Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ChordFinder implementation << 27 // 26 // 28 // Author: J.Apostolakis - Design and implemen << 27 // $Id: G4ChordFinder.cc 93806 2015-11-02 11:21:01Z gcosmo $ >> 28 // >> 29 // >> 30 // 25.02.97 - John Apostolakis - Design and implementation 29 // ------------------------------------------- 31 // ------------------------------------------------------------------- 30 32 31 #include <iomanip> 33 #include <iomanip> 32 34 33 #include "G4ChordFinder.hh" 35 #include "G4ChordFinder.hh" 34 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 35 #include "G4MagneticField.hh" 37 #include "G4MagneticField.hh" 36 #include "G4Mag_UsualEqRhs.hh" 38 #include "G4Mag_UsualEqRhs.hh" 37 #include "G4MagIntegratorDriver.hh" << 39 #include "G4ClassicalRK4.hh" 38 // #include "G4ClassicalRK4.hh" << 39 // #include "G4CashKarpRKF45.hh" << 40 // #include "G4NystromRK4.hh" << 41 // #include "G4BogackiShampine23.hh" << 42 // #include "G4BogackiShampine45.hh" << 43 << 44 #include "G4DormandPrince745.hh" << 45 << 46 // New templated stepper(s) -- avoid virtual c << 47 #include "G4TDormandPrince45.hh" << 48 << 49 // FSAL type driver / steppers ----- << 50 #include "G4FSALIntegrationDriver.hh" << 51 #include "G4VFSALIntegrationStepper.hh" << 52 #include "G4RK547FEq1.hh" << 53 // #include "G4RK547FEq2.hh" << 54 // #include "G4RK547FEq3.hh" << 55 // #include "G4FSALBogackiShampine45.hh" << 56 // #include "G4FSALDormandPrince745.hh" << 57 << 58 // Templated type drivers ----- << 59 #include "G4IntegrationDriver.hh" << 60 #include "G4InterpolationDriver.hh" << 61 << 62 #include "G4HelixHeum.hh" << 63 #include "G4BFieldIntegrationDriver.hh" << 64 << 65 #include "G4QSSDriverCreator.hh" << 66 40 67 #include "G4CachedMagneticField.hh" << 68 41 69 #include <cassert> << 70 #include <memory> << 71 << 72 G4bool G4ChordFinder::gVerboseCtor = false; << 73 // ........................................... 42 // .......................................................................... 74 43 75 G4ChordFinder::G4ChordFinder(G4VIntegrationDri << 44 G4ChordFinder::G4ChordFinder(G4MagInt_Driver* pIntegrationDriver) 76 : fDefaultDeltaChord(0.25 * mm), fIntgrDrive << 45 : fDefaultDeltaChord( 0.25 * mm ), // Parameters >> 46 fDeltaChord( fDefaultDeltaChord ), // Internal parameters >> 47 fFirstFraction(0.999), fFractionLast(1.00), fFractionNextEstimate(0.98), >> 48 fMultipleRadius(15.0), >> 49 fStatsVerbose(0), >> 50 fDriversStepper(0), // Dependent objects >> 51 fAllocatedStepper(false), >> 52 fEquation(0), >> 53 fTotalNoTrials_FNC(0), fNoCalls_FNC(0), fmaxTrials_FNC(0) 77 { 54 { 78 // Simple constructor -- it does not create 55 // Simple constructor -- it does not create equation 79 if( gVerboseCtor ) << 56 fIntgrDriver= pIntegrationDriver; 80 { << 57 fAllocatedStepper= false; 81 G4cout << "G4ChordFinder: Simple construct << 58 82 } << 59 fLastStepEstimate_Unconstrained = DBL_MAX; // Should move q, p to 83 << 60 84 fDeltaChord = fDefaultDeltaChord; // P << 61 SetFractions_Last_Next( fFractionLast, fFractionNextEstimate); >> 62 // check the values and set the other parameters 85 } 63 } 86 64 >> 65 87 // ........................................... 66 // .......................................................................... 88 67 89 G4ChordFinder::G4ChordFinder( G4MagneticField* 68 G4ChordFinder::G4ChordFinder( G4MagneticField* theMagField, 90 G4double << 69 G4double stepMinimum, 91 G4MagIntegratorS << 70 G4MagIntegratorStepper* pItsStepper ) 92 G4int << 71 : fDefaultDeltaChord( 0.25 * mm ), // Constants 93 : fDefaultDeltaChord(0.25 * mm) << 72 fDeltaChord( fDefaultDeltaChord ), // Parameters >> 73 fFirstFraction(0.999), fFractionLast(1.00), fFractionNextEstimate(0.98), >> 74 fMultipleRadius(15.0), >> 75 fStatsVerbose(0), >> 76 fDriversStepper(0), // Dependent objects >> 77 fAllocatedStepper(false), >> 78 fEquation(0), >> 79 fTotalNoTrials_FNC(0), fNoCalls_FNC(0), fmaxTrials_FNC(0) // State - stats 94 { 80 { 95 // Construct the Chord Finder << 81 // Construct the Chord Finder 96 // by creating in inverse order the Driver, << 82 // by creating in inverse order the Driver, the Stepper and EqRhs ... 97 constexpr G4int nVar6 = 6; // Components i << 98 << 99 fDeltaChord = fDefaultDeltaChord; // P << 100 83 101 G4cout << " G4ChordFinder: stepperDriverId: << 84 G4Mag_EqRhs *pEquation = new G4Mag_UsualEqRhs(theMagField); >> 85 fEquation = pEquation; >> 86 fLastStepEstimate_Unconstrained = DBL_MAX; // Should move q, p to >> 87 // G4FieldTrack ?? 