of the above difference exceeds allowed limits." 578 << G4endl 413 << G4endl 579 << "Aborting."; 414 << "Aborting."; 580 G4Exception("G4ChordFinder::ApproxCurveP 415 G4Exception("G4ChordFinder::ApproxCurvePointV()", "GeomField0003", 581 FatalException, message); 416 FatalException, message); 582 } 417 } 583 #endif 418 #endif 584 // Take default corrective action: adjust 419 // Take default corrective action: adjust the maximum curve length. 585 // NOTE: this case only happens for relati 420 // NOTE: this case only happens for relatively straight paths. 586 // curve_length = ABdist; 421 // curve_length = ABdist; 587 } 422 } 588 423 589 G4double new_st_length; << 424 G4double new_st_length; 590 425 591 if ( ABdist > 0.0 ) 426 if ( ABdist > 0.0 ) 592 { 427 { 593 AE_fraction = ChordAE_Vector.mag() / ABdi 428 AE_fraction = ChordAE_Vector.mag() / ABdist; 594 } 429 } 595 else 430 else 596 { 431 { 597 AE_fraction = 0.5; 432 AE_fraction = 0.5; // Guess .. ?; 598 #ifdef G4DEBUG_FIELD 433 #ifdef G4DEBUG_FIELD 599 G4cout << "Warning in G4ChordFinder::Appr 434 G4cout << "Warning in G4ChordFinder::ApproxCurvePointV():" 600 << " A and B are the same point!" 435 << " A and B are the same point!" << G4endl 601 << " Chord AB length = " << ChordA 436 << " Chord AB length = " << ChordAE_Vector.mag() << G4endl 602 << G4endl; 437 << G4endl; 603 #endif 438 #endif 604 } 439 } 605 440 606 if( (AE_fraction> 1.0 + perMillion) || (AE_f 441 if( (AE_fraction> 1.0 + perMillion) || (AE_fraction< 0.) ) 607 { 442 { 608 #ifdef G4DEBUG_FIELD 443 #ifdef G4DEBUG_FIELD 609 G4cerr << " G4ChordFinder::ApproxCurvePoin 444 G4cerr << " G4ChordFinder::ApproxCurvePointV() - Warning:" 610 << " Anomalous condition:AE > AB or 445 << " Anomalous condition:AE > AB or AE/AB <= 0 " << G4endl 611 << " AE_fraction = " << AE_fract 446 << " AE_fraction = " << AE_fraction << G4endl 612 << " Chord AE length = " << Chord 447 << " Chord AE length = " << ChordAE_Vector.mag() << G4endl 613 << " Chord AB length = " << ABdis 448 << " Chord AB length = " << ABdist << G4endl << G4endl; 614 G4cerr << " OK if this condition occurs af 449 G4cerr << " OK if this condition occurs after a recalculation of 'B'" 615 << G4endl << " Otherwise it is an e 450 << G4endl << " Otherwise it is an error. " << G4endl ; 616 #endif 451 #endif 617 // This course can now result if B has be 452 // This course can now result if B has been re-evaluated, 618 // without E being recomputed (1 July 99) 453 // without E being recomputed (1 July 99). 619 // In this case this is not a "real error 454 // In this case this is not a "real error" - but it is undesired 620 // and we cope with it by a default corre 455 // and we cope with it by a default corrective action ... 621 // 456 // 622 AE_fraction = 0.5; 457 AE_fraction = 0.5; // Default value 623 } 458 } 624 459 625 new_st_length = AE_fraction * curve_length; << 460 new_st_length= AE_fraction * curve_length; 626 461 627 if ( AE_fraction > 0.0 ) 462 if ( AE_fraction > 0.0 ) 628 { 463 { 629 fIntgrDriver->AccurateAdvance(Current_Poi 464 fIntgrDriver->AccurateAdvance(Current_PointVelocity, 630 new_st_leng 465 new_st_length, eps_step ); 631 // 466 // 632 // In this case it does not matter if it 467 // In this case it does not matter if it cannot advance the full distance 633 } 468 } 634 469 635 // If there was a memory of the step_length 470 // If there was a memory of the step_length actually required at the start 636 // of the integration Step, this could be re 471 // of the integration Step, this could be re-used ... 637 472 638 G4cout.precision(14); 473 G4cout.precision(14); 639 474 640 return Current_PointVelocity; 475 return Current_PointVelocity; 641 } 476 } 642 477 643 // ........................................... << 644 478 645 std::ostream& operator<<( std::ostream& os, co << 479 // ........................................................................... 646 { << 647 // Dumping the state of G4ChordFinder << 648 os << "State of G4ChordFinder : " << std::e << 649 os << " delta_chord = " << cf.fDeltaCh << 650 os << " Default d_c = " << cf.fDefault << 651 480 652 os << " stats-verbose = " << cf.fStatsVe << 653 481 654 return os; << 655 } << 656 482