Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4FieldManager << 26 // >> 27 // $Id: G4FieldManager.hh 93661 2015-10-28 09:47:47Z gcosmo $ >> 28 // >> 29 // >> 30 // class G4FieldManager 27 // 31 // 28 // Class description: 32 // Class description: 29 // 33 // 30 // A class to manage (Store) a pointer to the 34 // A class to manage (Store) a pointer to the Field subclass that 31 // describes the field of a detector (magnetic 35 // describes the field of a detector (magnetic, electric or other). 32 // Also stores a reference to the chord finder 36 // Also stores a reference to the chord finder. 33 // 37 // 34 // The G4FieldManager class exists to allow th 38 // The G4FieldManager class exists to allow the user program to specify 35 // the electric, magnetic and/or other field(s 39 // the electric, magnetic and/or other field(s) of the detector. 36 // 40 // 37 // A field manager can be set to a logical vol 41 // A field manager can be set to a logical volume (or to more than one), 38 // in order to vary its field from that of the 42 // in order to vary its field from that of the world. In this manner 39 // a zero or constant field can override a glo 43 // a zero or constant field can override a global field, a more or 40 // less exact version can override the externa 44 // less exact version can override the external approximation, lower 41 // or higher precision for tracking can be spe 45 // or higher precision for tracking can be specified, a different 42 // stepper can be chosen for different volumes 46 // stepper can be chosen for different volumes, ... 43 // 47 // 44 // It also stores a pointer to the ChordFinder 48 // It also stores a pointer to the ChordFinder object that can do the 45 // propagation in this field. All geometrical 49 // propagation in this field. All geometrical track "advancement" 46 // in the field is handled by this ChordFinder 50 // in the field is handled by this ChordFinder object. 47 // 51 // 48 // G4FieldManager allows the other classes/obj 52 // G4FieldManager allows the other classes/object (of the MagneticField 49 // & other class categories) to find out wheth 53 // & other class categories) to find out whether a detector field object 50 // exists and what that object is. 54 // exists and what that object is. 51 // 55 // 52 // The Chord Finder must be created either by 56 // The Chord Finder must be created either by calling CreateChordFinder 53 // for a Magnetic Field or by the user creatin 57 // for a Magnetic Field or by the user creating a a Chord Finder object 54 // "manually" and setting this pointer. 58 // "manually" and setting this pointer. 55 // 59 // 56 // A default FieldManager is created by the si 60 // A default FieldManager is created by the singleton class 57 // G4NavigatorForTracking and exists before ma 61 // G4NavigatorForTracking and exists before main is called. 58 // However a new one can be created and given 62 // However a new one can be created and given to G4NavigatorForTracking. 59 // 63 // 60 // Our current design envisions that one Field 64 // Our current design envisions that one Field manager is 61 // valid for each region detector. 65 // valid for each region detector. 62 // << 63 // It is expected that a particular geometrica << 64 // By default a Field Manager is created for t << 65 // will be utilised for all volumes unless it << 66 // field manager. << 67 // Note also that a region with both electric << 68 // have these treated as one field. << 69 // Similarly it could be extended to treat oth << 70 // components of a single field type. << 71 66 72 // Author: John Apostolakis, 10.03.97 - design << 67 // History: >> 68 // - 05.11.03 John Apostolakis, Added Min/MaximumEpsilonStep >> 69 // - 20.06.03 John Apostolakis, Abstract & ability to ConfigureForTrack >> 70 // - 10.03.97 John Apostolakis, design and implementation. 73 // ------------------------------------------- 71 // ------------------------------------------------------------------- >> 72 74 #ifndef G4FIELDMANAGER_HH 73 #ifndef G4FIELDMANAGER_HH 75 #define G4FIELDMANAGER_HH 1 74 #define G4FIELDMANAGER_HH 1 76 75 77 #include "globals.hh" 76 #include "globals.hh" 78 77 79 class G4Field; 78 class G4Field; 80 class G4MagneticField; 79 class G4MagneticField; 81 class G4ChordFinder; 80 class G4ChordFinder; 82 class G4Track; // Forward reference for param 81 class G4Track; // Forward reference for parameter configuration 83 82 84 class G4FieldManager 83 class G4FieldManager 85 { 84 { 86 public: // with description 85 public: // with description 87 G4FieldManager(G4Field* detectorField = nu << 86 G4FieldManager(G4Field *detectorField=0, 88 G4ChordFinder* pChordFinder << 87 G4ChordFinder *pChordFinder=0, 89 G4bool b = true ); // field << 88 G4bool b=true ); // fieldChangesEnergy is taken from field 90 // General constructor for any field. << 89 // General constructor for any field. 