Geant4 Cross Reference |
1 // see license file for original license. 1 // see license file for original license. 2 2 3 #ifndef tools_glutess_sweep 3 #ifndef tools_glutess_sweep 4 #define tools_glutess_sweep 4 #define tools_glutess_sweep 5 5 6 #include "mesh" 6 #include "mesh" 7 #include "dict" 7 #include "dict" 8 8 9 /* For each pair of adjacent edges crossing th 9 /* For each pair of adjacent edges crossing the sweep line, there is 10 * an ActiveRegion to represent the region bet 10 * an ActiveRegion to represent the region between them. The active 11 * regions are kept in sorted order in a dynam 11 * regions are kept in sorted order in a dynamic dictionary. As the 12 * sweep line crosses each vertex, we update t 12 * sweep line crosses each vertex, we update the affected regions. 13 */ 13 */ 14 14 15 struct ActiveRegion { 15 struct ActiveRegion { 16 GLUhalfEdge *eUp; /* upper edge, directed 16 GLUhalfEdge *eUp; /* upper edge, directed right to left */ 17 DictNode *nodeUp; /* dictionary node corre 17 DictNode *nodeUp; /* dictionary node corresponding to eUp */ 18 int windingNumber; /* used to determine w 18 int windingNumber; /* used to determine which regions are 19 * inside the 19 * inside the polygon */ 20 GLUboolean inside; /* is this region insi 20 GLUboolean inside; /* is this region inside the polygon? */ 21 GLUboolean sentinel; /* marks fake edges at 21 GLUboolean sentinel; /* marks fake edges at t = +/-infinity */ 22 GLUboolean dirty; /* marks regions where 22 GLUboolean dirty; /* marks regions where the upper or lower 23 * edge has ch 23 * edge has changed, but we haven't checked 24 * whether the 24 * whether they intersect yet */ 25 GLUboolean fixUpperEdge; /* marks temporary 25 GLUboolean fixUpperEdge; /* marks temporary edges introduced when 26 * we process 26 * we process a "right vertex" (one without 27 * any edges l 27 * any edges leaving to the right) */ 28 }; 28 }; 29 29 30 #define RegionBelow(r) ((ActiveRegion *) dict 30 #define RegionBelow(r) ((ActiveRegion *) dictKey(dictPred((r)->nodeUp))) 31 #define RegionAbove(r) ((ActiveRegion *) dict 31 #define RegionAbove(r) ((ActiveRegion *) dictKey(dictSucc((r)->nodeUp))) 32 32 33 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////// 34 /// inlined C code : ///////////////////////// 34 /// inlined C code : /////////////////////////////////// 35 ////////////////////////////////////////////// 35 //////////////////////////////////////////////////////// 36 36 37 #include "geom" 37 #include "geom" 38 #include "_tess" 38 #include "_tess" 39 #include "priorityq" 39 #include "priorityq" 40 40 41 #define DebugEvent( tess ) 41 #define DebugEvent( tess ) 42 42 43 /* 43 /* 44 * Invariants for the Edge Dictionary. 44 * Invariants for the Edge Dictionary. 45 * - each pair of adjacent edges e2=Succ(e1) s 45 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2) 46 * at any valid location of the sweep event 46 * at any valid location of the sweep event 47 * - if EdgeLeq(e2,e1) as well (at any valid s 47 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2 48 * share a common endpoint 48 * share a common endpoint 49 * - for each e, e->Dst has been processed, bu 49 * - for each e, e->Dst has been processed, but not e->Org 50 * - each edge e satisfies VertLeq(e->Dst,even 50 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org) 51 * where "event" is the current sweep line e 51 * where "event" is the current sweep line event. 52 * - no edge e has zero length 52 * - no edge e has zero length 53 * 53 * 54 * Invariants for the Mesh (the processed port 54 * Invariants for the Mesh (the processed portion). 55 * - the portion of the mesh left of the sweep 55 * - the portion of the mesh left of the sweep line is a planar graph, 56 * ie. there is *some* way to embed it in th 56 * ie. there is *some* way to embed it in the plane 57 * - no processed edge has zero length 57 * - no processed edge has zero length 58 * - no two processed vertices have identical 58 * - no two processed vertices have identical coordinates 59 * - each "inside" region is monotone, ie. can 59 * - each "inside" region is monotone, ie. can be broken into two chains 60 * of monotonically increasing vertices acco 60 * of monotonically increasing vertices according to VertLeq(v1,v2) 61 * - a non-invariant: these chains may inter 61 * - a non-invariant: these chains may intersect (very slightly) 62 * 62 * 63 * Invariants for the Sweep. 63 * Invariants for the Sweep. 64 * - if none of the edges incident to the even 64 * - if none of the edges incident to the event vertex have an activeRegion 65 * (ie. none of these edges are in the edge 65 * (ie. none of these edges are in the edge dictionary), then the vertex 66 * has only right-going edges. 66 * has only right-going edges. 67 * - if an edge is marked "fixUpperEdge" (it i 67 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced 68 * by ConnectRightVertex), then it is the on 68 * by ConnectRightVertex), then it is the only right-going edge from 69 * its associated vertex. (This says that t 69 * its associated vertex. (This says that these edges exist only 70 * when it is necessary.) 70 * when it is necessary.) 71 */ 71 */ 72 72 73 /* When we merge two edges into one, we need t 73 /* When we merge two edges into one, we need to compute the combined 74 * winding of the new edge. 74 * winding of the new edge. 75 */ 75 */ 76 #define AddWinding(eDst,eSrc) (eDst->winding + 76 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \ 77 eDst->Sym->wi 77 eDst->Sym->winding += eSrc->Sym->winding) 78 78 79 inline/*static*/ void static_SweepEvent( GLUte 79 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent ); 80 inline/*static*/ void static_WalkDirtyRegions( 80 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp ); 81 inline/*static*/ int static_CheckForRightSplic 81 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp ); 82 82 83 inline/*static*/ int static_EdgeLeq( GLUtessel 83 inline/*static*/ int static_EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1, 84 ActiveRegion *reg2 ) 84 ActiveRegion *reg2 ) 85 /* 85 /* 86 * Both edges must be directed from right to l 86 * Both edges must be directed from right to left (this is the canonical 87 * direction for the upper edge of each region 87 * direction for the upper edge of each region). 88 * 88 * 89 * The strategy is to evaluate a "t" value for 89 * The strategy is to evaluate a "t" value for each edge at the 90 * current sweep line position, given by tess- 90 * current sweep line position, given by tess->event. The calculations 91 * are designed to be very stable, but of cour 91 * are designed to be very stable, but of course they are not perfect. 92 * 92 * 93 * Special case: if both edge destinations are 93 * Special case: if both edge destinations are at the sweep event, 94 * we sort the edges by slope (they would othe 94 * we sort the edges by slope (they would otherwise compare equally). 95 */ 95 */ 96 { 96 { 97 GLUvertex *event = tess->event; 97 GLUvertex *event = tess->event; 98 GLUhalfEdge *e1, *e2; 98 GLUhalfEdge *e1, *e2; 99 GLUdouble t1, t2; 99 GLUdouble t1, t2; 100 100 101 e1 = reg1->eUp; 101 e1 = reg1->eUp; 102 e2 = reg2->eUp; 102 e2 = reg2->eUp; 103 103 104 if( e1->Dst == event ) { 104 if( e1->Dst == event ) { 105 if( e2->Dst == event ) { 105 if( e2->Dst == event ) { 106 /* Two edges right of the sweep line whi 106 /* Two edges right of the sweep line which meet at the sweep event. 107 * Sort them by slope. 107 * Sort them by slope. 108 */ 108 */ 109 if( VertLeq( e1->Org, e2->Org )) { 109 if( VertLeq( e1->Org, e2->Org )) { 110 return EdgeSign( e2->Dst, e1->Org, e2->Org ) 110 return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0; 111 } 111 } 112 return EdgeSign( e1->Dst, e2->Org, e1->O 112 return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0; 113 } 113 } 114 return EdgeSign( e2->Dst, event, e2->Org ) 114 return EdgeSign( e2->Dst, event, e2->Org ) <= 0; 115 } 115 } 116 if( e2->Dst == event ) { 116 if( e2->Dst == event ) { 117 return EdgeSign( e1->Dst, event, e1->Org ) 117 return EdgeSign( e1->Dst, event, e1->Org ) >= 0; 118 } 118 } 119 119 120 /* General case - compute signed distance *f 120 /* General case - compute signed distance *from* e1, e2 to event */ 121 t1 = EdgeEval( e1->Dst, event, e1->Org ); 121 t1 = EdgeEval( e1->Dst, event, e1->Org ); 122 t2 = EdgeEval( e2->Dst, event, e2->Org ); 122 t2 = EdgeEval( e2->Dst, event, e2->Org ); 123 return (t1 >= t2); 123 return (t1 >= t2); 124 } 124 } 125 125 126 126 127 inline/*static*/ void static_DeleteRegion( GLU 127 inline/*static*/ void static_DeleteRegion( GLUtesselator *tess, ActiveRegion *reg ) 128 { 128 { 129 if( reg->fixUpperEdge ) { 129 if( reg->fixUpperEdge ) { 130 /* It was created with zero winding number 130 /* It was created with zero winding number, so it better be 131 * deleted with zero winding number (ie. i 131 * deleted with zero winding number (ie. it better not get merged 132 * with a real edge). 132 * with a real edge). 133 */ 133 */ 134 assert( reg->eUp->winding == 0 ); 134 assert( reg->eUp->winding == 0 ); 135 } 135 } 136 reg->eUp->activeRegion = NULL; 136 reg->eUp->activeRegion = NULL; 137 dictDelete( tess->dict, reg->nodeUp ); /* __ 137 dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */ 138 memFree( reg ); 138 memFree( reg ); 139 } 139 } 140 140 141 141 142 inline/*static*/ int static_FixUpperEdge( Acti 142 inline/*static*/ int static_FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge ) 143 /* 143 /* 144 * Replace an upper edge which needs fixing (s 144 * Replace an upper edge which needs fixing (see ConnectRightVertex). 145 */ 145 */ 146 { 146 { 147 assert( reg->fixUpperEdge ); 147 assert( reg->fixUpperEdge ); 148 if ( !__gl_meshDelete( reg->eUp ) ) return 0 148 if ( !