Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // 26 // G4FieldManager << 8 // $Id: G4FieldManager.hh,v 1.3 2000/04/27 09:14:05 gcosmo Exp $ >> 9 // GEANT4 tag $Name: geant4-02-00 $ >> 10 // >> 11 // >> 12 // class G4FieldManager 27 // 13 // 28 // Class description: 14 // Class description: 29 // 15 // 30 // A class to manage (Store) a pointer to the 16 // A class to manage (Store) a pointer to the Field subclass that 31 // describes the field of a detector (magnetic 17 // describes the field of a detector (magnetic, electric or other). 32 // Also stores a reference to the chord finder 18 // Also stores a reference to the chord finder. 33 // 19 // 34 // The G4FieldManager class exists to allow th 20 // The G4FieldManager class exists to allow the user program to specify 35 // the electric, magnetic and/or other field(s 21 // the electric, magnetic and/or other field(s) of the detector. 36 // << 22 // (OR, in the future, of a part of it - planned to be a logical volume). 37 // A field manager can be set to a logical vol << 38 // in order to vary its field from that of the << 39 // a zero or constant field can override a glo << 40 // less exact version can override the externa << 41 // or higher precision for tracking can be spe << 42 // stepper can be chosen for different volumes << 43 // << 44 // It also stores a pointer to the ChordFinder 23 // It also stores a pointer to the ChordFinder object that can do the 45 // propagation in this field. All geometrical 24 // propagation in this field. All geometrical track "advancement" 46 // in the field is handled by this ChordFinder 25 // in the field is handled by this ChordFinder object. 47 // 26 // 48 // G4FieldManager allows the other classes/obj 27 // G4FieldManager allows the other classes/object (of the MagneticField 49 // & other class categories) to find out wheth 28 // & other class categories) to find out whether a detector field object 50 // exists and what that object is. 29 // exists and what that object is. 51 // 30 // 52 // The Chord Finder must be created either by 31 // The Chord Finder must be created either by calling CreateChordFinder 53 // for a Magnetic Field or by the user creatin 32 // for a Magnetic Field or by the user creating a a Chord Finder object 54 // "manually" and setting this pointer. 33 // "manually" and setting this pointer. 55 // 34 // 56 // A default FieldManager is created by the si 35 // A default FieldManager is created by the singleton class 57 // G4NavigatorForTracking and exists before ma 36 // G4NavigatorForTracking and exists before main is called. 58 // However a new one can be created and given 37 // However a new one can be created and given to G4NavigatorForTracking. 59 // << 60 // Our current design envisions that one Field << 61 // valid for each region detector. << 62 // << 63 // It is expected that a particular geometrica << 64 // By default a Field Manager is created for t << 65 // will be utilised for all volumes unless it << 66 // field manager. << 67 // Note also that a region with both electric << 68 // have these treated as one field. << 69 // Similarly it could be extended to treat oth << 70 // components of a single field type. << 71 38 72 // Author: John Apostolakis, 10.03.97 - design << 39 // History: 73 // ------------------------------------------- << 40 // - 10.03.97 John Apostolakis, design and implementation. >> 41 74 #ifndef G4FIELDMANAGER_HH 42 #ifndef G4FIELDMANAGER_HH 75 #define G4FIELDMANAGER_HH 1 43 #define G4FIELDMANAGER_HH 1 76 44 77 #include "globals.hh" << 45 #include "G4Field.hh" 78 << 46 #include "G4MagneticField.hh" 79 class G4Field; << 47 #include "G4ChordFinder.hh" 80 class G4MagneticField; << 81 class G4ChordFinder; << 82 class G4Track; // Forward reference for param << 83 48 84 class G4FieldManager 49 class G4FieldManager 85 { 50 { 86 public: // with description 51 public: // with description 87 G4FieldManager(G4Field* detectorField = nu << 88 G4ChordFinder* pChordFinder << 89 G4bool b = true ); // field << 90 // General constructor for any field. << 91 // -> Must be set with field and chordfi << 92 G4FieldManager(G4MagneticField* detectorMa << 93 // Creates ChordFinder << 94 // -> Assumes pure magnetic field (so en << 95 << 96 virtual ~G4FieldManager(); << 97 << 98 G4FieldManager(const G4FieldManager&) = de << 99 G4FieldManager& operator=(const G4FieldMan << 100 << 101 G4bool SetDetectorField(G4Field* detectorF << 102 // Pushes the field to the equation. << 103 // Failure to push the field (due to abs << 104 // stepper or equation) is << 105 // - '0' = quiet : Do not comp << 106 // (It will s << 107 // - '1' = warn : a warning i << 108 // - '2'/else = FATAL : a fatal err << 109 // Returns success (true) or failure (fa << 110 << 111 inline void ProposeDetectorField(G4Field* << 112 // Pushes the field to this class only - << 113 // Should be used to initialise this fi << 114 // the chord finder and its dependent cl << 115 // User is then responsible to ensure th << 116 // i) an equation, stepper, driver a << 117 // ii) this field is used by the equa << 118 << 119 inline void ChangeDetectorField(G4Field* << 120 // Pushes the field to the equation ( & << 121 // Can be used only once the equation, s << 122 // have all been created. Else it is an << 123 << 124 inline const G4Field* GetDetectorField() << 