102 88 103 G4bool useFSALstepper = (stepperDriverId << 89 SetFractions_Last_Next( fFractionLast, fFractionNextEstimate); 104 G4bool useTemplatedStepper= (stepperDriverId << 90 // check the values and set the other parameters 105 G4bool useRegularStepper = (stepperDriverId << 91 106 G4bool useBfieldDriver = (stepperDriverId << 92 // --->> Charge Q = 0 107 G4bool useG4QSSDriver = (stepperDriverId << 93 // --->> Momentum P = 1 NOMINAL VALUES !!!!!!!!!!!!!!!!!! 108 << 94 109 if( stepperDriverId == kQss3DriverType) << 95 if( pItsStepper == 0 ) >> 96 { >> 97 pItsStepper = fDriversStepper = new G4ClassicalRK4(pEquation); >> 98 fAllocatedStepper= true; >> 99 } >> 100 else 110 { 101 { 111 stepperDriverId = kQss2DriverType; << 102 fAllocatedStepper= false; 112 G4cout << " G4ChordFinder: QSS 3 is curren << 113 } 103 } >> 104 fIntgrDriver = new G4MagInt_Driver(stepMinimum, pItsStepper, >> 105 pItsStepper->GetNumberOfVariables() ); >> 106 } 114 107 115 using EquationType = G4Mag_UsualEqRhs; << 108 116 << 109 // ...................................................................... 117 using TemplatedStepperType = << 110 118 G4TDormandPrince45<EquationType,nVar6 << 111 G4ChordFinder::~G4ChordFinder() 119 const char* TemplatedStepperName = << 112 { 120 "G4TDormandPrince745 (templated Dormand- << 113 delete fEquation; // fIntgrDriver->pIntStepper->theEquation_Rhs; 121 << 114 if( fAllocatedStepper) 122 using RegularStepperType = << 115 { 123 G4DormandPrince745; // 5th order embe << 116 delete fDriversStepper; 124 // G4ClassicalRK4; // The old << 125 // G4CashKarpRKF45; // First em << 126 // G4BogackiShampine45; // High eff << 127 // G4NystromRK4; // Nystrom << 128 // G4RK547FEq1; // or 2 or 3 << 129 const char* RegularStepperName = << 130 "G4DormandPrince745 (aka DOPRI5): 5th/4t << 131 // "BogackiShampine 45 (Embedded 5th/4th << 132 // "Nystrom stepper 4th order"; << 133 << 134 using NewFsalStepperType = G4DormandPrince74 << 135 << 136 const char* NewFSALStepperName = << 137 "G4RK574FEq1> FSAL 4th/5th order 7-stage << 138 << 139 #ifdef G4DEBUG_FIELD << 140 static G4bool verboseDebug = true; << 141 if( verboseDebug ) << 142 { << 143 G4cout << "G4ChordFinder 2nd Constructor << 144 G4cout << " Arguments: " << G4endl << 145 << " - min step = " << stepMinimum << 146 << " - stepper ptr provided : " << 147 << ( pItsStepper==nullptr ? " no << 148 if( pItsStepper==nullptr ) << 149 G4cout << " - stepper/driver Id = " << << 150 << " useFSAL = " << useFSALste << 151 << " , useTemplated = " << use << 152 << " , useRegular = " << useRe << 153 << " , useFSAL = " << useFSALs << 154 << G4endl; << 155 } 117 } 156 #endif << 118 delete fIntgrDriver; 157 119 158 // useHigherStepper = forceHigherEffiencySte << 120 if( fStatsVerbose ) { PrintStatistics(); } >> 121 } 159 122 160 auto pEquation = new G4Mag_UsualEqRhs(theMa << 161 fEquation = pEquation; << 162 123 163 // G4MagIntegratorStepper* regularStepper = << 124 // ...................................................................... 164 // G4VFSALIntegrationStepper* fsalStepper = << 165 // G4MagIntegratorStepper* oldFSALStepper = << 166 125 167 G4bool errorInStepperCreation = false; << 126 void >> 127 G4ChordFinder::SetFractions_Last_Next( G4double fractLast, G4double fractNext ) >> 128 { >> 129 // Use -1.0 as request for Default. >> 130 if( fractLast == -1.0 ) fractLast = 1.0; // 0.9; >> 131 if( fractNext == -1.0 ) fractNext = 0.98; // 0.9; 168 132 169 std::ostringstream message; // In case of f << 133 // fFirstFraction = 0.999; // Orig 0.999 A safe value, range: ~ 0.95 - 0.999 >> 134 // fMultipleRadius = 15.0; // For later use, range: ~ 2 - 20 170 135 171 if( pItsStepper != nullptr ) << 136 if( fStatsVerbose ) 172 { << 137 { 173 if( gVerboseCtor ) << 138 G4cout << " ChordFnd> Trying to set fractions: " 174 { << 139 << " first " << fFirstFraction 175 G4cout << " G4ChordFinder: Creating G4I << 140 << " last " << fractLast 176 << " stepMinimum = " << stepMini << 141 << " next " << fractNext 177 << " numVar= " << pItsStepper->G << 142 << " and multiple " << fMultipleRadius 178 } << 143 << G4endl; >> 144 } 179 145 180 // Stepper type is not known - so must us << 146 if( (fractLast > 0.0) && (fractLast <=1.0) ) 181 if(pItsStepper->isQSS()) << 147 { 182 { << 148 fFractionLast= fractLast; 183 // fIntgrDriver = pItsStepper->build_ << 184 G4Exception("G4ChordFinder::G4ChordFi << 185 "GeomField1001", FatalEx << 186 "Cannot provide QSS ste << 187 } << 188 else << 189 { << 190 fIntgrDriver = new G4IntegrationDrive << 191 pItsStepper, << 192 // Stepper type is not known - so mus << 193 // Non-interpolating driver used by d << 194 // WAS: fIntgrDriver = pItsStepper-> << 195 } << 196 // -- Older: << 197 // G4cout << " G4ChordFinder: Creating G4 << 198 // Type is not known - so must use old cl << 199 // fIntgrDriver = new G4MagInt_Driver( st << 200 // pItsSt << 201 } 149 } 202 else if ( useTemplatedStepper ) << 150 else 203 { 151 { 204 if( gVerboseCtor ) << 152 