__gl_meshDelete( reg->eUp ) ) return 0; 149 reg->fixUpperEdge = TOOLS_GLU_FALSE; 149 reg->fixUpperEdge = TOOLS_GLU_FALSE; 150 reg->eUp = newEdge; 150 reg->eUp = newEdge; 151 newEdge->activeRegion = reg; 151 newEdge->activeRegion = reg; 152 152 153 return 1; 153 return 1; 154 } 154 } 155 155 156 inline/*static*/ ActiveRegion *static_TopLeftR 156 inline/*static*/ ActiveRegion *static_TopLeftRegion( ActiveRegion *reg ) 157 { 157 { 158 GLUvertex *org = reg->eUp->Org; 158 GLUvertex *org = reg->eUp->Org; 159 GLUhalfEdge *e; 159 GLUhalfEdge *e; 160 160 161 /* Find the region above the uppermost edge 161 /* Find the region above the uppermost edge with the same origin */ 162 do { 162 do { 163 reg = RegionAbove( reg ); 163 reg = RegionAbove( reg ); 164 } while( reg->eUp->Org == org ); 164 } while( reg->eUp->Org == org ); 165 165 166 /* If the edge above was a temporary edge in 166 /* If the edge above was a temporary edge introduced by ConnectRightVertex, 167 * now is the time to fix it. 167 * now is the time to fix it. 168 */ 168 */ 169 if( reg->fixUpperEdge ) { 169 if( reg->fixUpperEdge ) { 170 e = __gl_meshConnect( RegionBelow(reg)->eU 170 e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext ); 171 if (e == NULL) return NULL; 171 if (e == NULL) return NULL; 172 if ( !static_FixUpperEdge( reg, e ) ) retu 172 if ( !static_FixUpperEdge( reg, e ) ) return NULL; 173 reg = RegionAbove( reg ); 173 reg = RegionAbove( reg ); 174 } 174 } 175 return reg; 175 return reg; 176 } 176 } 177 177 178 inline/*static*/ ActiveRegion *static_TopRight 178 inline/*static*/ ActiveRegion *static_TopRightRegion( ActiveRegion *reg ) 179 { 179 { 180 GLUvertex *dst = reg->eUp->Dst; 180 GLUvertex *dst = reg->eUp->Dst; 181 181 182 /* Find the region above the uppermost edge 182 /* Find the region above the uppermost edge with the same destination */ 183 do { 183 do { 184 reg = RegionAbove( reg ); 184 reg = RegionAbove( reg ); 185 } while( reg->eUp->Dst == dst ); 185 } while( reg->eUp->Dst == dst ); 186 return reg; 186 return reg; 187 } 187 } 188 188 189 inline/*static*/ ActiveRegion *static_AddRegio 189 inline/*static*/ ActiveRegion *static_AddRegionBelow( GLUtesselator *tess, 190 ActiveRegion *regAbove, 190 ActiveRegion *regAbove, 191 GLUhalfEdge *eNewUp ) 191 GLUhalfEdge *eNewUp ) 192 /* 192 /* 193 * Add a new active region to the sweep line, 193 * Add a new active region to the sweep line, *somewhere* below "regAbove" 194 * (according to where the new edge belongs in 194 * (according to where the new edge belongs in the sweep-line dictionary). 195 * The upper edge of the new region will be "e 195 * The upper edge of the new region will be "eNewUp". 196 * Winding number and "inside" flag are not up 196 * Winding number and "inside" flag are not updated. 197 */ 197 */ 198 { 198 { 199 ActiveRegion *regNew = (ActiveRegion *)memAl 199 ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion )); 200 if (regNew == NULL) longjmp(tess->env,1); 200 if (regNew == NULL) longjmp(tess->env,1); 201 201 202 regNew->eUp = eNewUp; 202 regNew->eUp = eNewUp; 203 /* __gl_dictListInsertBefore */ 203 /* __gl_dictListInsertBefore */ 204 regNew->nodeUp = dictInsertBefore( tess->dic 204 regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew ); 205 if (regNew->nodeUp == NULL) longjmp(tess->en 205 if (regNew->nodeUp == NULL) longjmp(tess->env,1); 206 regNew->fixUpperEdge = TOOLS_GLU_FALSE; 206 regNew->fixUpperEdge = TOOLS_GLU_FALSE; 207 regNew->sentinel = TOOLS_GLU_FALSE; 207 regNew->sentinel = TOOLS_GLU_FALSE; 208 regNew->dirty = TOOLS_GLU_FALSE; 208 regNew->dirty = TOOLS_GLU_FALSE; 209 209 210 eNewUp->activeRegion = regNew; 210 eNewUp->activeRegion = regNew; 211 return regNew; 211 return regNew; 212 } 212 } 213 213 214 inline/*static*/ GLUboolean static_IsWindingIn 214 inline/*static*/ GLUboolean static_IsWindingInside( GLUtesselator *tess, int n ) 215 { 215 { 216 switch( tess->windingRule ) { 216 switch( tess->windingRule ) { 217 case GLU_TESS_WINDING_ODD: 217 case GLU_TESS_WINDING_ODD: 218 return (n & 1); 218 return (n & 1); 219 case GLU_TESS_WINDING_NONZERO: 219 case GLU_TESS_WINDING_NONZERO: 220 return (n != 0); 220 return (n != 0); 221 case GLU_TESS_WINDING_POSITIVE: 221 case GLU_TESS_WINDING_POSITIVE: 222 return (n > 0); 222 return (n > 0); 223 case GLU_TESS_WINDING_NEGATIVE: 223 case GLU_TESS_WINDING_NEGATIVE: 224 return (n < 0); 224 return (n < 0); 225 case GLU_TESS_WINDING_ABS_GEQ_TWO: 225 case GLU_TESS_WINDING_ABS_GEQ_TWO: 226 return (n >= 2) || (n <= -2); 226 return (n >= 2) || (n <= -2); 227 } 227 } 228 /*LINTED*/ 228 /*LINTED*/ 229 assert( TOOLS_GLU_FALSE ); 229 assert( TOOLS_GLU_FALSE ); 230 /*NOTREACHED*/ 230 /*NOTREACHED*/ 231 return TOOLS_GLU_FALSE; /* avoid compiler c 231 return TOOLS_GLU_FALSE; /* avoid compiler complaints */ 232 } 232 } 233 233 234 234 235 inline/*static*/ void static_ComputeWinding( G 235 inline/*static*/ void static_ComputeWinding( GLUtesselator *tess, ActiveRegion *reg ) 236 { 236 { 237 reg->windingNumber = RegionAbove(reg)->windi 237 reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding; 238 reg->inside = static_IsWindingInside( tess, 238 reg->inside = static_IsWindingInside( tess, reg->windingNumber ); 239 } 239 } 240 240 241 241 242 inline/*static*/ void static_FinishRegion( GLU 242 inline/*static*/ void static_FinishRegion( GLUtesselator *tess, ActiveRegion *reg ) 243 /* 243 /* 244 * Delete a region from the sweep line. This 244 * Delete a region from the sweep line. This happens when the upper 245 * and lower chains of a region meet (at a ver 245 * and lower chains of a region meet (at a vertex on the sweep line). 246 * The "inside" flag is copied to the appropri 246 * The "inside" flag is copied to the appropriate mesh face (we could 247 * not do this before -- since the structure o 247 * not do this before -- since the structure of the mesh is always 248 * changing, this face may not have even exist 248 * changing, this face may not have even existed until now). 249 */ 249 */ 250 { 250 { 251 GLUhalfEdge *e = reg->eUp; 251 GLUhalfEdge *e = reg->eUp; 252 GLUface *f = e->Lface; 252 GLUface *f = e->Lface; 253 253 254 f->inside = reg->inside; 254 f->inside = reg->inside; 255 f->anEdge = e; /* optimization for __gl_me 255 f->anEdge = e; /* optimization for __gl_meshTessellateMonoRegion() */ 256 static_DeleteRegion( tess, reg ); 256 static_DeleteRegion( tess, reg ); 257 } 257 } 258 258 259 259 260 inline/*static*/ GLUhalfEdge *static_FinishLef 260 inline/*static*/ GLUhalfEdge *static_FinishLeftRegions( GLUtesselator *tess, 261 ActiveRegion *regFirst, ActiveRegion 261 ActiveRegion *regFirst, ActiveRegion *regLast ) 262 /* 262 /* 263 * We are given a vertex with one or more left 263 * We are given a vertex with one or more left-going edges. All affected 264 * edges should be in the edge dictionary. St 264 * edges should be in the edge dictionary. Starting at regFirst->eUp, 265 * we walk down deleting all regions where bot 265 * we walk down deleting all regions where both edges have the same 266 * origin vOrg. At the same time we copy the 266 * origin vOrg. At the same time we copy the "inside" flag from the 267 * active region to the face, since at this po 267 * active region to the face, since at this point each face will belong 268 * to at most one region (this was not necessa 268 * to at most one region (this was not necessarily true until this point 269 * in the sweep). The walk stops at the regio 269 * in the sweep). The walk stops at the region above regLast; if regLast 270 * is NULL we walk as far as possible. At the 270 * is NULL we walk as far as possible. At the same time we relink the 271 * mesh if necessary, so that the ordering of 271 * mesh if necessary, so that the ordering of edges around vOrg is the 272 * same as in the dictionary. 272 * same as in the dictionary. 273 */ 273 */ 274 { 274 { 275 ActiveRegion *reg, *regPrev; 275 ActiveRegion *reg, *regPrev; 276 GLUhalfEdge *e, *ePrev; 276 GLUhalfEdge *e, *ePrev; 277 277 278 regPrev = regFirst; 278 regPrev = regFirst; 279 ePrev = regFirst->eUp; 279 ePrev = regFirst->eUp; 280 while( regPrev != regLast ) { 280 while( regPrev != regLast ) { 281 regPrev->fixUpperEdge = TOOLS_GLU_FALSE; 281 regPrev->fixUpperEdge = TOOLS_GLU_FALSE; /* placement was OK */ 282 reg = RegionBelow( regPrev ); 282 reg = RegionBelow( regPrev ); 283 e = reg->eUp; 283 e = reg->eUp; 284 if( e->Org != ePrev->Org ) { 284 if( e->Org != ePrev->Org ) { 285 if( ! reg->fixUpperEdge ) { 285 if( ! reg->fixUpperEdge ) { 286 /* Remove the last left-going edge. Even th 286 /* Remove the last left-going edge. Even though there are no further 287 * edges in the dictionary with this origin, 287 * edges in the dictionary with this origin, there may be further 288 * such edges in the mesh (if we are adding 288 * such edges in the mesh (if we are adding left edges to a vertex 289 * that has already been processed). Thus i 289 * that has already been processed). Thus it is important to call 290 * FinishRegion rather than just DeleteRegio 290 * FinishRegion rather than just DeleteRegion. 291 */ 291 */ 292 static_FinishRegion( tess, regPrev ); 292 static_FinishRegion( tess, regPrev ); 293 break; 293 break; 294 } 294 } 295 /* If the edge below was a temporary edg 295 /* If the edge below was a temporary edge introduced by 296 * ConnectRightVertex, now is the time t 296 * ConnectRightVertex, now is the time to fix it. 297 */ 297 */ 298 e = __gl_meshConnect( ePrev->Lprev, e->S 298 e = __gl_meshConnect( ePrev->Lprev, e->Sym ); 299 if (e == NULL) longjmp(tess->env,1); 299 if (e == NULL) longjmp(tess->env,1); 300 if ( !static_FixUpperEdge( reg, e ) ) lo 300 if ( !static_FixUpperEdge( reg, e ) ) longjmp(tess->env,1); 301 } 301 } 302 302 303 /* Relink edges so that ePrev->Onext == e 303 /* Relink edges so that ePrev->Onext == e */ 304 if( ePrev->Onext != e ) { 304 if( ePrev->Onext != e ) { 305 if ( !__gl_meshSplice( e->Oprev, e ) ) l 305 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1); 306 if ( !