Geant4 Cross Reference |
1 // see license file for original license. 2 3 #ifndef tools_glutess_tessmono 4 #define tools_glutess_tessmono 5 6 /* __gl_meshTessellateMonoRegion( face ) tesse 7 * (what else would it do??) The region must 8 * loop of half-edges (see mesh.h) oriented CC 9 * case means that any vertical line intersect 10 * region in a single interval. 11 * 12 * Tessellation consists of adding interior ed 13 * half-edges), to split the region into non-o 14 * 15 * __gl_meshTessellateInterior( mesh ) tessell 16 * the mesh which is marked "inside" the polyg 17 * must be monotone. 18 * 19 * __gl_meshDiscardExterior( mesh ) zaps (ie. 20 * which are not marked "inside" the polygon. 21 * on NULL faces are not allowed, the main pur 22 * mesh so that exterior loops are not represe 23 * 24 * __gl_meshSetWindingNumber( mesh, value, kee 25 * winding numbers on all edges so that region 26 * polygon have a winding number of "value", a 27 * have a winding number of 0. 28 * 29 * If keepOnlyBoundary is TOOLS_GLU_TRUE, it a 30 * separate an interior region from an exterio 31 */ 32 33 //int __gl_meshTessellateMonoRegion( GLUface * 34 //int __gl_meshTessellateInterior( GLUmesh *me 35 //void __gl_meshDiscardExterior( GLUmesh *mesh 36 //int __gl_meshSetWindingNumber( GLUmesh *mesh 37 // GLUboolean keepOnlyBoundary ); 38 39 ////////////////////////////////////////////// 40 /// inlined C code : ///////////////////////// 41 ////////////////////////////////////////////// 42 #include "geom" 43 #include "mesh" 44 45 /* __gl_meshTessellateMonoRegion( face ) tesse 46 * (what else would it do??) The region must 47 * loop of half-edges (see mesh.h) oriented CC 48 * case means that any vertical line intersect 49 * region in a single interval. 50 * 51 * Tessellation consists of adding interior ed 52 * half-edges), to split the region into non-o 53 * 54 * The basic idea is explained in Preparata an 55 * have handy right now), although their imple 56 * complicated than this one. The are two edg 57 * and a lower chain. We process all vertices 58 * from right to left. 59 * 60 * The algorithm ensures that the following in 61 * vertex is processed: the untessellated regi 62 * chains, where one chain (say the upper) is 63 * the other chain is concave. The left verte 64 * is always to the left of all vertices in th 65 * 66 * Each step consists of adding the rightmost 67 * of the two chains, and forming a fan of tri 68 * of two chain endpoints. Determining whethe 69 * to the fan is a simple orientation test. B 70 * as possible, we restore the invariant (chec 71 */ 72 inline int __gl_meshTessellateMonoRegion( GLUf 73 { 74 GLUhalfEdge *up, *lo; 75 76 /* All edges are oriented CCW around the bou 77 * First, find the half-edge whose origin ve 78 * Since the sweep goes from left to right, 79 * be close to the edge we want. 80 */ 81 up = face->anEdge; 82 assert( up->Lnext != up && up->Lnext->Lnext 83 84 for( ; VertLeq( up->Dst, up->Org ); up = up- 85 ; 86 for( ; VertLeq( up->Org, up->Dst ); up = up- 87 ; 88 lo = up->Lprev; 89 90 while( up->Lnext != lo ) { 91 if( VertLeq( up->Dst, lo->Org )) { 92 /* up->Dst is on the left. It is safe t 93 * The EdgeGoesLeft test guarantees prog 94 * are CW, given that the upper and lowe 95 */ 96 while( lo->Lnext != up && (EdgeGoesLeft( 97 || EdgeSign( lo->Org, lo->Dst, lo->Lnex 98 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( 99 if (tempHalfEdge == NULL) return 0; 100 lo = tempHalfEdge->Sym; 101 } 102 lo = lo->Lprev; 103 } else { 104 /* lo->Org is on the left. We can make 105 while( lo->Lnext != up && (EdgeGoesRight 106 || EdgeSign( up->Dst, up->Org, up->Lpre 107 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( 108 if (tempHalfEdge == NULL) return 0; 109 up = tempHalfEdge->Sym; 110 } 111 up = up->Lnext; 112 } 113 } 114 115 /* Now lo->Org == up->Dst == the leftmost ve 116 * can be tessellated in a fan from this lef 117 */ 118 assert( lo->Lnext != up ); 119 while( lo->Lnext->Lnext != up ) { 120 GLUhalfEdge *tempHalfEdge= __gl_meshConnec 121 if (tempHalfEdge == NULL) return 0; 122 lo = tempHalfEdge->Sym; 123 } 124 125 return 1; 126 } 127 128 129 /* __gl_meshTessellateInterior( mesh ) tessell 130 * the mesh which is marked "inside" the polyg 131 * must be monotone. 132 */ 133 inline int __gl_meshTessellateInterior( GLUmes 134 { 135 GLUface *f, *next; 136 137 /*LINTED*/ 138 for( f = mesh->fHead.next; f != &mesh->fHead 139 /* Make sure we don''t try to tessellate t 140 next = f->next; 141 if( f->inside ) { 142 if ( !__gl_meshTessellateMonoRegion( f ) 143 } 144 } 145 146 return 1; 147 } 148 149 150 /* __gl_meshDiscardExterior( mesh ) zaps (ie. 151 * which are not marked "inside" the polygon. 152 * on NULL faces are not allowed, the main pur 153 * mesh so that exterior loops are not represe 154 */ 155 inline void __gl_meshDiscardExterior( GLUmesh 156 { 157 GLUface *f, *next; 158 159 /*LINTED*/ 160 for( f = mesh->fHead.next; f != &mesh->fHead 161 /* Since f will be destroyed, save its nex 162 next = f->next; 163 if( ! f->inside ) { 164 __gl_meshZapFace( f ); 165 } 166 } 167 } 168 169 //#define MARKED_FOR_DELETION 0x7fffffff 170 171 /* __gl_meshSetWindingNumber( mesh, value, kee 172 * winding numbers on all edges so that region 173 * polygon have a winding number of "value", a 174 * have a winding number of 0. 175 * 176 * If keepOnlyBoundary is TOOLS_GLU_TRUE, it a 177 * separate an interior region from an exterio 178 */ 179 inline int __gl_meshSetWindingNumber( GLUmesh 180 GLUboolean keepOnlyBoundary ) 181 { 182 GLUhalfEdge *e, *eNext; 183 184 for( e = mesh->eHead.next; e != &mesh->eHead 185 eNext = e->next; 186 if( e->Rface->inside != e->Lface->inside ) 187 188 /* This is a boundary edge (one side is 189 e->winding = (e->Lface->inside) ? value 190 } else { 191 192 /* Both regions are interior, or both ar 193 if( ! keepOnlyBoundary ) { 194 e->winding = 0; 195 } else { 196 if ( !__gl_meshDelete( e ) ) return 0; 197 } 198 } 199 } 200 return 1; 201 } 202 203 #endif