G4cerr << "G4ChordFinder::SetFractions_Last_Next: Invalid " 205 { << 153 << " fraction Last = " << fractLast 206 G4cout << " G4ChordFinder: Creating Te << 154 << " must be 0 < fractionLast <= 1 " << G4endl; 207 << TemplatedStepperName << G4en << 208 } << 209 // RegularStepperType* regularStepper = n << 210 auto templatedStepper = new TemplatedStep << 211 // *** *************** << 212 // << 213 // Alternative - for G4NystromRK4: << 214 // = new G4NystromRK4(pEquation, 0.1*mm ) << 215 fRegularStepperOwned = templatedStepper; << 216 if( templatedStepper == nullptr ) << 217 { << 218 message << "Templated Stepper instanti << 219 message << "G4ChordFinder: Attempted t << 220 << TemplatedStepperName << " t << 221 errorInStepperCreation = true; << 222 } << 223 else << 224 { << 225 fIntgrDriver = new G4IntegrationDriver << 226 stepMinimum, templatedStepper, nVar << 227 if( gVerboseCtor ) << 228 { << 229 G4cout << " G4ChordFinder: Using G4 << 230 } << 231 } << 232 << 233 } 155 } 234 else if ( useRegularStepper ) // Plain st << 156 if( (fractNext > 0.0) && (fractNext <1.0) ) >> 157 { >> 158 fFractionNextEstimate = fractNext; >> 159 } >> 160 else 235 { 161 { 236 auto regularStepper = new RegularStepperT << 162 G4cerr << "G4ChordFinder:: SetFractions_Last_Next: Invalid " 237 // *** *************** << 163 << " fraction Next = " << fractNext 238 fRegularStepperOwned = regularStepper; << 164 << " must be 0 < fractionNext < 1 " << G4endl; >> 165 } >> 166 } 239 167 240 if( gVerboseCtor ) << 168 241 { << 169 // ...................................................................... 242 G4cout << " G4ChordFinder: Creating Dr << 170 >> 171 G4double >> 172 G4ChordFinder::AdvanceChordLimited( G4FieldTrack& yCurrent, >> 173 G4double stepMax, >> 174 G4double epsStep, >> 175 const G4ThreeVector latestSafetyOrigin, >> 176 G4double latestSafetyRadius ) >> 177 { >> 178 G4double stepPossible; >> 179 G4double dyErr; >> 180 G4FieldTrack yEnd( yCurrent); >> 181 G4double startCurveLen= yCurrent.GetCurveLength(); >> 182 G4double nextStep; >> 183 // ************* >> 184 stepPossible= FindNextChord(yCurrent, stepMax, yEnd, dyErr, epsStep, >> 185 &nextStep, latestSafetyOrigin, latestSafetyRadius >> 186 ); >> 187 // ************* >> 188 >> 189 G4bool good_advance; >> 190 >> 191 if ( dyErr < epsStep * stepPossible ) >> 192 { >> 193 // Accept this accuracy. >> 194 >> 195 yCurrent = yEnd; >> 196 good_advance = true; >> 197 } >> 198 else >> 199 { >> 200 // Advance more accurately to "end of chord" >> 201 // *************** >> 202 good_advance = fIntgrDriver->AccurateAdvance(yCurrent, stepPossible, >> 203 epsStep, nextStep); >> 204 if ( ! good_advance ) >> 205 { >> 206 // In this case the driver could not do the full distance >> 207 stepPossible= yCurrent.GetCurveLength()-startCurveLen; 243 } 208 } >> 209 } >> 210 return stepPossible; >> 211 } >> 212 >> 213 >> 214 // ............................................................................ >> 215 >> 216 G4double >> 217 G4ChordFinder::FindNextChord( const G4FieldTrack& yStart, >> 218 G4double stepMax, >> 219 G4FieldTrack& yEnd, // Endpoint >> 220 G4double& dyErrPos, // Error of endpoint >> 221 G4double epsStep, >> 222 G4double* pStepForAccuracy, >> 223 const G4ThreeVector, // latestSafetyOrigin, >> 224 G4double // latestSafetyRadius >> 225 ) >> 226 { >> 227 // Returns Length of Step taken >> 228 >> 229 G4FieldTrack yCurrent= yStart; >> 230 G4double stepTrial, stepForAccuracy; >> 231 G4double dydx[G4FieldTrack::ncompSVEC]; >> 232 >> 233 // 1.) Try to "leap" to end of interval >> 234 // 2.) Evaluate if resulting chord gives d_chord that is good enough. >> 235 // 2a.) If d_chord is not good enough, find one that is. >> 236 >> 237 G4bool validEndPoint= false; >> 238 G4double dChordStep, lastStepLength; // stepOfLastGoodChord; >> 239 >> 240 fIntgrDriver-> GetDerivatives( yCurrent, dydx ); >> 241 >> 242 unsigned int noTrials=0; >> 243 const unsigned int maxTrials= 300; // Avoid endless loop for bad convergence >> 244 >> 245 const G4double safetyFactor= fFirstFraction; // 0.975 or 0.99 ? was 0.999 >> 246 >> 247 stepTrial = std::min( stepMax, safetyFactor*fLastStepEstimate_Unconstrained ); >> 248 >> 249 G4double newStepEst_Uncons= 0.0; >> 250 G4double stepForChord; >> 251 do >> 252 { >> 253 yCurrent = yStart; // Always start from initial point >> 254 >> 255 // ************ >> 256 fIntgrDriver->QuickAdvance( yCurrent, dydx, stepTrial, >> 257 dChordStep, dyErrPos); >> 258 // ************ 244 259 245 if( regularStepper == nullptr ) << 260 // We check whether the criterion is met here. 246 { << 261 validEndPoint = AcceptableMissDist(dChordStep); 247 message << "Regular Stepper instantiat << 262 248 message << "G4ChordFinder: Attempted t << 263 lastStepLength = stepTrial; 249 << RegularStepperName << " typ << 264 250 errorInStepperCreation = true; << 265 // This method estimates to step size for a good chord. 