__gl_meshSplice( ePrev, e ) ) long 306 if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1); 307 } 307 } 308 static_FinishRegion( tess, regPrev ); /* m 308 static_FinishRegion( tess, regPrev ); /* may change reg->eUp */ 309 ePrev = reg->eUp; 309 ePrev = reg->eUp; 310 regPrev = reg; 310 regPrev = reg; 311 } 311 } 312 return ePrev; 312 return ePrev; 313 } 313 } 314 314 315 315 316 inline/*static*/ void static_AddRightEdges( GL 316 inline/*static*/ void static_AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp, 317 GLUhalfEdge *eFirst, GLUhalfEdge *eLast 317 GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft, 318 GLUboolean cleanUp ) 318 GLUboolean cleanUp ) 319 /* 319 /* 320 * Purpose: insert right-going edges into the 320 * Purpose: insert right-going edges into the edge dictionary, and update 321 * winding numbers and mesh connectivity appro 321 * winding numbers and mesh connectivity appropriately. All right-going 322 * edges share a common origin vOrg. Edges ar 322 * edges share a common origin vOrg. Edges are inserted CCW starting at 323 * eFirst; the last edge inserted is eLast->Op 323 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any 324 * left-going edges already processed, then eT 324 * left-going edges already processed, then eTopLeft must be the edge 325 * such that an imaginary upward vertical segm 325 * such that an imaginary upward vertical segment from vOrg would be 326 * contained between eTopLeft->Oprev and eTopL 326 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft 327 * should be NULL. 327 * should be NULL. 328 */ 328 */ 329 { 329 { 330 ActiveRegion *reg, *regPrev; 330 ActiveRegion *reg, *regPrev; 331 GLUhalfEdge *e, *ePrev; 331 GLUhalfEdge *e, *ePrev; 332 int firstTime = TOOLS_GLU_TRUE; 332 int firstTime = TOOLS_GLU_TRUE; 333 333 334 /* Insert the new right-going edges in the d 334 /* Insert the new right-going edges in the dictionary */ 335 e = eFirst; 335 e = eFirst; 336 do { 336 do { 337 assert( VertLeq( e->Org, e->Dst )); 337 assert( VertLeq( e->Org, e->Dst )); 338 static_AddRegionBelow( tess, regUp, e->Sym 338 static_AddRegionBelow( tess, regUp, e->Sym ); 339 e = e->Onext; 339 e = e->Onext; 340 } while ( e != eLast ); 340 } while ( e != eLast ); 341 341 342 /* Walk *all* right-going edges from e->Org, 342 /* Walk *all* right-going edges from e->Org, in the dictionary order, 343 * updating the winding numbers of each regi 343 * updating the winding numbers of each region, and re-linking the mesh 344 * edges to match the dictionary ordering (i 344 * edges to match the dictionary ordering (if necessary). 345 */ 345 */ 346 if( eTopLeft == NULL ) { 346 if( eTopLeft == NULL ) { 347 eTopLeft = RegionBelow( regUp )->eUp->Rpre 347 eTopLeft = RegionBelow( regUp )->eUp->Rprev; 348 } 348 } 349 regPrev = regUp; 349 regPrev = regUp; 350 ePrev = eTopLeft; 350 ePrev = eTopLeft; 351 for( ;; ) { 351 for( ;; ) { 352 reg = RegionBelow( regPrev ); 352 reg = RegionBelow( regPrev ); 353 e = reg->eUp->Sym; 353 e = reg->eUp->Sym; 354 if( e->Org != ePrev->Org ) break; 354 if( e->Org != ePrev->Org ) break; 355 355 356 if( e->Onext != ePrev ) { 356 if( e->Onext != ePrev ) { 357 /* Unlink e from its current position, a 357 /* Unlink e from its current position, and relink below ePrev */ 358 if ( !__gl_meshSplice( e->Oprev, e ) ) l 358 if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1); 359 if ( !__gl_meshSplice( ePrev->Oprev, e ) 359 if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1); 360 } 360 } 361 /* Compute the winding number and "inside" 361 /* Compute the winding number and "inside" flag for the new regions */ 362 reg->windingNumber = regPrev->windingNumbe 362 reg->windingNumber = regPrev->windingNumber - e->winding; 363 reg->inside = static_IsWindingInside( tess 363 reg->inside = static_IsWindingInside( tess, reg->windingNumber ); 364 364 365 /* Check for two outgoing edges with same 365 /* Check for two outgoing edges with same slope -- process these 366 * before any intersection tests (see exam 366 * before any intersection tests (see example in __gl_computeInterior). 367 */ 367 */ 368 regPrev->dirty = TOOLS_GLU_TRUE; 368 regPrev->dirty = TOOLS_GLU_TRUE; 369 if( ! firstTime && static_CheckForRightSpl 369 if( ! firstTime && static_CheckForRightSplice( tess, regPrev )) { 370 AddWinding( e, ePrev ); 370 AddWinding( e, ePrev ); 371 static_DeleteRegion( tess, regPrev ); 371 static_DeleteRegion( tess, regPrev ); 372 if ( !__gl_meshDelete( ePrev ) ) longjmp 372 if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1); 373 } 373 } 374 firstTime = TOOLS_GLU_FALSE; 374 firstTime = TOOLS_GLU_FALSE; 375 regPrev = reg; 375 regPrev = reg; 376 ePrev = e; 376 ePrev = e; 377 } 377 } 378 regPrev->dirty = TOOLS_GLU_TRUE; 378 regPrev->dirty = TOOLS_GLU_TRUE; 379 assert( regPrev->windingNumber - e->winding 379 assert( regPrev->windingNumber - e->winding == reg->windingNumber ); 380 380 381 if( cleanUp ) { 381 if( cleanUp ) { 382 /* Check for intersections between newly a 382 /* Check for intersections between newly adjacent edges. */ 383 static_WalkDirtyRegions( tess, regPrev ); 383 static_WalkDirtyRegions( tess, regPrev ); 384 } 384 } 385 } 385 } 386 386 387 387 388 inline/*static*/ void static_CallCombine( GLUt 388 inline/*static*/ void static_CallCombine( GLUtesselator *tess, GLUvertex *isect, 389 void *data[4], GLUfloat weights[4], int 389 void *data[4], GLUfloat weights[4], int needed ) 390 { 390 { 391 GLUdouble coords[3]; 391 GLUdouble coords[3]; 392 392 393 /* Copy coord data in case the callback chan 393 /* Copy coord data in case the callback changes it. */ 394 coords[0] = isect->coords[0]; 394 coords[0] = isect->coords[0]; 395 coords[1] = isect->coords[1]; 395 coords[1] = isect->coords[1]; 396 coords[2] = isect->coords[2]; 396 coords[2] = isect->coords[2]; 397 397 398 isect->data = NULL; 398 isect->data = NULL; 399 CALL_COMBINE_OR_COMBINE_DATA( coords, data, 399 CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data ); 400 if( isect->data == NULL ) { 400 if( isect->data == NULL ) { 401 if( ! needed ) { 401 if( ! needed ) { 402 isect->data = data[0]; 402 isect->data = data[0]; 403 } else if( ! tess->fatalError ) { 403 } else if( ! tess->fatalError ) { 404 /* The only way fatal error is when two 404 /* The only way fatal error is when two edges are found to intersect, 405 * but the user has not provided the cal 405 * but the user has not provided the callback necessary to handle 406 * generated intersection points. 406 * generated intersection points. 407 */ 407 */ 408 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_ 408 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK ); 409 tess->fatalError = TOOLS_GLU_TRUE; 409 tess->fatalError = TOOLS_GLU_TRUE; 410 } 410 } 411 } 411 } 412 } 412 } 413 413 414 inline/*static*/ void static_SpliceMergeVertic 414 inline/*static*/ void static_SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1, 415 GLUhalfEdge *e2 ) 415 GLUhalfEdge *e2 ) 416 /* 416 /* 417 * Two vertices with idential coordinates are 417 * Two vertices with idential coordinates are combined into one. 418 * e1->Org is kept, while e2->Org is discarded 418 * e1->Org is kept, while e2->Org is discarded. 419 */ 419 */ 420 { 420 { 421 void *data[4] = { NULL, NULL, NULL, NULL }; 421 void *data[4] = { NULL, NULL, NULL, NULL }; 422 GLUfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 } 422 GLUfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 }; 423 423 424 data[0] = e1->Org->data; 424 data[0] = e1->Org->data; 425 data[1] = e2->Org->data; 425 data[1] = e2->Org->data; 426 static_CallCombine( tess, e1->Org, data, wei 426 static_CallCombine( tess, e1->Org, data, weights, TOOLS_GLU_FALSE ); 427 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(te 427 if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1); 428 } 428 } 429 429 430 inline/*static*/ void static_VertexWeights( GL 430 inline/*static*/ void static_VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst, 431 GLUfloat *weights ) 431 GLUfloat *weights ) 432 /* 432 /* 433 * Find some weights which describe how the in 433 * Find some weights which describe how the intersection vertex is 434 * a linear combination of "org" and "dest". 434 * a linear combination of "org" and "dest". Each of the two edges 435 * which generated "isect" is allocated 50% of 435 * which generated "isect" is allocated 50% of the weight; each edge 436 * splits the weight between its org and dst a 436 * splits the weight between its org and dst according to the 437 * relative distance to "isect". 437 * relative distance to "isect". 438 */ 438 */ 439 { 439 { 440 GLUdouble t1 = VertL1dist( org, isect ); 440 GLUdouble t1 = VertL1dist( org, isect ); 441 GLUdouble t2 = VertL1dist( dst, isect ); 441 GLUdouble t2 = VertL1dist( dst, isect ); 442 442 443 weights[0] = float(0.5 * t2 / (t1 + t2)); 443 weights[0] = float(0.5 * t2 / (t1 + t2)); 444 weights[1] = float(0.5 * t1 / (t1 + t2)); 444 weights[1] = float(0.5 * t1 / (t1 + t2)); 445 isect->coords[0] += weights[0]*org->coords[0 445 isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0]; 446 isect->coords[1] += weights[0]*org->coords[1 446 isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1]; 447 isect->coords[2] += weights[0]*org->coords[2 447 isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2]; 448 } 448 } 449 449 450 450 451 inline/*static*/ void static_GetIntersectData( 451 inline/*static*/ void static_GetIntersectData( GLUtesselator *tess, GLUvertex *isect, 452 GLUvertex *orgUp, GLUvertex *dstUp, 452 GLUvertex *orgUp, GLUvertex *dstUp, 453 GLUvertex *orgLo, GLUvertex *dstLo ) 453 GLUvertex *orgLo, GLUvertex *dstLo ) 454 /* 454 /* 455 * We've computed a new intersection point, no 455 * We've computed a new intersection point, now we need a "data" pointer 456 * from the user so that we can refer to this 456 * from the user so that we can refer to this new vertex in the 457 * rendering callbacks. 457 * rendering callbacks. 