125 inline G4bool DoesFieldExist() co << 126 // Set, get and check the field object << 127 << 128 void CreateChordFinder(G4MagneticField* de << 129 inline void SetChordFinder(G4ChordFinder* << 130 inline G4ChordFinder* GetChordFinder(); << 131 inline const G4ChordFinder* GetChordFinder << 132 // Create, set or get the associated Cho << 133 << 134 virtual void ConfigureForTrack( const G4 << 135 // Setup the choice of the configurable << 136 // relying on the current track's energy << 137 // Note: in addition to the values of me << 138 // a user can use this to change t << 139 << 140 // static functions to handle global field << 141 static void SetGlobalFieldManager(G4FieldM << 142 static G4FieldManager* GetGlobalFieldManag << 143 52 144 public: // with description << 53 G4FieldManager(); 145 << 54 G4FieldManager(G4MagneticField *detectorField); 146 inline G4double GetDeltaIntersection() con << 55 ~G4FieldManager(); 147 // Accuracy for boundary intersection. << 56 148 << 57 G4bool SetDetectorField(G4Field *detectorField); 149 inline G4double GetDeltaOneStep() const; << 58 G4Field* GetDetectorField(); 150 // Accuracy for one tracking/physics ste << 59 G4bool DoesFieldExist(); 151 << 60 152 inline void SetAccuraciesWithDeltaOneStep( << 61 void CreateChordFinder(G4MagneticField *detectorMagField); 153 // Sets both accuracies, maintaining a f << 62 void SetChordFinder(G4ChordFinder *aChordFinder); 154 // of volume Intersection and Integratio << 63 G4ChordFinder* GetChordFinder(); 155 << 156 inline void SetDeltaOneStep(G4double v << 157 // Set accuracy for integration of one s << 158 inline void SetDeltaIntersection(G4dou << 159 // Set accuracy of intersection of a vo << 160 << 161 inline G4double GetMinimumEpsilonStep() c << 162 G4bool SetMinimumEpsilonStep( G4 << 163 // Minimum for Relative accuracy of a St << 164 << 165 inline G4double GetMaximumEpsilonStep() c << 166 G4bool SetMaximumEpsilonStep( G4 << 167 // Maximum for Relative accuracy of a St << 168 << 169 inline G4bool DoesFieldChangeEnergy() co << 170 inline void SetFieldChangesEnergy(G4bo << 171 // For electric field this should be tru << 172 // For magnetic field this should be fal << 173 << 174 virtual G4FieldManager* Clone() const; << 175 // Needed for multi-threading, create a << 176 << 177 public: << 178 static G4double GetMaxAcceptedEpsilon(); << 179 static G4bool SetMaxAcceptedEpsilon(G4do << 180 // Set value -- within limits. << 181 // If it fails, with softFail=true it giv << 182 << 183 protected: << 184 static G4double fMaxAcceptedEpsilon; << 185 static constexpr G4double fMinAcceptedEpsi << 186 // Epsilon_min/max values must be smalle << 187 << 188 static constexpr G4double fMaxWarningEpsil << 189 static constexpr G4double fMaxFinalEpsilon << 190 << 191 static G4bool fVerboseConstruc << 192 // Control verbosity of constructors << 193 64 194 private: 65 private: 195 66 196 void InitialiseFieldChangesEnergy(); << 67 G4Field* fDetectorField; 197 // Check whether field/equation change t << 68 G4ChordFinder* fChordFinder; 198 // and sets the data member accordingly << 69 199 // Note: does not handle special cases - << 70 G4bool fAllocatedChordFinder; // Did we used "new" to 200 // separately (e.g. magnetic monopole i << 71 // create fChordFinder ? 201 << 202 protected: << 203 void ReportBadEpsilonValue(G4ExceptionDes << 204 G4String& name << 205 << 206 private: << 207 G4Field* fDetectorField = nullptr; << 208 G4ChordFinder* fChordFinder = nullptr; << 209 // Dependent objects -- with state that << 210 << 211 G4bool fAllocatedChordFinder = false; // D << 212 // c << 213 // INVARIANTS of tracking --------------- << 214 // << 215 // 1. 'CONSTANTS' - default values for ac << 216 // << 217 const G4double fEpsilonMinDefault= 5.0e-5; << 218 const G4double fEpsilonMaxDefault= 1.0e-3; << 219 << 220 static G4double fDefault_Delta_One_Step_Va << 221 static G4double fDefault_Delta_Intersectio << 222 // Default values for accuracy parameter << 223 << 224 // 2. CHARACTERISTIC of field << 225 // << 226 G4bool fFieldChangesEnergy = false; << 227 << 228 // 3. PARAMETERS that determine the accur << 229 // << 230 G4double fDelta_One_Step_Value; // f << 231 G4double fDelta_Intersection_Val; // f << 232 // Values for the required accuracies << 233 << 234 G4double fEpsilonMin; << 235 G4double fEpsilonMax; << 236 // Values for the small possible relativ << 237 // (corresponding to the greatest possib << 238 << 239 static G4ThreadLocal G4FieldManager* fGlob << 240 // Global field manager set by G4Transpo << 241 // to allow accessing the global field w << 242 // on navigation << 243 }; 72 }; 244 73 >> 74 // Our current design envisions that one Field manager is >> 75 // valid for a detector. >> 76 // (eg a detector with electric E and magnetic B field will now treat >> 77 // them as one field - and could treat any other field of importance >> 78 // as additional components of a single field.) >> 79 // Does it make sense to have several instead ? >> 80 // Is the lack of elegance of the design (of G4Field) made up >> 81 // for by the simplification it allows ? >> 82 245 // Implementation of inline functions 83 // Implementation of inline functions 246 84 247 #include "G4FieldManager.icc" 85 #include "G4FieldManager.icc" 248 86 249 #endif << 87 #endif /* G4FIELDMANAGER_HH */ 250 88