251 } << 266 stepForChord = NewStep(stepTrial, dChordStep, newStepEst_Uncons ); 252 else << 267 >> 268 if( ! validEndPoint ) 253 { 269 { 254 auto dp5= dynamic_cast<G4DormandPrince << 270 if( stepTrial<=0.0 ) 255 if( dp5 != nullptr ) << 256 { 271 { 257 fIntgrDriver = new G4InterpolationD << 272 stepTrial = stepForChord; 258 stepMinimum, << 273 } 259 if( gVerboseCtor ) << 274 else if (stepForChord <= stepTrial) 260 { << 275 { 261 G4cout << " Using InterpolationD << 276 // Reduce by a fraction, possibly up to 20% 262 } << 277 stepTrial = std::min( stepForChord, fFractionLast * stepTrial); 263 } 278 } 264 else 279 else 265 { 280 { 266 fIntgrDriver = new G4IntegrationDri << 281 stepTrial *= 0.1; 267 stepMinimum, << 268 if( gVerboseCtor ) << 269 { << 270 G4cout << " Using IntegrationDri << 271 } << 272 } 282 } 273 } 283 } >> 284 noTrials++; 274 } 285 } 275 else if ( useBfieldDriver ) << 286 while( (! validEndPoint) && (noTrials < maxTrials) ); // End of do-while RKD >> 287 >> 288 if( noTrials >= maxTrials ) 276 { 289 { 277 auto regularStepper = new G4DormandPrince << 290 std::ostringstream message; 278 // *** *************** << 291 message << "Exceeded maximum number of trials= " << maxTrials << G4endl 279 // << 292 << "Current sagita dist= " << dChordStep << G4endl 280 fRegularStepperOwned = regularStepper; << 293 << "Step sizes (actual and proposed): " << G4endl 281 << 294 << "Last trial = " << lastStepLength << G4endl 282 { << 295 << "Next trial = " << stepTrial << G4endl 283 using SmallStepDriver = G4Interpolatio << 296 << "Proposed for chord = " << stepForChord << G4endl 284 using LargeStepDriver = G4IntegrationD << 297 ; 285 << 298 G4Exception("G4ChordFinder::FindNextChord()", "GeomField0003", 286 fLongStepper = std::make_unique<G4Heli << 299 JustWarning, message); 287 << 288 fIntgrDriver = new G4BFieldIntegration << 289 std::make_unique<SmallStepDriver>(st << 290 regularStepper, regularStepper-> << 291 std::make_unique<LargeStepDriver>(st << 292 fLongStepper.get(), regularStepp << 293 << 294 if( fIntgrDriver == nullptr) << 295 { << 296 message << "Using G4BFieldIntegrati << 297 << RegularStepperName << " << 298 message << "Driver instantiation FA << 299 G4Exception("G4ChordFinder::G4Chord << 300 "GeomField1001", JustWa << 301 } << 302 } << 303 } 300 } 304 else if( useG4QSSDriver ) << 301 >> 302 if( newStepEst_Uncons > 0.0 ) 305 { 303 { 306 if( stepperDriverId == kQss2DriverType ) << 304 fLastStepEstimate_Unconstrained= newStepEst_Uncons; >> 305 } >> 306 >> 307 AccumulateStatistics( noTrials ); >> 308 >> 309 if( pStepForAccuracy ) >> 310 { >> 311 // Calculate the step size required for accuracy, if it is needed >> 312 // >> 313 G4double dyErr_relative = dyErrPos/(epsStep*lastStepLength); >> 314 if( dyErr_relative > 1.0 ) 307 { 315 { 308 auto qssStepper2 = G4QSSDriverCreator:: << 316 stepForAccuracy = fIntgrDriver->ComputeNewStepSize( dyErr_relative, 309 if( gVerboseCtor ) << 317 lastStepLength ); 310 { << 311 G4cout << "-- Created QSS-2 stepper" << 312 } << 313 fIntgrDriver = G4QSSDriverCreator::Crea << 314 } 318 } 315 else 319 else 316 { 320 { 317 auto qssStepper3 = G4QSSDriverCreator:: << 321 stepForAccuracy = 0.0; // Convention to show step was ok 318 if( gVerboseCtor ) << 319 { << 320 G4cout << "-- Created QSS-3 stepper" << 321 } << 322 fIntgrDriver = G4QSSDriverCreator::Crea << 323 } << 324 if( gVerboseCtor ) << 325 { << 326 G4cout << "-- G4ChordFinder: Using QSS << 327 } 322 } >> 323 *pStepForAccuracy = stepForAccuracy; >> 324 } >> 325 >> 326 #ifdef TEST_CHORD_PRINT >> 327 static int dbg=0; >> 328 if( dbg ) >> 329 { >> 330 G4cout << "ChordF/FindNextChord: NoTrials= " << noTrials >> 331 << " StepForGoodChord=" << std::setw(10) << stepTrial << G4endl; >> 332 } >> 333 #endif >> 334 yEnd= yCurrent; >> 335 return stepTrial; >> 336 } >> 337 >> 338 >> 339 // ........................................................................... >> 340 >> 341 G4double G4ChordFinder::NewStep(G4double stepTrialOld, >> 342 G4double dChordStep, // Curr. dchord achieved >> 343 G4double& stepEstimate_Unconstrained ) >> 344 { >> 345 // Is called to estimate the next step size, even for successful steps, >> 346 // in order to predict an accurate 'chord-sensitive' first step >> 347 // which is likely to assist in more performant 'stepping'. >> 348 >> 349 G4double stepTrial; >> 350 >> 351 #if 1 >> 352 >> 353 if (dChordStep > 0.0) >> 354 { >> 355 stepEstimate_Unconstrained = >> 356 stepTrialOld*std::sqrt( fDeltaChord / dChordStep ); >> 357 stepTrial = fFractionNextEstimate * stepEstimate_Unconstrained; 328 } 358 } 329 else 359 else 330 { 360 { 331 auto fsalStepper= new NewFsalStepperType << 361 // Should not update the Unconstrained Step estimate: incorrect! 