458 */ 458 */ 459 { 459 { 460 void *data[4]; 460 void *data[4]; 461 GLUfloat weights[4]; 461 GLUfloat weights[4]; 462 462 463 data[0] = orgUp->data; 463 data[0] = orgUp->data; 464 data[1] = dstUp->data; 464 data[1] = dstUp->data; 465 data[2] = orgLo->data; 465 data[2] = orgLo->data; 466 data[3] = dstLo->data; 466 data[3] = dstLo->data; 467 467 468 isect->coords[0] = isect->coords[1] = isect- 468 isect->coords[0] = isect->coords[1] = isect->coords[2] = 0; 469 static_VertexWeights( isect, orgUp, dstUp, & 469 static_VertexWeights( isect, orgUp, dstUp, &weights[0] ); 470 static_VertexWeights( isect, orgLo, dstLo, & 470 static_VertexWeights( isect, orgLo, dstLo, &weights[2] ); 471 471 472 static_CallCombine( tess, isect, data, weigh 472 static_CallCombine( tess, isect, data, weights, TOOLS_GLU_TRUE ); 473 } 473 } 474 474 475 inline/*static*/ int static_CheckForRightSplic 475 inline/*static*/ int static_CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp ) 476 /* 476 /* 477 * Check the upper and lower edge of "regUp", 477 * Check the upper and lower edge of "regUp", to make sure that the 478 * eUp->Org is above eLo, or eLo->Org is below 478 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which 479 * origin is leftmost). 479 * origin is leftmost). 480 * 480 * 481 * The main purpose is to splice right-going e 481 * The main purpose is to splice right-going edges with the same 482 * dest vertex and nearly identical slopes (ie 482 * dest vertex and nearly identical slopes (ie. we can't distinguish 483 * the slopes numerically). However the splic 483 * the slopes numerically). However the splicing can also help us 484 * to recover from numerical errors. For exam 484 * to recover from numerical errors. For example, suppose at one 485 * point we checked eUp and eLo, and decided t 485 * point we checked eUp and eLo, and decided that eUp->Org is barely 486 * above eLo. Then later, we split eLo into t 486 * above eLo. Then later, we split eLo into two edges (eg. from 487 * a splice operation like this one). This ca 487 * a splice operation like this one). This can change the result of 488 * our test so that now eUp->Org is incident t 488 * our test so that now eUp->Org is incident to eLo, or barely below it. 489 * We must correct this condition to maintain 489 * We must correct this condition to maintain the dictionary invariants. 490 * 490 * 491 * One possibility is to check these edges for 491 * One possibility is to check these edges for intersection again 492 * (ie. CheckForIntersect). This is what we d 492 * (ie. CheckForIntersect). This is what we do if possible. However 493 * CheckForIntersect requires that tess->event 493 * CheckForIntersect requires that tess->event lies between eUp and eLo, 494 * so that it has something to fall back on wh 494 * so that it has something to fall back on when the intersection 495 * calculation gives us an unusable answer. S 495 * calculation gives us an unusable answer. So, for those cases where 496 * we can't check for intersection, this routi 496 * we can't check for intersection, this routine fixes the problem 497 * by just splicing the offending vertex into 497 * by just splicing the offending vertex into the other edge. 498 * This is a guaranteed solution, no matter ho 498 * This is a guaranteed solution, no matter how degenerate things get. 499 * Basically this is a combinatorial solution 499 * Basically this is a combinatorial solution to a numerical problem. 500 */ 500 */ 501 { 501 { 502 ActiveRegion *regLo = RegionBelow(regUp); 502 ActiveRegion *regLo = RegionBelow(regUp); 503 GLUhalfEdge *eUp = regUp->eUp; 503 GLUhalfEdge *eUp = regUp->eUp; 504 GLUhalfEdge *eLo = regLo->eUp; 504 GLUhalfEdge *eLo = regLo->eUp; 505 505 506 if( VertLeq( eUp->Org, eLo->Org )) { 506 if( VertLeq( eUp->Org, eLo->Org )) { 507 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org 507 if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE; 508 508 509 /* eUp->Org appears to be below eLo */ 509 /* eUp->Org appears to be below eLo */ 510 if( ! VertEq( eUp->Org, eLo->Org )) { 510 if( ! VertEq( eUp->Org, eLo->Org )) { 511 /* Splice eUp->Org into eLo */ 511 /* Splice eUp->Org into eLo */ 512 if ( __gl_meshSplitEdge( eLo->Sym ) == N 512 if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 513 if ( !__gl_meshSplice( eUp, eLo->Oprev ) 513 if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1); 514 regUp->dirty = regLo->dirty = TOOLS_GLU_ 514 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE; 515 515 516 } else if( eUp->Org != eLo->Org ) { 516 } else if( eUp->Org != eLo->Org ) { 517 /* merge the two vertices, discarding eU 517 /* merge the two vertices, discarding eUp->Org */ 518 pqDelete( tess->pq, eUp->Org->pqHandle ) 518 pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */ 519 static_SpliceMergeVertices( tess, eLo->O 519 static_SpliceMergeVertices( tess, eLo->Oprev, eUp ); 520 } 520 } 521 } else { 521 } else { 522 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org 522 if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE; 523 523 524 /* eLo->Org appears to be above eUp, so sp 524 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */ 525 RegionAbove(regUp)->dirty = regUp->dirty = 525 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE; 526 if (__gl_meshSplitEdge( eUp->Sym ) == NULL 526 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 527 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) 527 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1); 528 } 528 } 529 return TOOLS_GLU_TRUE; 529 return TOOLS_GLU_TRUE; 530 } 530 } 531 531 532 inline/*static*/ int static_CheckForLeftSplice 532 inline/*static*/ int static_CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp ) 533 /* 533 /* 534 * Check the upper and lower edge of "regUp", 534 * Check the upper and lower edge of "regUp", to make sure that the 535 * eUp->Dst is above eLo, or eLo->Dst is below 535 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which 536 * destination is rightmost). 536 * destination is rightmost). 537 * 537 * 538 * Theoretically, this should always be true. 538 * Theoretically, this should always be true. However, splitting an edge 539 * into two pieces can change the results of p 539 * into two pieces can change the results of previous tests. For example, 540 * suppose at one point we checked eUp and eLo 540 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst 541 * is barely above eLo. Then later, we split 541 * is barely above eLo. Then later, we split eLo into two edges (eg. from 542 * a splice operation like this one). This ca 542 * a splice operation like this one). This can change the result of 543 * the test so that now eUp->Dst is incident t 543 * the test so that now eUp->Dst is incident to eLo, or barely below it. 544 * We must correct this condition to maintain 544 * We must correct this condition to maintain the dictionary invariants 545 * (otherwise new edges might get inserted in 545 * (otherwise new edges might get inserted in the wrong place in the 546 * dictionary, and bad stuff will happen). 546 * dictionary, and bad stuff will happen). 547 * 547 * 548 * We fix the problem by just splicing the off 548 * We fix the problem by just splicing the offending vertex into the 549 * other edge. 549 * other edge. 550 */ 550 */ 551 { 551 { 552 ActiveRegion *regLo = RegionBelow(regUp); 552 ActiveRegion *regLo = RegionBelow(regUp); 553 GLUhalfEdge *eUp = regUp->eUp; 553 GLUhalfEdge *eUp = regUp->eUp; 554 GLUhalfEdge *eLo = regLo->eUp; 554 GLUhalfEdge *eLo = regLo->eUp; 555 GLUhalfEdge *e; 555 GLUhalfEdge *e; 556 556 557 assert( ! VertEq( eUp->Dst, eLo->Dst )); 557 assert( ! VertEq( eUp->Dst, eLo->Dst )); 558 558 559 if( VertLeq( eUp->Dst, eLo->Dst )) { 559 if( VertLeq( eUp->Dst, eLo->Dst )) { 560 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org 560 if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return TOOLS_GLU_FALSE; 561 561 562 /* eLo->Dst is above eUp, so splice eLo->D 562 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */ 563 RegionAbove(regUp)->dirty = regUp->dirty = 563 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE; 564 e = __gl_meshSplitEdge( eUp ); 564 e = __gl_meshSplitEdge( eUp ); 565 if (e == NULL) longjmp(tess->env,1); 565 if (e == NULL) longjmp(tess->env,1); 566 if ( !__gl_meshSplice( eLo->Sym, e ) ) lon 566 if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1); 567 e->Lface->inside = regUp->inside; 567 e->Lface->inside = regUp->inside; 568 } else { 568 } else { 569 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org 569 if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return TOOLS_GLU_FALSE; 570 570 571 /* eUp->Dst is below eLo, so splice eUp->D 571 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */ 572 regUp->dirty = regLo->dirty = TOOLS_GLU_TR 572 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE; 573 e = __gl_meshSplitEdge( eLo ); 573 e = __gl_meshSplitEdge( eLo ); 574 if (e == NULL) longjmp(tess->env,1); 574 if (e == NULL) longjmp(tess->env,1); 575 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sy 575 if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1); 576 e->Rface->inside = regUp->inside; 576 e->Rface->inside = regUp->inside; 577 } 577 } 578 return TOOLS_GLU_TRUE; 578 return TOOLS_GLU_TRUE; 579 } 579 } 580 580 581 581 582 inline/*static*/ int static_CheckForIntersect( 582 inline/*static*/ int static_CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp ) 583 /* 583 /* 584 * Check the upper and lower edges of the give 584 * Check the upper and lower edges of the given region to see if 585 * they intersect. If so, create the intersec 585 * they intersect. If so, create the intersection and add it 586 * to the data structures. 586 * to the data structures. 587 * 587 * 588 * Returns TOOLS_GLU_TRUE if adding the new in 588 * Returns TOOLS_GLU_TRUE if adding the new intersection resulted in a recursive 589 * call to AddRightEdges(); in this case all " 589 * call to AddRightEdges(); in this case all "dirty" regions have been 590 * checked for intersections, and possibly reg 590 * checked for intersections, and possibly regUp has been deleted. 