91 // -> Must be set with field and chordfi << 90 // -> Must be set with field and chordfinder for use. 92 G4FieldManager(G4MagneticField* detectorMa << 91 G4FieldManager(G4MagneticField *detectorMagneticField); 93 // Creates ChordFinder << 92 // Creates ChordFinder 94 // -> Assumes pure magnetic field (so en << 93 // - assumes pure magnetic field (so Energy constant) 95 << 94 virtual ~G4FieldManager(); 96 virtual ~G4FieldManager(); << 95 97 << 96 G4bool SetDetectorField(G4Field *detectorField); 98 G4FieldManager(const G4FieldManager&) = de << 97 inline const G4Field* GetDetectorField() const; 99 G4FieldManager& operator=(const G4FieldMan << 98 inline G4bool DoesFieldExist() const; 100 << 99 // Set, get and check the field object 101 G4bool SetDetectorField(G4Field* detectorF << 100 102 // Pushes the field to the equation. << 101 void CreateChordFinder(G4MagneticField *detectorMagField); 103 // Failure to push the field (due to abs << 102 inline void SetChordFinder(G4ChordFinder *aChordFinder); 104 // stepper or equation) is << 103 inline G4ChordFinder* GetChordFinder(); 105 // - '0' = quiet : Do not comp << 104 inline const G4ChordFinder* GetChordFinder() const; 106 // (It will s << 105 // Create, set or get the associated Chord Finder 107 // - '1' = warn : a warning i << 106 108 // - '2'/else = FATAL : a fatal err << 107 virtual void ConfigureForTrack( const G4Track * ); 109 // Returns success (true) or failure (fa << 108 // Setup the choice of the configurable parameters 110 << 109 // relying on the current track's energy, particle identity, .. 111 inline void ProposeDetectorField(G4Field* << 110 // Note: In addition to the values of member variables, 112 // Pushes the field to this class only - << 111 // a user can use this to change the ChordFinder, the field, ... 113 // Should be used to initialise this fi << 114 // the chord finder and its dependent cl << 115 // User is then responsible to ensure th << 116 // i) an equation, stepper, driver a << 117 // ii) this field is used by the equa << 118 << 119 inline void ChangeDetectorField(G4Field* << 120 // Pushes the field to the equation ( & << 121 // Can be used only once the equation, s << 122 // have all been created. Else it is an << 123 << 124 inline const G4Field* GetDetectorField() << 125 inline G4bool DoesFieldExist() co << 126 // Set, get and check the field object << 127 << 128 void CreateChordFinder(G4MagneticField* de << 129 inline void SetChordFinder(G4ChordFinder* << 130 inline G4ChordFinder* GetChordFinder(); << 131 inline const G4ChordFinder* GetChordFinder << 132 // Create, set or get the associated Cho << 133 << 134 virtual void ConfigureForTrack( const G4 << 135 // Setup the choice of the configurable << 136 // relying on the current track's energy << 137 // Note: in addition to the values of me << 138 // a user can use this to change t << 139 << 140 // static functions to handle global field << 141 static void SetGlobalFieldManager(G4FieldM << 142 static G4FieldManager* GetGlobalFieldManag << 143 112 144 public: // with description 113 public: // with description 145 114 146 inline G4double GetDeltaIntersection() con << 115 inline G4double GetDeltaIntersection() const; // virtual ? 147 // Accuracy for boundary intersection. << 116 // Accuracy for boundary intersection. 148 117 149 inline G4double GetDeltaOneStep() const; << 118 inline G4double GetDeltaOneStep() const; // virtual ? 150 // Accuracy for one tracking/physics ste << 119 // Accuracy for one tracking/physics step. 151 120 152 inline void SetAccuraciesWithDeltaOneStep( << 121 inline void SetAccuraciesWithDeltaOneStep(G4double valDeltaOneStep); 153 // Sets both accuracies, maintaining a f << 122 // Sets both accuracies, maintaining a fixed ratio for accuracties 154 // of volume Intersection and Integratio << 123 // of volume Intersection and Integration (in One Step) 155 124 156 inline void SetDeltaOneStep(G4double v << 125 inline void SetDeltaOneStep(G4double valueD1step); 157 // Set accuracy for integration of one s 126 // Set accuracy for integration of one step. (only) 158 inline void SetDeltaIntersection(G4dou << 127 inline void SetDeltaIntersection(G4double valueDintersection); 159 // Set accuracy of intersection of a vo 128 // Set accuracy of intersection of a volume. (only) 160 129 161 inline G4double GetMinimumEpsilonStep() c << 130 inline G4double GetMinimumEpsilonStep() const; 162 G4bool SetMinimumEpsilonStep( G4 << 131 inline void SetMinimumEpsilonStep( G4double newEpsMin ); 163 // Minimum for Relative accuracy of a St << 132 // Minimum for Relative accuracy of a Step 164 << 133 165 inline G4double GetMaximumEpsilonStep() c << 134 inline G4double GetMaximumEpsilonStep() const; 166 G4bool SetMaximumEpsilonStep( G4 << 135 inline void SetMaximumEpsilonStep( G4double newEpsMax ); 167 // Maximum for Relative accuracy of a St << 136 // Maximum for Relative accuracy of a