Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/g4tools/include/tools/lina/geom3

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/g4tools/include/tools/lina/geom3 (Version 11.3.0) and /externals/g4tools/include/tools/lina/geom3 (Version 9.0.p1)


  1 // Copyright (C) 2010, Guy Barrand. All rights    
  2 // See the file tools.license for terms.          
  3                                                   
  4 #ifndef tools_geom3                               
  5 #define tools_geom3                               
  6                                                   
  7 #include "line"                                   
  8 #include "plane"                                  
  9 #include "vec3"                                   
 10                                                   
 11 namespace tools {                                 
 12                                                   
 13 template <class T>                                
 14 class cubic {                                     
 15 public:                                           
 16   cubic(const vec3<T>& a_p0,const vec3<T>& a_v    
 17         const vec3<T>& a_p1,const vec3<T>& a_v    
 18     // Construct a cubic given 2 points and th    
 19     initialize(a_p0.x(),a_p0.y(),a_p0.z(),        
 20                a_v0.x(),a_v0.y(),a_v0.z(),        
 21                a_p1.x(),a_p1.y(),a_p1.z(),        
 22                a_v1.x(),a_v1.y(),a_v1.z());       
 23   }                                               
 24   cubic(const T& a_p0_x,const T& a_p0_y,const     
 25         const T& a_v0_x,const T& a_v0_y,const     
 26         const T& a_p1_x,const T& a_p1_y,const     
 27         const T& a_v1_x,const T& a_v1_y,const     
 28     initialize(a_p0_x,a_p0_y,a_p0_z,              
 29                a_v0_x,a_v0_y,a_v0_z,              
 30                a_p1_x,a_p1_y,a_p1_z,              
 31                a_v1_x,a_v1_y,a_v1_z);             
 32   }                                               
 33                                                   
 34   virtual ~cubic() {}                             
 35 public:                                           
 36   cubic(const cubic& a_from)                      
 37   :m_a(a_from.m_a)                                
 38   ,m_b(a_from.m_b)                                
 39   ,m_c(a_from.m_c)                                
 40   ,m_d(a_from.m_d)                                
 41   {}                                              
 42   cubic& operator=(const cubic& a_from) {         
 43     m_a = a_from.m_a;                             
 44     m_b = a_from.m_b;                             
 45     m_c = a_from.m_c;                             
 46     m_d = a_from.m_d;                             
 47     return *this;                                 
 48   }                                               
 49 public:                                           
 50   void get_point(unsigned int a_index,unsigned    
 51     //a_index = 0        is a_p0                  
 52     //a_index = a_num-1  is a_p1                  
 53     T _s = T(a_index)/T(a_num-1);                 
 54     T s2 = _s*_s;                                 
 55     T s3 = s2*_s;                                 
 56     a_p = m_a*s3 + m_b*s2 + m_c*_s + m_d;         
 57   }                                               
 58   void get_point(unsigned int a_index,unsigned    
 59     //a_index = 0        is a_p0                  
 60     //a_index = a_num-1  is a_p1                  
 61     T s = T(a_index)/T(a_num-1);                  
 62     T s2 = s*s;                                   
 63     T s3 = s2*s;                                  
 64     a_x = m_a.x()*s3 + m_b.x()*s2 + m_c.x()*s     
 65     a_y = m_a.y()*s3 + m_b.y()*s2 + m_c.y()*s     
 66     a_z = m_a.z()*s3 + m_b.z()*s2 + m_c.z()*s     
 67   }                                               
 68 protected:                                        
 69   void initialize(const T& a_p0_x,const T& a_p    
 70                   const T& a_v0_x,const T& a_v    
 71                   const T& a_p1_x,const T& a_p    
 72                   const T& a_v1_x,const T& a_v    
 73     // Construct a cubic given 2 points and th    
 74                                                   
 75     //  f(s) = a s**3 + b s**2 + c s + d          
 76     // f'(s) = 3 a s**2 + 2 b s + c               
 77                                                   
 78     //  f(0) = d = p0                             
 79     // f'(0) = c = v0                             
 80                                                   
 81     //  f(1) =   a +   b + v0 + p0 = p1           
 82     // f'(1) = 3 a + 2 b + v0 = v1                
 83                                                   
 84     //  f(1) =   a +   b = p1 - v0 - p0           
 85     // f'(1) = 3 a + 2 b = v1 - v0                
 86                                                   
 87     // b = 3(p1-v0-p0)-(v1-v0)                    
 88     // a = p1-v0-p0 - b = p1-v0-p0-3(p1-v0-p0)    
 89     // a = -2p1 + v0 + 2p0 + v1                   
 90                                                   
 91     T a_x = -2*a_p1_x + a_v0_x + 2*a_p0_x + a_    
 92     T a_y = -2*a_p1_y + a_v0_y + 2*a_p0_y + a_    
 93     T a_z = -2*a_p1_z + a_v0_z + 2*a_p0_z + a_    
 94     m_a.set_value(a_x,a_y,a_z);                   