591 */ 591 */ 592 { 592 { 593 ActiveRegion *regLo = RegionBelow(regUp); 593 ActiveRegion *regLo = RegionBelow(regUp); 594 GLUhalfEdge *eUp = regUp->eUp; 594 GLUhalfEdge *eUp = regUp->eUp; 595 GLUhalfEdge *eLo = regLo->eUp; 595 GLUhalfEdge *eLo = regLo->eUp; 596 GLUvertex *orgUp = eUp->Org; 596 GLUvertex *orgUp = eUp->Org; 597 GLUvertex *orgLo = eLo->Org; 597 GLUvertex *orgLo = eLo->Org; 598 GLUvertex *dstUp = eUp->Dst; 598 GLUvertex *dstUp = eUp->Dst; 599 GLUvertex *dstLo = eLo->Dst; 599 GLUvertex *dstLo = eLo->Dst; 600 GLUdouble tMinUp, tMaxLo; 600 GLUdouble tMinUp, tMaxLo; 601 GLUvertex isect, *orgMin; 601 GLUvertex isect, *orgMin; 602 GLUhalfEdge *e; 602 GLUhalfEdge *e; 603 603 604 assert( ! VertEq( dstLo, dstUp )); 604 assert( ! VertEq( dstLo, dstUp )); 605 assert( EdgeSign( dstUp, tess->event, orgUp 605 assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 ); 606 assert( EdgeSign( dstLo, tess->event, orgLo 606 assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 ); 607 assert( orgUp != tess->event && orgLo != tes 607 assert( orgUp != tess->event && orgLo != tess->event ); 608 assert( ! regUp->fixUpperEdge && ! regLo->fi 608 assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge ); 609 609 610 if( orgUp == orgLo ) return TOOLS_GLU_FALSE; 610 if( orgUp == orgLo ) return TOOLS_GLU_FALSE; /* right endpoints are the same */ 611 611 612 tMinUp = GLU_MIN( orgUp->t, dstUp->t ); 612 tMinUp = GLU_MIN( orgUp->t, dstUp->t ); 613 tMaxLo = GLU_MAX( orgLo->t, dstLo->t ); 613 tMaxLo = GLU_MAX( orgLo->t, dstLo->t ); 614 if( tMinUp > tMaxLo ) return TOOLS_GLU_FALSE 614 if( tMinUp > tMaxLo ) return TOOLS_GLU_FALSE; /* t ranges do not overlap */ 615 615 616 if( VertLeq( orgUp, orgLo )) { 616 if( VertLeq( orgUp, orgLo )) { 617 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) 617 if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return TOOLS_GLU_FALSE; 618 } else { 618 } else { 619 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) 619 if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return TOOLS_GLU_FALSE; 620 } 620 } 621 621 622 /* At this point the edges intersect, at lea 622 /* At this point the edges intersect, at least marginally */ 623 DebugEvent( tess ); 623 DebugEvent( tess ); 624 624 625 __gl_edgeIntersect( dstUp, orgUp, dstLo, org 625 __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect ); 626 /* The following properties are guaranteed: 626 /* The following properties are guaranteed: */ 627 assert( GLU_MIN( orgUp->t, dstUp->t ) <= ise 627 assert( GLU_MIN( orgUp->t, dstUp->t ) <= isect.t ); 628 assert( isect.t <= GLU_MAX( orgLo->t, dstLo- 628 assert( isect.t <= GLU_MAX( orgLo->t, dstLo->t )); 629 assert( GLU_MIN( dstLo->s, dstUp->s ) <= ise 629 assert( GLU_MIN( dstLo->s, dstUp->s ) <= isect.s ); 630 assert( isect.s <= GLU_MAX( orgLo->s, orgUp- 630 assert( isect.s <= GLU_MAX( orgLo->s, orgUp->s )); 631 631 632 if( VertLeq( &isect, tess->event )) { 632 if( VertLeq( &isect, tess->event )) { 633 /* The intersection point lies slightly to 633 /* The intersection point lies slightly to the left of the sweep line, 634 * so move it until it''s slightly to the 634 * so move it until it''s slightly to the right of the sweep line. 635 * (If we had perfect numerical precision, 635 * (If we had perfect numerical precision, this would never happen 636 * in the first place). The easiest and s 636 * in the first place). The easiest and safest thing to do is 637 * replace the intersection by tess->event 637 * replace the intersection by tess->event. 638 */ 638 */ 639 isect.s = tess->event->s; 639 isect.s = tess->event->s; 640 isect.t = tess->event->t; 640 isect.t = tess->event->t; 641 } 641 } 642 /* Similarly, if the computed intersection l 642 /* Similarly, if the computed intersection lies to the right of the 643 * rightmost origin (which should rarely hap 643 * rightmost origin (which should rarely happen), it can cause 644 * unbelievable inefficiency on sufficiently 644 * unbelievable inefficiency on sufficiently degenerate inputs. 645 * (If you have the test program, try runnin 645 * (If you have the test program, try running test54.d with the 646 * "X zoom" option turned on). 646 * "X zoom" option turned on). 647 */ 647 */ 648 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : o 648 orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo; 649 if( VertLeq( orgMin, &isect )) { 649 if( VertLeq( orgMin, &isect )) { 650 isect.s = orgMin->s; 650 isect.s = orgMin->s; 651 isect.t = orgMin->t; 651 isect.t = orgMin->t; 652 } 652 } 653 653 654 if( VertEq( &isect, orgUp ) || VertEq( &isec 654 if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) { 655 /* Easy case -- intersection at one of the 655 /* Easy case -- intersection at one of the right endpoints */ 656 (void) static_CheckForRightSplice( tess, r 656 (void) static_CheckForRightSplice( tess, regUp ); 657 return TOOLS_GLU_FALSE; 657 return TOOLS_GLU_FALSE; 658 } 658 } 659 659 660 if( (! VertEq( dstUp, tess->event ) 660 if( (! VertEq( dstUp, tess->event ) 661 && EdgeSign( dstUp, tess->event, &isect ) 661 && EdgeSign( dstUp, tess->event, &isect ) >= 0) 662 || (! VertEq( dstLo, tess->event ) 662 || (! VertEq( dstLo, tess->event ) 663 && EdgeSign( dstLo, tess->event, &isect ) 663 && EdgeSign( dstLo, tess->event, &isect ) <= 0 )) 664 { 664 { 665 /* Very unusual -- the new upper or lower 665 /* Very unusual -- the new upper or lower edge would pass on the 666 * wrong side of the sweep event, or throu 666 * wrong side of the sweep event, or through it. This can happen 667 * due to very small numerical errors in t 667 * due to very small numerical errors in the intersection calculation. 668 */ 668 */ 669 if( dstLo == tess->event ) { 669 if( dstLo == tess->event ) { 670 /* Splice dstLo into eUp, and process th 670 /* Splice dstLo into eUp, and process the new region(s) */ 671 if (__gl_meshSplitEdge( eUp->Sym ) == NU 671 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 672 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) 672 if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1); 673 regUp = static_TopLeftRegion( regUp ); 673 regUp = static_TopLeftRegion( regUp ); 674 if (regUp == NULL) longjmp(tess->env,1); 674 if (regUp == NULL) longjmp(tess->env,1); 675 eUp = RegionBelow(regUp)->eUp; 675 eUp = RegionBelow(regUp)->eUp; 676 static_FinishLeftRegions( tess, RegionBe 676 static_FinishLeftRegions( tess, RegionBelow(regUp), regLo ); 677 static_AddRightEdges( tess, regUp, eUp-> 677 static_AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TOOLS_GLU_TRUE ); 678 return TOOLS_GLU_TRUE; 678 return TOOLS_GLU_TRUE; 679 } 679 } 680 if( dstUp == tess->event ) { 680 if( dstUp == tess->event ) { 681 /* Splice dstUp into eLo, and process th 681 /* Splice dstUp into eLo, and process the new region(s) */ 682 if (__gl_meshSplitEdge( eLo->Sym ) == NU 682 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 683 if ( !__gl_meshSplice( eUp->Lnext, eLo-> 683 if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1); 684 regLo = regUp; 684 regLo = regUp; 685 regUp = static_TopRightRegion( regUp ); 685 regUp = static_TopRightRegion( regUp ); 686 e = RegionBelow(regUp)->eUp->Rprev; 686 e = RegionBelow(regUp)->eUp->Rprev; 687 regLo->eUp = eLo->Oprev; 687 regLo->eUp = eLo->Oprev; 688 eLo = static_FinishLeftRegions( tess, re 688 eLo = static_FinishLeftRegions( tess, regLo, NULL ); 689 static_AddRightEdges( tess, regUp, eLo-> 689 static_AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TOOLS_GLU_TRUE ); 690 return TOOLS_GLU_TRUE; 690 return TOOLS_GLU_TRUE; 691 } 691 } 692 /* Special case: called from ConnectRightV 692 /* Special case: called from ConnectRightVertex. If either 693 * edge passes on the wrong side of tess-> 693 * edge passes on the wrong side of tess->event, split it 694 * (and wait for ConnectRightVertex to spl 694 * (and wait for ConnectRightVertex to splice it appropriately). 695 */ 695 */ 696 if( EdgeSign( dstUp, tess->event, &isect ) 696 if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) { 697 RegionAbove(regUp)->dirty = regUp->dirty 697 RegionAbove(regUp)->dirty = regUp->dirty = TOOLS_GLU_TRUE; 698 if (__gl_meshSplitEdge( eUp->Sym ) == NU 698 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 699 eUp->Org->s = tess->event->s; 699 eUp->Org->s = tess->event->s; 700 eUp->Org->t = tess->event->t; 700 eUp->Org->t = tess->event->t; 701 } 701 } 702 if( EdgeSign( dstLo, tess->event, &isect ) 702 if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) { 703 regUp->dirty = regLo->dirty = TOOLS_GLU_ 703 regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE; 704 if (__gl_meshSplitEdge( eLo->Sym ) == NU 704 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 705 eLo->Org->s = tess->event->s; 705 eLo->Org->s = tess->event->s; 706 eLo->Org->t = tess->event->t; 706 eLo->Org->t = tess->event->t; 707 } 707 } 708 /* leave the rest for ConnectRightVertex * 708 /* leave the rest for ConnectRightVertex */ 709 return TOOLS_GLU_FALSE; 709 return TOOLS_GLU_FALSE; 710 } 710 } 711 711 712 /* General case -- split both edges, splice 712 /* General case -- split both edges, splice into new vertex. 713 * When we do the splice operation, the orde 713 * When we do the splice operation, the order of the arguments is 714 * arbitrary as far as correctness goes. Ho 714 * arbitrary as far as correctness goes. However, when the operation 715 * creates a new face, the work done is prop 715 * creates a new face, the work done is proportional to the size of 716 * the new face. We expect the faces in the 716 * the new face. We expect the faces in the processed part of 717 * the mesh (ie. eUp->Lface) to be smaller t 717 * the mesh (ie. eUp->Lface) to be smaller than the faces in the 718 * unprocessed original contours (which will 718 * unprocessed original contours (which will be eLo->Oprev->Lface). 