332 // *** ****************** << 362 stepTrial = stepTrialOld * 2.; 333 fNewFSALStepperOwned = fsalStepper; << 363 } 334 364 335 if( fsalStepper == nullptr ) << 365 if( stepTrial <= 0.001 * stepTrialOld) >> 366 { >> 367 if ( dChordStep > 1000.0 * fDeltaChord ) 336 { 368 { 337 message << "Stepper instantiation FAIL << 369 stepTrial= stepTrialOld * 0.03; 338 message << "Attempted to instantiate " << 339 << NewFSALStepperName << " typ << 340 G4Exception("G4ChordFinder::G4ChordFin << 341 "GeomField1001", JustWarni << 342 errorInStepperCreation = true; << 343 } 370 } 344 else 371 else 345 { 372 { 346 fIntgrDriver = new << 373 if ( dChordStep > 100. * fDeltaChord ) 347 G4FSALIntegrationDriver<NewFsalStep << 348 fsal << 349 // ==== Create the driver which k << 350 << 351 if( fIntgrDriver == nullptr ) << 352 { 374 { 353 message << "Using G4FSALIntegration << 375 stepTrial= stepTrialOld * 0.1; 354 << NewFSALStepperName << G4 << 376 } 355 message << "Integration Driver inst << 377 else // Try halving the length until dChordStep OK 356 G4Exception("G4ChordFinder::G4Chord << 378 { 357 "GeomField1001", JustWa << 379 stepTrial= stepTrialOld * 0.5; 358 } 380 } 359 } 381 } 360 } 382 } >> 383 else if (stepTrial > 1000.0 * stepTrialOld) >> 384 { >> 385 stepTrial= 1000.0 * stepTrialOld; >> 386 } 361 387 362 // -- Main work is now done << 388 if( stepTrial == 0.0 ) 363 << 364 // Now check that no error occured, and r << 365 << 366 // To test failure to create driver << 367 // delete fIntgrDriver; << 368 // fIntgrDriver = nullptr; << 369 << 370 // Detect and report Error conditions << 371 // << 372 if( errorInStepperCreation || (fIntgrDriver << 373 { 389 { 374 std::ostringstream errmsg; << 390 stepTrial= 0.000001; 375 << 391 } 376 if( errorInStepperCreation ) << 392 >> 393 #else >> 394 >> 395 if ( dChordStep > 1000. * fDeltaChord ) >> 396 { >> 397 stepTrial= stepTrialOld * 0.03; >> 398 } >> 399 else >> 400 { >> 401 if ( dChordStep > 100. * fDeltaChord ) 377 { 402 { 378 errmsg << "ERROR> Failure to create S << 403 stepTrial= stepTrialOld * 0.1; 379 << " ------------------- << 380 } 404 } 381 if (fIntgrDriver == nullptr ) << 405 else // Keep halving the length until dChordStep OK 382 { 406 { 383 errmsg << "ERROR> Failure to create I << 407 stepTrial= stepTrialOld * 0.5; 384 << G4endl << 385 << " ------------------- << 386 << G4endl; << 387 } 408 } 388 const std::string BoolName[2]= { "False", << 389 errmsg << " Configuration: (constructor << 390 << " provided Stepper = " << pI << 391 << " stepper/driver Id = " << step << 392 << " useTemplated = " << BoolNam << 393 << " useRegular = " << BoolName[ << 394 << " useFSAL = " << BoolName[use << 395 << " using combo BField Driver = << 396 BoolName[ ! (useFSALstepper << 397 || useRegularSt << 398 << G4endl; << 399 errmsg << message.str(); << 400 errmsg << "Aborting."; << 401 G4Exception("G4ChordFinder::G4ChordFinder << 402 "GeomField0003", FatalExcepti << 403 } 409 } 404 410 405 assert( ( pItsStepper != nullptr ) << 411 #endif 406 || ( fRegularStepperOwned != nullptr << 407 || ( fNewFSALStepperOwned != nullptr << 408 || useG4QSSDriver << 409 ); << 410 assert( fIntgrDriver != nullptr ); << 411 } << 412 412 413 // ........................................... << 413 // A more sophisticated chord-finder could figure out a better >> 414 // stepTrial, from dChordStep and the required d_geometry >> 415 // e.g. >> 416 // Calculate R, r_helix (eg at orig point) >> 417 // if( stepTrial < 2 pi R ) >> 418 // stepTrial = R arc_cos( 1 - fDeltaChord / r_helix ) >> 419 // else >> 420 // ?? 414 421 415 G4ChordFinder::~G4ChordFinder() << 422 return stepTrial; 416 { << 417 delete fEquation; << 418 delete fRegularStepperOwned; << 419 delete fNewFSALStepperOwned; << 420 delete fCachedField; << 421 delete fIntgrDriver; << 422 } 423 } 423 424 >> 425 424 // ........................................... 426 // ........................................................................... 425 427 426 G4FieldTrack 428 G4FieldTrack 427 G4ChordFinder::ApproxCurvePointS( const G4Fiel 429 G4ChordFinder::ApproxCurvePointS( const G4FieldTrack& CurveA_PointVelocity, 428 const G4Fiel 430 const G4FieldTrack& CurveB_PointVelocity, 429 const G4Fiel 431 const G4FieldTrack& ApproxCurveV, 430 const G4Thre 432 const G4ThreeVector& CurrentE_Point, 431 const G4Thre 433 const G4ThreeVector& CurrentF_Point, 432 const G4Thre 434 const G4ThreeVector& PointG, 433 G4bool << 435 G4bool first, G4double eps_step) 434 { 436 { 435 // ApproxCurvePointS is 2nd implementation o 437 // ApproxCurvePointS is 2nd implementation of ApproxCurvePoint. 