 95                                                   
 96     T b_x = 3*(a_p1_x - a_v0_x - a_p0_x) - (a_    
 97     T b_y = 3*(a_p1_y - a_v0_y - a_p0_y) - (a_    
 98     T b_z = 3*(a_p1_z - a_v0_z - a_p0_z) - (a_    
 99     m_b.set_value(b_x,b_y,b_z);                   
100                                                   
101     m_c.set_value(a_v0_x,a_v0_y,a_v0_z);          
102     m_d.set_value(a_p0_x,a_p0_y,a_p0_z);          
103                                                   
104   }                                               
105                                                   
106 protected:                                        
107   vec3<T> m_a;                                    
108   vec3<T> m_b;                                    
109   vec3<T> m_c;                                    
110   vec3<T> m_d;                                    
111 };                                                
112                                                   
113 }                                                 
114                                                   
115 #include <vector>                                 
116                                                   
117 namespace tools {                                 
118                                                   
119 template <class VEC3>                             
120 class clip {                                      
121 protected:                                        
122   typedef typename VEC3::elem_t T;                
123 public:                                           
124   clip():m_cur(0){}                               
125   virtual ~clip() {}                              
126 private:                                          
127   clip(const clip&):m_cur(0){}                    
128   clip& operator=(const clip&){return *this;}     
129 public:                                           
130   void reset() {                                  
131     m_data[0].clear();                            
132     m_data[1].clear();                            
133     m_cur = 0;                                    
134   }                                               
135                                                   
136   void add(const VEC3& a_point) {m_data[m_cur]    
137                                                   
138   void execute(const plane<VEC3>& plane) {        
139     //Clip polygon against plane. This might c    
140     //vertices in the polygon.                    
141                                                   
142     size_t n = m_data[m_cur].size();              
143     if(!n) return;                                
144                                                   
145     // create a loop :                            
146     VEC3 dummy = m_data[m_cur][0];                
147     m_data[m_cur].push_back(dummy);               
148                                                   
149     const VEC3& planeN = plane.normal();          
150                                                   
151     for(size_t i = 0; i < n; i++) {               
152       VEC3 v0 = m_data[m_cur][i];                 
153       VEC3 v1 = m_data[m_cur][i+1];               
154                                                   
155       T d0 = plane.distance(v0);                  
156       T d1 = plane.distance(v1);                  
157                                                   
158       if (d0 >= 0.0f && d1 < 0.0f) { // exit p    
159         VEC3 dir = v1-v0;                         
160         // we know that v0 != v1 since we got     
161         dir.normalize();                          
162         T dot = dir.dot(planeN);                  
163         VEC3 newvertex = v0 - dir * (d0/dot);     
164         out_point(newvertex);                     
165       } else if (d0 < 0.0f && d1 >= 0.0f) { //    
166         VEC3 dir = v1-v0;                         
167         // we know that v0 != v1 since we got     
168         dir.normalize();                          
169         T dot = dir.dot(planeN);                  
170         VEC3 newvertex = v0 - dir * (d0/dot);     
171         out_point(newvertex);                     
172         out_point(v1);                            
173       } else if (d0 >= 0.0f && d1 >= 0.0f) { /    
174         out_point(v1);                            
175       }                                           
176     }                                             
177     m_data[m_cur].clear();                        
178     m_cur ^= 1;                                   
179   }                                               
180                                                   
181   const std::vector<VEC3>& result() const {ret    
182                                                   
183 protected:                                        
184   void out_point(const VEC3& a_p) {m_data[m_cu    
185                                                   
186 protected:                                        
187   std::vector<VEC3> m_data[2];                    
188   unsigned int m_cur;                             
189 };                                                
190                                                   
191 }                                                 
192                                                   
193 #endif