719 */ 719 */ 720 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) 720 if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); 721 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) 721 if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); 722 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) l 722 if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1); 723 eUp->Org->s = isect.s; 723 eUp->Org->s = isect.s; 724 eUp->Org->t = isect.t; 724 eUp->Org->t = isect.t; 725 eUp->Org->pqHandle = pqInsert( tess->pq, eUp 725 eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */ 726 if (eUp->Org->pqHandle == LONG_MAX) { 726 if (eUp->Org->pqHandle == LONG_MAX) { 727 pqDeletePriorityQ(tess->pq); /* __gl_pqSo 727 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */ 728 tess->pq = NULL; 728 tess->pq = NULL; 729 longjmp(tess->env,1); 729 longjmp(tess->env,1); 730 } 730 } 731 static_GetIntersectData( tess, eUp->Org, org 731 static_GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo ); 732 RegionAbove(regUp)->dirty = regUp->dirty = r 732 RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TOOLS_GLU_TRUE; 733 return TOOLS_GLU_FALSE; 733 return TOOLS_GLU_FALSE; 734 } 734 } 735 735 736 inline/*static*/ void static_WalkDirtyRegions( 736 inline/*static*/ void static_WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp ) 737 /* 737 /* 738 * When the upper or lower edge of any region 738 * When the upper or lower edge of any region changes, the region is 739 * marked "dirty". This routine walks through 739 * marked "dirty". This routine walks through all the dirty regions 740 * and makes sure that the dictionary invarian 740 * and makes sure that the dictionary invariants are satisfied 741 * (see the comments at the beginning of this 741 * (see the comments at the beginning of this file). Of course 742 * new dirty regions can be created as we make 742 * new dirty regions can be created as we make changes to restore 743 * the invariants. 743 * the invariants. 744 */ 744 */ 745 { 745 { 746 ActiveRegion *regLo = RegionBelow(regUp); 746 ActiveRegion *regLo = RegionBelow(regUp); 747 GLUhalfEdge *eUp, *eLo; 747 GLUhalfEdge *eUp, *eLo; 748 748 749 for( ;; ) { 749 for( ;; ) { 750 /* Find the lowest dirty region (we walk f 750 /* Find the lowest dirty region (we walk from the bottom up). */ 751 while( regLo->dirty ) { 751 while( regLo->dirty ) { 752 regUp = regLo; 752 regUp = regLo; 753 regLo = RegionBelow(regLo); 753 regLo = RegionBelow(regLo); 754 } 754 } 755 if( ! regUp->dirty ) { 755 if( ! regUp->dirty ) { 756 regLo = regUp; 756 regLo = regUp; 757 regUp = RegionAbove( regUp ); 757 regUp = RegionAbove( regUp ); 758 if( regUp == NULL || ! regUp->dirty ) { 758 if( regUp == NULL || ! regUp->dirty ) { 759 /* We've walked all the dirty regions */ 759 /* We've walked all the dirty regions */ 760 return; 760 return; 761 } 761 } 762 } 762 } 763 regUp->dirty = TOOLS_GLU_FALSE; 763 regUp->dirty = TOOLS_GLU_FALSE; 764 eUp = regUp->eUp; 764 eUp = regUp->eUp; 765 eLo = regLo->eUp; 765 eLo = regLo->eUp; 766 766 767 if( eUp->Dst != eLo->Dst ) { 767 if( eUp->Dst != eLo->Dst ) { 768 /* Check that the edge ordering is obeye 768 /* Check that the edge ordering is obeyed at the Dst vertices. */ 769 if( static_CheckForLeftSplice( tess, reg 769 if( static_CheckForLeftSplice( tess, regUp )) { 770 770 771 /* If the upper or lower edge was marked fix 771 /* If the upper or lower edge was marked fixUpperEdge, then 772 * we no longer need it (since these edges a 772 * we no longer need it (since these edges are needed only for 773 * vertices which otherwise have no right-go 773 * vertices which otherwise have no right-going edges). 774 */ 774 */ 775 if( regLo->fixUpperEdge ) { 775 if( regLo->fixUpperEdge ) { 776 static_DeleteRegion( tess, regLo ); 776 static_DeleteRegion( tess, regLo ); 777 if ( !__gl_meshDelete( eLo ) ) longjmp(tes 777 if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1); 778 regLo = RegionBelow( regUp ); 778 regLo = RegionBelow( regUp ); 779 eLo = regLo->eUp; 779 eLo = regLo->eUp; 780 } else if( regUp->fixUpperEdge ) { 780 } else if( regUp->fixUpperEdge ) { 781 static_DeleteRegion( tess, regUp ); 781 static_DeleteRegion( tess, regUp ); 782 if ( !__gl_meshDelete( eUp ) ) longjmp(tes 782 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1); 783 regUp = RegionAbove( regLo ); 783 regUp = RegionAbove( regLo ); 784 eUp = regUp->eUp; 784 eUp = regUp->eUp; 785 } 785 } 786 } 786 } 787 } 787 } 788 if( eUp->Org != eLo->Org ) { 788 if( eUp->Org != eLo->Org ) { 789 if( eUp->Dst != eLo->Dst 789 if( eUp->Dst != eLo->Dst 790 && ! regUp->fixUpperEdge && ! regLo->fixUp 790 && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge 791 && (eUp->Dst == tess->event || eLo->Dst == 791 && (eUp->Dst == tess->event || eLo->Dst == tess->event) ) 792 { 792 { 793 /* When all else fails in CheckForIntersect( 793 /* When all else fails in CheckForIntersect(), it uses tess->event 794 * as the intersection location. To make th 794 * as the intersection location. To make this possible, it requires 795 * that tess->event lie between the upper an 795 * that tess->event lie between the upper and lower edges, and also 796 * that neither of these is marked fixUpperE 796 * that neither of these is marked fixUpperEdge (since in the worst 797 * case it might splice one of these edges i 797 * case it might splice one of these edges into tess->event, and 798 * violate the invariant that fixable edges 798 * violate the invariant that fixable edges are the only right-going 799 * edge from their associated vertex). 799 * edge from their associated vertex). 800 */ 800 */ 801 if( static_CheckForIntersect( tess, regUp )) 801 if( static_CheckForIntersect( tess, regUp )) { 802 /* WalkDirtyRegions() was called recursive 802 /* WalkDirtyRegions() was called recursively; we're done */ 803 return; 803 return; 804 } 804 } 805 } else { 805 } else { 806 /* Even though we can't use CheckForIntersec 806 /* Even though we can't use CheckForIntersect(), the Org vertices 807 * may violate the dictionary edge ordering. 807 * may violate the dictionary edge ordering. Check and correct this. 808 */ 808 */ 809 (void) static_CheckForRightSplice( tess, reg 809 (void) static_CheckForRightSplice( tess, regUp ); 810 } 810 } 811 } 811 } 812 if( eUp->Org == eLo->Org && eUp->Dst == eL 812 if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) { 813 /* A degenerate loop consisting of only 813 /* A degenerate loop consisting of only two edges -- delete it. */ 814 AddWinding( eLo, eUp ); 814 AddWinding( eLo, eUp ); 815 static_DeleteRegion( tess, regUp ); 815 static_DeleteRegion( tess, regUp ); 816 if ( !__gl_meshDelete( eUp ) ) longjmp(t 816 if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1); 817 regUp = RegionAbove( regLo ); 817 regUp = RegionAbove( regLo ); 818 } 818 } 819 } 819 } 820 } 820 } 821 821 822 822 823 inline/*static*/ void static_ConnectRightVerte 823 inline/*static*/ void static_ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp, 824 GLUhalfEdge *eBottomLeft ) 824 GLUhalfEdge *eBottomLeft ) 825 /* 825 /* 826 * Purpose: connect a "right" vertex vEvent (o 826 * Purpose: connect a "right" vertex vEvent (one where all edges go left) 827 * to the unprocessed portion of the mesh. Si 827 * to the unprocessed portion of the mesh. Since there are no right-going 828 * edges, two regions (one above vEvent and on 828 * edges, two regions (one above vEvent and one below) are being merged 829 * into one. "regUp" is the upper of these tw 829 * into one. "regUp" is the upper of these two regions. 830 * 830 * 831 * There are two reasons for doing this (addin 831 * There are two reasons for doing this (adding a right-going edge): 832 * - if the two regions being merged are "ins 832 * - if the two regions being merged are "inside", we must add an edge 833 * to keep them separated (the combined reg 833 * to keep them separated (the combined region would not be monotone). 834 * - in any case, we must leave some record o 834 * - in any case, we must leave some record of vEvent in the dictionary, 835 * so that we can merge vEvent with feature 835 * so that we can merge vEvent with features that we have not seen yet. 836 * For example, maybe there is a vertical e 836 * For example, maybe there is a vertical edge which passes just to 837 * the right of vEvent; we would like to sp 837 * the right of vEvent; we would like to splice vEvent into this edge. 838 * 838 * 839 * However, we don't want to connect vEvent to 839 * However, we don't want to connect vEvent to just any vertex. We don''t 840 * want the new edge to cross any other edges; 840 * want the new edge to cross any other edges; otherwise we will create 841 * intersection vertices even when the input d 841 * intersection vertices even when the input data had no self-intersections. 842 * (This is a bad thing; if the user's input d 842 * (This is a bad thing; if the user's input data has no intersections, 843 * we don't want to generate any false interse 843 * we don't want to generate any false intersections ourselves.) 844 * 844 * 845 * Our eventual goal is to connect vEvent to t 845 * Our eventual goal is to connect vEvent to the leftmost unprocessed 846 * vertex of the combined region (the union of 846 * vertex of the combined region (the union of regUp and regLo). 847 * But because of unseen vertices with all rig 847 * But because of unseen vertices with all right-going edges, and also 848 * new vertices which may be created by edge i 848 * new vertices which may be created by edge intersections, we don''t 849 * know where that leftmost unprocessed vertex 849 * know where that leftmost unprocessed vertex is. In the meantime, we 850 * connect vEvent to the closest vertex of eit 850 * connect vEvent to the closest vertex of either chain, and mark the region 851 * as "fixUpperEdge". This flag says to delet 851 * as "fixUpperEdge". This flag says to delete and reconnect this edge 852 * to the next processed vertex on the boundar 852 * to the next processed vertex on the boundary of the combined region. 853 * Quite possibly the vertex we connected to w 853 * Quite possibly the vertex we connected to will turn out to be the 854 * closest one, in which case we won''t need t 854 * closest one, in which case we won''t need to make any changes. 