436 // Use Brent Algorithm (or InvParabolic) whe 438 // Use Brent Algorithm (or InvParabolic) when possible. 437 // Given a starting curve point A (CurveA_Po 439 // Given a starting curve point A (CurveA_PointVelocity), curve point B 438 // (CurveB_PointVelocity), a point E which i 440 // (CurveB_PointVelocity), a point E which is (generally) not on the curve 439 // and a point F which is on the curve (fir 441 // and a point F which is on the curve (first approximation), find new 440 // point S on the curve closer to point E. 442 // point S on the curve closer to point E. 441 // While advancing towards S utilise 'eps_st 443 // While advancing towards S utilise 'eps_step' as a measure of the 442 // relative accuracy of each Step. 444 // relative accuracy of each Step. 443 445 444 G4FieldTrack EndPoint(CurveA_PointVelocity); 446 G4FieldTrack EndPoint(CurveA_PointVelocity); 445 if(!first) { EndPoint = ApproxCurveV; } << 447 if(!first){EndPoint= ApproxCurveV;} 446 448 447 G4ThreeVector Point_A,Point_B; 449 G4ThreeVector Point_A,Point_B; 448 Point_A=CurveA_PointVelocity.GetPosition(); 450 Point_A=CurveA_PointVelocity.GetPosition(); 449 Point_B=CurveB_PointVelocity.GetPosition(); 451 Point_B=CurveB_PointVelocity.GetPosition(); 450 452 451 G4double xa,xb,xc,ya,yb,yc; 453 G4double xa,xb,xc,ya,yb,yc; 452 454 453 // InverseParabolic. AF Intersects (First Pa 455 // InverseParabolic. AF Intersects (First Part of Curve) 454 456 455 if(first) 457 if(first) 456 { 458 { 457 xa=0.; 459 xa=0.; 458 ya=(PointG-Point_A).mag(); 460 ya=(PointG-Point_A).mag(); 459 xb=(Point_A-CurrentF_Point).mag(); 461 xb=(Point_A-CurrentF_Point).mag(); 460 yb=-(PointG-CurrentF_Point).mag(); 462 yb=-(PointG-CurrentF_Point).mag(); 461 xc=(Point_A-Point_B).mag(); 463 xc=(Point_A-Point_B).mag(); 462 yc=-(CurrentE_Point-Point_B).mag(); 464 yc=-(CurrentE_Point-Point_B).mag(); 463 } 465 } 464 else 466 else 465 { 467 { 466 xa=0.; 468 xa=0.; 467 ya=(Point_A-CurrentE_Point).mag(); 469 ya=(Point_A-CurrentE_Point).mag(); 468 xb=(Point_A-CurrentF_Point).mag(); 470 xb=(Point_A-CurrentF_Point).mag(); 469 yb=(PointG-CurrentF_Point).mag(); 471 yb=(PointG-CurrentF_Point).mag(); 470 xc=(Point_A-Point_B).mag(); 472 xc=(Point_A-Point_B).mag(); 471 yc=-(Point_B-PointG).mag(); 473 yc=-(Point_B-PointG).mag(); 472 if(xb==0.) 474 if(xb==0.) 473 { 475 { 474 EndPoint = ApproxCurvePointV(CurveA_Poin << 476 EndPoint= 475 CurrentE_Po << 477 ApproxCurvePointV(CurveA_PointVelocity, CurveB_PointVelocity, >> 478 CurrentE_Point, eps_step); 476 return EndPoint; 479 return EndPoint; 477 } 480 } 478 } 481 } 479 482 480 const G4double tolerance = 1.e-12; << 483 const G4double tolerance= 1.e-12; 481 if(std::abs(ya)<=tolerance||std::abs(yc)<=to 484 if(std::abs(ya)<=tolerance||std::abs(yc)<=tolerance) 482 { 485 { 483 ; // What to do for the moment: return the 486 ; // What to do for the moment: return the same point as at start 484 // then PropagatorInField will take care 487 // then PropagatorInField will take care 485 } 488 } 486 else 489 else 487 { 490 { 488 G4double test_step = InvParabolic(xa,ya,xb 491 G4double test_step = InvParabolic(xa,ya,xb,yb,xc,yc); 489 G4double curve; 492 G4double curve; 490 if(first) 493 if(first) 491 { 494 { 492 curve=std::abs(EndPoint.GetCurveLength() 495 curve=std::abs(EndPoint.GetCurveLength() 493 -ApproxCurveV.GetCurveLeng 496 -ApproxCurveV.GetCurveLength()); 494 } 497 } 495 else 498 else 496 { 499 { 497 test_step = test_step - xb; << 500 test_step=(test_step-xb); 498 curve=std::abs(EndPoint.GetCurveLength() 501 curve=std::abs(EndPoint.GetCurveLength() 499 -CurveB_PointVelocity.GetC 502 -CurveB_PointVelocity.GetCurveLength()); 500 xb = (CurrentF_Point-Point_B).mag(); << 503 xb=(CurrentF_Point-Point_B).mag(); 501 } 504 } 502 505 503 if(test_step<=0) { test_step=0.1*xb; } 506 if(test_step<=0) { test_step=0.1*xb; } 504 if(test_step>=xb) { test_step=0.5*xb; } 507 if(test_step>=xb) { test_step=0.5*xb; } 505 if(test_step>=curve){ test_step=0.5*curve; 508 if(test_step>=curve){ test_step=0.5*curve; } 506 509 507 if(curve*(1.+eps_step)<xb) // Similar to R 510 if(curve*(1.