Step 168 137 169 inline G4bool DoesFieldChangeEnergy() co << 138 inline G4bool DoesFieldChangeEnergy() const; 170 inline void SetFieldChangesEnergy(G4bo << 139 inline void SetFieldChangesEnergy(G4bool value); 171 // For electric field this should be tru << 140 // For electric field this should be true 172 // For magnetic field this should be fal << 141 // For magnetic field this should be false 173 142 174 virtual G4FieldManager* Clone() const; 143 virtual G4FieldManager* Clone() const; 175 // Needed for multi-threading, create a << 144 //Needed for multi-threading, create a clone of this object 176 145 177 public: << 146 private: 178 static G4double GetMaxAcceptedEpsilon(); << 179 static G4bool SetMaxAcceptedEpsilon(G4do << 180 // Set value -- within limits. << 181 // If it fails, with softFail=true it giv << 182 << 183 protected: << 184 static G4double fMaxAcceptedEpsilon; << 185 static constexpr G4double fMinAcceptedEpsi << 186 // Epsilon_min/max values must be smalle << 187 147 188 static constexpr G4double fMaxWarningEpsil << 148 G4FieldManager(const G4FieldManager&); 189 static constexpr G4double fMaxFinalEpsilon << 149 G4FieldManager& operator=(const G4FieldManager&); 190 << 150 // Private copy constructor and assignment operator. 191 static G4bool fVerboseConstruc << 192 // Control verbosity of constructors << 193 151 194 private: 152 private: >> 153 // Dependent objects -- with state that depends on tracking >> 154 G4Field* fDetectorField; >> 155 G4ChordFinder* fChordFinder; >> 156 >> 157 G4bool fAllocatedChordFinder; // Did we used "new" to >> 158 // create fChordFinder ? >> 159 // INVARIANTS of tracking --------------------------------------- >> 160 // >> 161 // 1. CONSTANTS >> 162 const G4double fEpsilonMinDefault; // Can be 1.0e-5 to 1.0e-10 ... >> 163 const G4double fEpsilonMaxDefault; // Can be 1.0e-3 to 1.0e-8 ... >> 164 >> 165 // 2. CHARACTERISTIC of field >> 166 G4bool fFieldChangesEnergy; >> 167 >> 168 // 3. PARAMETERS >> 169 // >> 170 // Values for the required accuracies >> 171 G4double fDelta_One_Step_Value; // for one tracking/physics step >> 172 G4double fDelta_Intersection_Val; // for boundary intersection >> 173 >> 174 G4double fDefault_Delta_One_Step_Value; // = 0.25 * mm; >> 175 G4double fDefault_Delta_Intersection_Val; // = 0.1 * mm; >> 176 >> 177 // Values for the small possible relative accuracy of a step >> 178 // (corresponding to the greatest possible integration accuracy) >> 179 G4double fEpsilonMin; >> 180 G4double fEpsilonMax; 195 181 196 void InitialiseFieldChangesEnergy(); << 197 // Check whether field/equation change t << 198 // and sets the data member accordingly << 199 // Note: does not handle special cases - << 200 // separately (e.g. magnetic monopole i << 201 << 202 protected: << 203 void ReportBadEpsilonValue(G4ExceptionDes << 204 G4String& name << 205 << 206 private: << 207 G4Field* fDetectorField = nullptr; << 208 G4ChordFinder* fChordFinder = nullptr; << 209 // Dependent objects -- with state that << 210 << 211 G4bool fAllocatedChordFinder = false; // D << 212 // c << 213 // INVARIANTS of tracking --------------- << 214 // << 215 // 1. 'CONSTANTS' - default values for ac << 216 // << 217 const G4double fEpsilonMinDefault= 5.0e-5; << 218 const G4double fEpsilonMaxDefault= 1.0e-3; << 219 << 220 static G4double fDefault_Delta_One_Step_Va << 221 static G4double fDefault_Delta_Intersectio << 222 // Default values for accuracy parameter << 223 << 224 // 2. CHARACTERISTIC of field << 225 // << 226 G4bool fFieldChangesEnergy = false; << 227 << 228 // 3. PARAMETERS that determine the accur << 229 // << 230 G4double fDelta_One_Step_Value; // f << 231 G4double fDelta_Intersection_Val; // f << 232 // Values for the required accuracies << 233 << 234 G4double fEpsilonMin; << 235 G4double fEpsilonMax; << 236 // Values for the small possible relativ << 237 // (corresponding to the greatest possib << 238 << 239 static G4ThreadLocal G4FieldManager* fGlob << 240 // Global field manager set by G4Transpo << 241 // to allow accessing the global field w << 242 // on navigation << 243 }; 182 }; 244 183 >> 184 // Our current design and implementation expect that a particular >> 185 // geometrical region has a Field manager. >> 186 // By default a Field Manager is created for the world volume, and >> 187 // will be utilised for all volumes unless it is overridden by a 'local' >> 188 // field manager. >> 189 >> 190 // Note also that a region with both electric E and magnetic B field will >> 191 // have these treated as one field. >> 192 // Similarly it could be extended to treat other fields as additional components >> 193 // of a single field type. >> 194 >> 195 245 // Implementation of inline functions 196 // Implementation of inline functions 246 197 247 #include "G4FieldManager.icc" 198 #include "G4FieldManager.icc" 248 199 249 #endif << 200 #endif /* G4FIELDMANAGER_HH */ 250 201