855 */ 855 */ 856 { 856 { 857 GLUhalfEdge *eNew; 857 GLUhalfEdge *eNew; 858 GLUhalfEdge *eTopLeft = eBottomLeft->Onext; 858 GLUhalfEdge *eTopLeft = eBottomLeft->Onext; 859 ActiveRegion *regLo = RegionBelow(regUp); 859 ActiveRegion *regLo = RegionBelow(regUp); 860 GLUhalfEdge *eUp = regUp->eUp; 860 GLUhalfEdge *eUp = regUp->eUp; 861 GLUhalfEdge *eLo = regLo->eUp; 861 GLUhalfEdge *eLo = regLo->eUp; 862 int degenerate = TOOLS_GLU_FALSE; 862 int degenerate = TOOLS_GLU_FALSE; 863 863 864 if( eUp->Dst != eLo->Dst ) { 864 if( eUp->Dst != eLo->Dst ) { 865 (void) static_CheckForIntersect( tess, reg 865 (void) static_CheckForIntersect( tess, regUp ); 866 } 866 } 867 867 868 /* Possible new degeneracies: upper or lower 868 /* Possible new degeneracies: upper or lower edge of regUp may pass 869 * through vEvent, or may coincide with new 869 * through vEvent, or may coincide with new intersection vertex 870 */ 870 */ 871 if( VertEq( eUp->Org, tess->event )) { 871 if( VertEq( eUp->Org, tess->event )) { 872 if ( !__gl_meshSplice( eTopLeft->Oprev, eU 872 if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1); 873 regUp = static_TopLeftRegion( regUp ); 873 regUp = static_TopLeftRegion( regUp ); 874 if (regUp == NULL) longjmp(tess->env,1); 874 if (regUp == NULL) longjmp(tess->env,1); 875 eTopLeft = RegionBelow( regUp )->eUp; 875 eTopLeft = RegionBelow( regUp )->eUp; 876 static_FinishLeftRegions( tess, RegionBelo 876 static_FinishLeftRegions( tess, RegionBelow(regUp), regLo ); 877 degenerate = TOOLS_GLU_TRUE; 877 degenerate = TOOLS_GLU_TRUE; 878 } 878 } 879 if( VertEq( eLo->Org, tess->event )) { 879 if( VertEq( eLo->Org, tess->event )) { 880 if ( !__gl_meshSplice( eBottomLeft, eLo->O 880 if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1); 881 eBottomLeft = static_FinishLeftRegions( te 881 eBottomLeft = static_FinishLeftRegions( tess, regLo, NULL ); 882 degenerate = TOOLS_GLU_TRUE; 882 degenerate = TOOLS_GLU_TRUE; 883 } 883 } 884 if( degenerate ) { 884 if( degenerate ) { 885 static_AddRightEdges( tess, regUp, eBottom 885 static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE ); 886 return; 886 return; 887 } 887 } 888 888 889 /* Non-degenerate situation -- need to add a 889 /* Non-degenerate situation -- need to add a temporary, fixable edge. 890 * Connect to the closer of eLo->Org, eUp->O 890 * Connect to the closer of eLo->Org, eUp->Org. 891 */ 891 */ 892 if( VertLeq( eLo->Org, eUp->Org )) { 892 if( VertLeq( eLo->Org, eUp->Org )) { 893 eNew = eLo->Oprev; 893 eNew = eLo->Oprev; 894 } else { 894 } else { 895 eNew = eUp; 895 eNew = eUp; 896 } 896 } 897 eNew = __gl_meshConnect( eBottomLeft->Lprev, 897 eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew ); 898 if (eNew == NULL) longjmp(tess->env,1); 898 if (eNew == NULL) longjmp(tess->env,1); 899 899 900 /* Prevent cleanup, otherwise eNew might dis 900 /* Prevent cleanup, otherwise eNew might disappear before we've even 901 * had a chance to mark it as a temporary ed 901 * had a chance to mark it as a temporary edge. 902 */ 902 */ 903 static_AddRightEdges( tess, regUp, eNew, eNe 903 static_AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, TOOLS_GLU_FALSE ); 904 eNew->Sym->activeRegion->fixUpperEdge = TOOL 904 eNew->Sym->activeRegion->fixUpperEdge = TOOLS_GLU_TRUE; 905 static_WalkDirtyRegions( tess, regUp ); 905 static_WalkDirtyRegions( tess, regUp ); 906 } 906 } 907 907 908 /* Because vertices at exactly the same locati 908 /* Because vertices at exactly the same location are merged together 909 * before we process the sweep event, some deg 909 * before we process the sweep event, some degenerate cases can't occur. 910 * However if someone eventually makes the mod 910 * However if someone eventually makes the modifications required to 911 * merge features which are close together, th 911 * merge features which are close together, the cases below marked 912 * TOLERANCE_NONZERO will be useful. They wer 912 * TOLERANCE_NONZERO will be useful. They were debugged before the 913 * code to merge identical vertices in the mai 913 * code to merge identical vertices in the main loop was added. 914 */ 914 */ 915 //#define TOLERANCE_NONZERO TOOLS_GLU_FALSE 915 //#define TOLERANCE_NONZERO TOOLS_GLU_FALSE 916 916 917 inline/*static*/ void static_ConnectLeftDegene 917 inline/*static*/ void static_ConnectLeftDegenerate( GLUtesselator *tess, 918 ActiveRegion *regUp, GLUvertex *vEv 918 ActiveRegion *regUp, GLUvertex *vEvent ) 919 /* 919 /* 920 * The event vertex lies exacty on an already- 920 * The event vertex lies exacty on an already-processed edge or vertex. 921 * Adding the new vertex involves splicing it 921 * Adding the new vertex involves splicing it into the already-processed 922 * part of the mesh. 922 * part of the mesh. 923 */ 923 */ 924 { 924 { 925 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLas 925 GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast; 926 ActiveRegion *reg; 926 ActiveRegion *reg; 927 927 928 e = regUp->eUp; 928 e = regUp->eUp; 929 if( VertEq( e->Org, vEvent )) { 929 if( VertEq( e->Org, vEvent )) { 930 /* e->Org is an unprocessed vertex - just 930 /* e->Org is an unprocessed vertex - just combine them, and wait 931 * for e->Org to be pulled from the queue 931 * for e->Org to be pulled from the queue 932 */ 932 */ 933 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FA 933 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE ); 934 static_SpliceMergeVertices( tess, e, vEven 934 static_SpliceMergeVertices( tess, e, vEvent->anEdge ); 935 return; 935 return; 936 } 936 } 937 937 938 if( ! VertEq( e->Dst, vEvent )) { 938 if( ! VertEq( e->Dst, vEvent )) { 939 /* General case -- splice vEvent into edge 939 /* General case -- splice vEvent into edge e which passes through it */ 940 if (__gl_meshSplitEdge( e->Sym ) == NULL) 940 if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1); 941 if( regUp->fixUpperEdge ) { 941 if( regUp->fixUpperEdge ) { 942 /* This edge was fixable -- delete unuse 942 /* This edge was fixable -- delete unused portion of original edge */ 943 if ( !__gl_meshDelete( e->Onext ) ) long 943 if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1); 944 regUp->fixUpperEdge = TOOLS_GLU_FALSE; 944 regUp->fixUpperEdge = TOOLS_GLU_FALSE; 945 } 945 } 946 if ( !__gl_meshSplice( vEvent->anEdge, e ) 946 if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1); 947 static_SweepEvent( tess, vEvent ); /* recu 947 static_SweepEvent( tess, vEvent ); /* recurse */ 948 return; 948 return; 949 } 949 } 950 950 951 /* vEvent coincides with e->Dst, which has a 951 /* vEvent coincides with e->Dst, which has already been processed. 952 * Splice in the additional right-going edge 952 * Splice in the additional right-going edges. 953 */ 953 */ 954 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALS 954 assert( /*TOLERANCE_NONZERO*/ TOOLS_GLU_FALSE ); 955 regUp = static_TopRightRegion( regUp ); 955 regUp = static_TopRightRegion( regUp ); 956 reg = RegionBelow( regUp ); 956 reg = RegionBelow( regUp ); 957 eTopRight = reg->eUp->Sym; 957 eTopRight = reg->eUp->Sym; 958 eTopLeft = eLast = eTopRight->Onext; 958 eTopLeft = eLast = eTopRight->Onext; 959 if( reg->fixUpperEdge ) { 959 if( reg->fixUpperEdge ) { 960 /* Here e->Dst has only a single fixable e 960 /* Here e->Dst has only a single fixable edge going right. 961 * We can delete it since now we have some 961 * We can delete it since now we have some real right-going edges. 962 */ 962 */ 963 assert( eTopLeft != eTopRight ); /* ther 963 assert( eTopLeft != eTopRight ); /* there are some left edges too */ 964 static_DeleteRegion( tess, reg ); 964 static_DeleteRegion( tess, reg ); 965 if ( !__gl_meshDelete( eTopRight ) ) longj 965 if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1); 966 eTopRight = eTopLeft->Oprev; 966 eTopRight = eTopLeft->Oprev; 967 } 967 } 968 if ( !__gl_meshSplice( vEvent->anEdge, eTopR 968 if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1); 969 if( ! EdgeGoesLeft( eTopLeft )) { 969 if( ! EdgeGoesLeft( eTopLeft )) { 970 /* e->Dst had no left-going edges -- indic 970 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */ 971 eTopLeft = NULL; 971 eTopLeft = NULL; 972 } 972 } 973 static_AddRightEdges( tess, regUp, eTopRight 973 static_AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TOOLS_GLU_TRUE ); 974 } 974 } 975 975 976 976 977 inline/*static*/ void static_ConnectLeftVertex 977 inline/*static*/ void static_ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent ) 978 /* 978 /* 979 * Purpose: connect a "left" vertex (one where 979 * Purpose: connect a "left" vertex (one where both edges go right) 980 * to the processed portion of the mesh. Let 980 * to the processed portion of the mesh. Let R be the active region 981 * containing vEvent, and let U and L be the u 981 * containing vEvent, and let U and L be the upper and lower edge 982 * chains of R. There are two possibilities: 982 * chains of R. There are two possibilities: 983 * 983 * 984 * - the normal case: split R into two regions 984 * - the normal case: split R into two regions, by connecting vEvent to 985 * the rightmost vertex of U or L lying to t 985 * the rightmost vertex of U or L lying to the left of the sweep line 986 * 986 * 987 * - the degenerate case: if vEvent is close e 987 * - the degenerate case: if vEvent is close enough to U or L, we 988 * merge vEvent into that edge chain. The s 988 * merge vEvent into that edge chain. The subcases are: 989 * - merging with the rightmost vertex of U o 989 * - merging with the rightmost vertex of U or L 990 * - merging with the active edge of U or L 990 * - merging with the active edge of U or L 991 * - merging with an already-processed portio 991 * - merging with an already-processed portion of U or L 992 */ 992 */ 993 { 993 { 994 ActiveRegion *regUp, *regLo, *reg; 994 ActiveRegion *regUp, *regLo, *reg; 995 GLUhalfEdge *eUp, *eLo, *eNew; 995 GLUhalfEdge *eUp, *eLo, *eNew; 996 ActiveRegion tmp; 996 ActiveRegion tmp; 997 997 998 /* assert( vEvent->anEdge->Onext->Onext == v 998 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */ 999 999 1000 /* Get a pointer to the active region conta 1000 /* Get a pointer to the active region containing vEvent */ 1001 tmp.eUp = vEvent->anEdge->Sym; 1001 tmp.eUp = vEvent->anEdge->Sym; 1002 /* __GL_DICTLISTKEY */ /* __gl_dictListSear 1002 /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */ 1003 regUp = (ActiveRegion *)dictKey( dictSearch 1003 regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp )); 1004 regLo = RegionBelow( regUp ); 1004 regLo = RegionBelow( regUp ); 1005 eUp = regUp->eUp; 1005 eUp = regUp->eUp; 1006 eLo = regLo->eUp; 1006 eLo = regLo->eUp; 1007 1007 1008 /* Try merging with U or L first */ 1008 /* Try merging with U or L first */ 1009 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) 1009 if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) { 1010 static_ConnectLeftDegenerate( tess, regUp 1010 static_ConnectLeftDegenerate( tess, regUp, vEvent ); 1011 return; 1011 return; 1012 } 1012 } 1013 1013 1014 /* Connect vEvent to rightmost processed ve 1014 /* Connect vEvent to rightmost processed vertex of either chain. 