+eps_step)<xb) // Similar to ReEstimate Step from 508 { // G4VIntersect 511 { // G4VIntersectionLocator 509 test_step=0.5*curve; 512 test_step=0.5*curve; 510 } 513 } 511 514 512 fIntgrDriver->AccurateAdvance(EndPoint,tes 515 fIntgrDriver->AccurateAdvance(EndPoint,test_step, eps_step); 513 516 514 #ifdef G4DEBUG_FIELD 517 #ifdef G4DEBUG_FIELD 515 // Printing Brent and Linear Approximation 518 // Printing Brent and Linear Approximation 516 // 519 // 517 G4cout << "G4ChordFinder::ApproxCurvePoint 520 G4cout << "G4ChordFinder::ApproxCurvePointS() - test-step ShF = " 518 << test_step << " EndPoint = " << 521 << test_step << " EndPoint = " << EndPoint << G4endl; 519 522 520 // Test Track 523 // Test Track 521 // 524 // 522 G4FieldTrack TestTrack( CurveA_PointVeloci 525 G4FieldTrack TestTrack( CurveA_PointVelocity); 523 TestTrack = ApproxCurvePointV( CurveA_Poin 526 TestTrack = ApproxCurvePointV( CurveA_PointVelocity, 524 CurveB_Poin 527 CurveB_PointVelocity, 525 CurrentE_Po 528 CurrentE_Point, eps_step ); 526 G4cout.precision(14); 529 G4cout.precision(14); 527 G4cout << "G4ChordFinder::BrentApprox = " 530 G4cout << "G4ChordFinder::BrentApprox = " << EndPoint << G4endl; 528 G4cout << "G4ChordFinder::LinearApprox= " 531 G4cout << "G4ChordFinder::LinearApprox= " << TestTrack << G4endl; 529 #endif 532 #endif 530 } 533 } 531 return EndPoint; 534 return EndPoint; 532 } 535 } 533 536 534 537 535 // ........................................... 538 // ........................................................................... 536 539 537 G4FieldTrack G4ChordFinder:: 540 G4FieldTrack G4ChordFinder:: 538 ApproxCurvePointV( const G4FieldTrack& CurveA_ 541 ApproxCurvePointV( const G4FieldTrack& CurveA_PointVelocity, 539 const G4FieldTrack& CurveB_ 542 const G4FieldTrack& CurveB_PointVelocity, 540 const G4ThreeVector& Curren 543 const G4ThreeVector& CurrentE_Point, 541 G4double eps_step) 544 G4double eps_step) 542 { 545 { 543 // If r=|AE|/|AB|, and s=true path lenght (A 546 // If r=|AE|/|AB|, and s=true path lenght (AB) 544 // return the point that is r*s along the cu 547 // return the point that is r*s along the curve! 545 548 546 G4FieldTrack Current_PointVelocity = Curve 549 G4FieldTrack Current_PointVelocity = CurveA_PointVelocity; 547 550 548 G4ThreeVector CurveA_Point= CurveA_PointVel 551 G4ThreeVector CurveA_Point= CurveA_PointVelocity.GetPosition(); 549 G4ThreeVector CurveB_Point= CurveB_PointVel 552 G4ThreeVector CurveB_Point= CurveB_PointVelocity.GetPosition(); 550 553 551 G4ThreeVector ChordAB_Vector= CurveB_Point 554 G4ThreeVector ChordAB_Vector= CurveB_Point - CurveA_Point; 552 G4ThreeVector ChordAE_Vector= CurrentE_Poin 555 G4ThreeVector ChordAE_Vector= CurrentE_Point - CurveA_Point; 553 556 554 G4double ABdist= ChordAB_Vector.mag(); 557 G4double ABdist= ChordAB_Vector.mag(); 555 G4double curve_length; // A curve length 558 G4double curve_length; // A curve length of AB 556 G4double AE_fraction; 559 G4double AE_fraction; 557 560 558 curve_length= CurveB_PointVelocity.GetCurveL 561 curve_length= CurveB_PointVelocity.GetCurveLength() 559 - CurveA_PointVelocity.GetCurveL 562 - CurveA_PointVelocity.GetCurveLength(); 560 563 561 G4double integrationInaccuracyLimit= std::ma << 564 G4double integrationInaccuracyLimit= std::max( perMillion, 0.5*eps_step ); 562 if( curve_length < ABdist * (1. - integratio 565 if( curve_length < ABdist * (1. - integrationInaccuracyLimit) ) 563 { 566 { 564 #ifdef G4DEBUG_FIELD 567 #ifdef G4DEBUG_FIELD 565 G4cerr << " Warning in G4ChordFinder::Appr 568 G4cerr << " Warning in G4ChordFinder::ApproxCurvePoint: " 566 << G4endl 569 << G4endl 567 << " The two points are further apa 570 << " The two points are further apart than the curve length " 568 << G4endl 571 << G4endl 569 << " Dist = " << ABdist 572 << " Dist = " << ABdist 570 << " curve length = " << curve_leng 573 << " curve length = " << curve_length 571 << " relativeDiff = " << (curve_len 574 << " relativeDiff = " << (curve_length-ABdist)/ABdist 572 << G4endl; 575 << G4endl; 573 if( curve_length < ABdist * (1. - 10*eps_s 576 if( curve_length < ABdist * (1. - 10*eps_step) ) 574 { 577 { 575 std::ostringstream message; 578 std::ostringstream message; 576 message << "Unphysical curve length." << 579 message << "Unphysical curve length." << G4endl 577 << "The size of the above differ 580 << "The size of the above difference exceeds allowed limits." 578 << G4endl 581 << G4endl 579 << "Aborting."; 582 << "Aborting."; 580 G4Exception("G4ChordFinder::ApproxCurveP 583 G4Exception("G4ChordFinder::ApproxCurvePointV()", "GeomField0003", 581 FatalException, message); 584 FatalException, message); 582 } 585 } 583 #endif 586 #endif 584 // Take default corrective action: adjust 587 // Take default corrective action: adjust the maximum curve length. 585 // NOTE: this case only happens for relati 588 // NOTE: this case only happens for relatively straight paths. 586 // curve_length = ABdist; 589 // curve_length = ABdist; 587 } 590 } 588 591 589 G4double new_st_length; << 592 G4double new_st_length; 590 593 591 if ( ABdist > 0.0 ) 594 if ( ABdist > 0.0 ) 592 { 595 { 593 AE_fraction = ChordAE_Vector.mag() / ABdi 596 AE_fraction = ChordAE_Vector.mag() / ABdist; 594 } 597 } 595 else 598 else 596 { 599 { 597 AE_fraction = 0.5; 600 AE_fraction = 0.5; // Guess .. ?; 598 #ifdef G4DEBUG_FIELD 601 #ifdef G4DEBUG_FIELD 599 G4cout << "Warning in G4ChordFinder::Appr 602 G4cout << "Warning in G4ChordFinder::ApproxCurvePointV():" 600 << " A and B are the same point!" 603 << " A and B are the same point!" << G4endl 601 << " Chord AB length = " << ChordA 604 << " Chord AB length = " << ChordAE_Vector.mag() << G4endl 602 << G4endl; 605 << G4endl; 603 #endif 606 #endif 604 } 607 } 605 608 606 if( (AE_fraction> 1.0 + perMillion) || (AE_f 609 if( (AE_fraction> 1.0 + perMillion) || (AE_fraction< 0.) ) 607 { 610 { 608 #ifdef G4DEBUG_FIELD 611 #ifdef G4DEBUG_FIELD 609 G4cerr << " G4ChordFinder::ApproxCurvePoin 612 G4cerr << " G4ChordFinder::ApproxCurvePointV() - Warning:" 610 << " Anomalous condition:AE > AB or 613 << " Anomalous condition:AE > AB or AE/AB <= 0 " << G4endl 611 << " AE_fraction = " << AE_fract 614 << " AE_fraction = " << AE_fraction << G4endl 612 << " Chord AE length = " << Chord 615 << " Chord AE length = " << ChordAE_Vector.mag() << G4endl 613 << " Chord AB length = " << ABdis 616 << " Chord AB length = " << ABdist << G4endl << G4endl; 614 G4cerr << " OK if this condition occurs af 617 G4cerr << " OK if this condition occurs after a recalculation of 'B'" 615 << G4endl << " Otherwise it is an e 618 << G4endl << " Otherwise it is an error. " << G4endl ; 616 #endif 619 #endif 617 // This course can now result if B has be 620 // This course can now result if B has been re-evaluated, 618 // without E being recomputed (1 July 99) 621 // without E being recomputed (1 July 99). 619 // In this case this is not a "real error 622 // In this case this is not a "real error" - but it is undesired 620 // and we cope with it by a default corre 623 // and we cope with it by a default corrective action ... 621 // 624 // 622 AE_fraction = 0.5; 625 AE_fraction = 0.5; // Default value 623 } 626 } 624 627 625 new_st_length = AE_fraction * curve_length; << 628 new_st_length= AE_fraction * curve_length; 626 629 627 if ( AE_fraction > 0.0 ) 630 if ( AE_fraction > 0.0 ) 628 { 631 { 629 fIntgrDriver->AccurateAdvance(Current_Poi 632 fIntgrDriver->AccurateAdvance(Current_PointVelocity, 630 new_st_leng 633 new_st_length, eps_step ); 631 // 634 // 632 // In this case it does not matter if it 635 // In this case it does not matter if it cannot advance the full distance 633 } 636 } 634 637 635 // If there was a memory of the step_length 638 // If there was a memory of the step_length actually required at the start 636 // of the integration Step, this could be re 639 // of the integration Step, this could be re-used ... 637 640 638 G4cout.precision(14); 641 G4cout.precision(14); 639 642 640 return Current_PointVelocity; 643 return Current_PointVelocity; 641 } 644 } 642 645 643 // ........................................... << 644 646 645 std::ostream& operator<<( std::ostream& os, co << 647 // ...................................................................... >> 648 >> 649 void >> 650 G4ChordFinder::PrintStatistics() 646 { 651 { 647 // Dumping the state of G4ChordFinder << 652 // Print Statistics 648 os << "State of G4ChordFinder : " << std::e << 649 os << " delta_chord = " << cf.fDeltaCh << 650 os << " Default d_c = " << cf.fDefault << 651 653 652 os << " stats-verbose = " << cf.fStatsVe << 654 G4cout << "G4ChordFinder statistics report: " << G4endl; >> 655 G4cout >> 656 << " No trials: " << fTotalNoTrials_FNC >> 657 << " No Calls: " << fNoCalls_FNC >> 658 << " Max-trial: " << fmaxTrials_FNC >> 659 << G4endl; >> 660 G4cout >> 661 << " Parameters: " >> 662 << " fFirstFraction " << fFirstFraction >> 663 << " fFractionLast " << fFractionLast >> 664 << " fFractionNextEstimate " << fFractionNextEstimate >> 665 << G4endl; >> 666 } 653 667 654 return os; << 668 >> 669 // ........................................................................... >> 670 >> 671 void G4ChordFinder::TestChordPrint( G4int noTrials, >> 672 G4int lastStepTrial, >> 673 G4double dChordStep, >> 674 G4double nextStepTrial ) >> 675 { >> 676 G4int oldprec= G4cout.precision(5); >> 677 G4cout << " ChF/fnc: notrial " << std::setw( 3) << noTrials >> 678 << " this_step= " << std::setw(10) << lastStepTrial; >> 679 if( std::fabs( (dChordStep / fDeltaChord) - 1.0 ) < 0.001 ) >> 680 { >> 681 G4cout.precision(8); >> 682 } >> 683 else >> 684 { >> 685 G4cout.precision(6); >> 686 } >> 687 G4cout << " dChordStep= " << std::setw(12) << dChordStep; >> 688 if( dChordStep > fDeltaChord ) { G4cout << " d+"; } >> 689 else { G4cout << " d-"; } >> 690 G4cout.precision(5); >> 691 G4cout << " new_step= " << std::setw(10) >> 692 << fLastStepEstimate_Unconstrained >> 693 << " new_step_constr= " << std::setw(10) >> 694 << lastStepTrial << G4endl; >> 695 G4cout << " nextStepTrial = " << std::setw(10) << nextStepTrial << G4endl; >> 696 G4cout.precision(oldprec); 655 } 697 } 656 698