1015 * e->Dst is the vertex that we will connec 1015 * e->Dst is the vertex that we will connect to vEvent. 1016 */ 1016 */ 1017 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp 1017 reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo; 1018 1018 1019 if( regUp->inside || reg->fixUpperEdge) { 1019 if( regUp->inside || reg->fixUpperEdge) { 1020 if( reg == regUp ) { 1020 if( reg == regUp ) { 1021 eNew = __gl_meshConnect( vEvent->anEdge 1021 eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext ); 1022 if (eNew == NULL) longjmp(tess->env,1); 1022 if (eNew == NULL) longjmp(tess->env,1); 1023 } else { 1023 } else { 1024 GLUhalfEdge *tempHalfEdge= __gl_meshCon 1024 GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge); 1025 if (tempHalfEdge == NULL) longjmp(tess- 1025 if (tempHalfEdge == NULL) longjmp(tess->env,1); 1026 1026 1027 eNew = tempHalfEdge->Sym; 1027 eNew = tempHalfEdge->Sym; 1028 } 1028 } 1029 if( reg->fixUpperEdge ) { 1029 if( reg->fixUpperEdge ) { 1030 if ( !static_FixUpperEdge( reg, eNew ) 1030 if ( !static_FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1); 1031 } else { 1031 } else { 1032 static_ComputeWinding( tess, static_Add 1032 static_ComputeWinding( tess, static_AddRegionBelow( tess, regUp, eNew )); 1033 } 1033 } 1034 static_SweepEvent( tess, vEvent ); 1034 static_SweepEvent( tess, vEvent ); 1035 } else { 1035 } else { 1036 /* The new vertex is in a region which do 1036 /* The new vertex is in a region which does not belong to the polygon. 1037 * We don''t need to connect this vertex 1037 * We don''t need to connect this vertex to the rest of the mesh. 1038 */ 1038 */ 1039 static_AddRightEdges( tess, regUp, vEvent 1039 static_AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TOOLS_GLU_TRUE ); 1040 } 1040 } 1041 } 1041 } 1042 1042 1043 1043 1044 inline/*static*/ void static_SweepEvent( GLUt 1044 inline/*static*/ void static_SweepEvent( GLUtesselator *tess, GLUvertex *vEvent ) 1045 /* 1045 /* 1046 * Does everything necessary when the sweep l 1046 * Does everything necessary when the sweep line crosses a vertex. 1047 * Updates the mesh and the edge dictionary. 1047 * Updates the mesh and the edge dictionary. 1048 */ 1048 */ 1049 { 1049 { 1050 ActiveRegion *regUp, *reg; 1050 ActiveRegion *regUp, *reg; 1051 GLUhalfEdge *e, *eTopLeft, *eBottomLeft; 1051 GLUhalfEdge *e, *eTopLeft, *eBottomLeft; 1052 1052 1053 tess->event = vEvent; /* for access in Ed 1053 tess->event = vEvent; /* for access in EdgeLeq() */ 1054 DebugEvent( tess ); 1054 DebugEvent( tess ); 1055 1055 1056 /* Check if this vertex is the right endpoi 1056 /* Check if this vertex is the right endpoint of an edge that is 1057 * already in the dictionary. In this case 1057 * already in the dictionary. In this case we don't need to waste 1058 * time searching for the location to inser 1058 * time searching for the location to insert new edges. 1059 */ 1059 */ 1060 e = vEvent->anEdge; 1060 e = vEvent->anEdge; 1061 while( e->activeRegion == NULL ) { 1061 while( e->activeRegion == NULL ) { 1062 e = e->Onext; 1062 e = e->Onext; 1063 if( e == vEvent->anEdge ) { 1063 if( e == vEvent->anEdge ) { 1064 /* All edges go right -- not incident t 1064 /* All edges go right -- not incident to any processed edges */ 1065 static_ConnectLeftVertex( tess, vEvent 1065 static_ConnectLeftVertex( tess, vEvent ); 1066 return; 1066 return; 1067 } 1067 } 1068 } 1068 } 1069 1069 1070 /* Processing consists of two phases: first 1070 /* Processing consists of two phases: first we "finish" all the 1071 * active regions where both the upper and 1071 * active regions where both the upper and lower edges terminate 1072 * at vEvent (ie. vEvent is closing off the 1072 * at vEvent (ie. vEvent is closing off these regions). 1073 * We mark these faces "inside" or "outside 1073 * We mark these faces "inside" or "outside" the polygon according 1074 * to their winding number, and delete the 1074 * to their winding number, and delete the edges from the dictionary. 1075 * This takes care of all the left-going ed 1075 * This takes care of all the left-going edges from vEvent. 1076 */ 1076 */ 1077 regUp = static_TopLeftRegion( e->activeRegi 1077 regUp = static_TopLeftRegion( e->activeRegion ); 1078 if (regUp == NULL) longjmp(tess->env,1); 1078 if (regUp == NULL) longjmp(tess->env,1); 1079 reg = RegionBelow( regUp ); 1079 reg = RegionBelow( regUp ); 1080 eTopLeft = reg->eUp; 1080 eTopLeft = reg->eUp; 1081 eBottomLeft = static_FinishLeftRegions( tes 1081 eBottomLeft = static_FinishLeftRegions( tess, reg, NULL ); 1082 1082 1083 /* Next we process all the right-going edge 1083 /* Next we process all the right-going edges from vEvent. This 1084 * involves adding the edges to the diction 1084 * involves adding the edges to the dictionary, and creating the 1085 * associated "active regions" which record 1085 * associated "active regions" which record information about the 1086 * regions between adjacent dictionary edge 1086 * regions between adjacent dictionary edges. 1087 */ 1087 */ 1088 if( eBottomLeft->Onext == eTopLeft ) { 1088 if( eBottomLeft->Onext == eTopLeft ) { 1089 /* No right-going edges -- add a temporar 1089 /* No right-going edges -- add a temporary "fixable" edge */ 1090 static_ConnectRightVertex( tess, regUp, e 1090 static_ConnectRightVertex( tess, regUp, eBottomLeft ); 1091 } else { 1091 } else { 1092 static_AddRightEdges( tess, regUp, eBotto 1092 static_AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TOOLS_GLU_TRUE ); 1093 } 1093 } 1094 } 1094 } 1095 1095 1096 1096 1097 /* Make the sentinel coordinates big enough t 1097 /* Make the sentinel coordinates big enough that they will never be 1098 * merged with real input features. (Even wi 1098 * merged with real input features. (Even with the largest possible 1099 * input contour and the maximum tolerance of 1099 * input contour and the maximum tolerance of 1.0, no merging will be 1100 * done with coordinates larger than 3 * GLU_ 1100 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD). 1101 */ 1101 */ 1102 //#define SENTINEL_COORD (4 * GLU_TESS_MAX_CO 1102 //#define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD) 1103 inline GLUdouble SENTINEL_COORD() { 1103 inline GLUdouble SENTINEL_COORD() { 1104 static const GLUdouble s_value = 4 * GLU_TE 1104 static const GLUdouble s_value = 4 * GLU_TESS_MAX_COORD; 1105 return s_value; 1105 return s_value; 1106 } 1106 } 1107 1107 1108 inline/*static*/ void static_AddSentinel( GLU 1108 inline/*static*/ void static_AddSentinel( GLUtesselator *tess, GLUdouble t ) 1109 /* 1109 /* 1110 * We add two sentinel edges above and below 1110 * We add two sentinel edges above and below all other edges, 1111 * to avoid special cases at the top and bott 1111 * to avoid special cases at the top and bottom. 1112 */ 1112 */ 1113 { 1113 { 1114 GLUhalfEdge *e; 1114 GLUhalfEdge *e; 1115 ActiveRegion *reg = (ActiveRegion *)memAllo 1115 ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion )); 1116 if (reg == NULL) longjmp(tess->env,1); 1116 if (reg == NULL) longjmp(tess->env,1); 1117 1117 1118 e = __gl_meshMakeEdge( tess->mesh ); 1118 e = __gl_meshMakeEdge( tess->mesh ); 1119 if (e == NULL) longjmp(tess->env,1); 1119 if (e == NULL) longjmp(tess->env,1); 1120 1120 1121 e->Org->s = SENTINEL_COORD(); 1121 e->Org->s = SENTINEL_COORD(); 1122 e->Org->t = t; 1122 e->Org->t = t; 1123 e->Dst->s = -SENTINEL_COORD(); 1123 e->Dst->s = -SENTINEL_COORD(); 1124 e->Dst->t = t; 1124 e->Dst->t = t; 1125 tess->event = e->Dst; /* initialize it */ 1125 tess->event = e->Dst; /* initialize it */ 1126 1126 1127 reg->eUp = e; 1127 reg->eUp = e; 1128 reg->windingNumber = 0; 1128 reg->windingNumber = 0; 1129 reg->inside = TOOLS_GLU_FALSE; 1129 reg->inside = TOOLS_GLU_FALSE; 1130 reg->fixUpperEdge = TOOLS_GLU_FALSE; 1130 reg->fixUpperEdge = TOOLS_GLU_FALSE; 1131 reg->sentinel = TOOLS_GLU_TRUE; 1131 reg->sentinel = TOOLS_GLU_TRUE; 1132 reg->dirty = TOOLS_GLU_FALSE; 1132 reg->dirty = TOOLS_GLU_FALSE; 1133 reg->nodeUp = dictInsert( tess->dict, reg ) 1133 reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */ 1134 if (reg->nodeUp == NULL) longjmp(tess->env, 1134 if (reg->nodeUp == NULL) longjmp(tess->env,1); 1135 } 1135 } 1136 1136 1137 1137 1138 inline/*static*/ void static_InitEdgeDict( GL 1138 inline/*static*/ void static_InitEdgeDict( GLUtesselator *tess ) 1139 /* 1139 /* 1140 * We maintain an ordering of edge intersecti 1140 * We maintain an ordering of edge intersections with the sweep line. 1141 * This order is maintained in a dynamic dict 1141 * This order is maintained in a dynamic dictionary. 1142 */ 1142 */ 1143 { 1143 { 1144 /* __gl_dictListNewDict */ 1144 /* __gl_dictListNewDict */ 1145 tess->dict = dictNewDict( tess, (int (*)(vo 1145 tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) static_EdgeLeq ); 1146 if (tess->dict == NULL) longjmp(tess->env,1 1146 if (tess->dict == NULL) longjmp(tess->env,1); 1147 1147 1148 static_AddSentinel( tess, -SENTINEL_COORD() 1148 static_AddSentinel( tess, -SENTINEL_COORD() ); 1149 static_AddSentinel( tess, SENTINEL_COORD() 1149 static_AddSentinel( tess, SENTINEL_COORD() ); 1150 } 1150 } 1151 1151 1152 1152 1153 inline/*static*/ void static_DoneEdgeDict( GL 1153 inline/*static*/ void static_DoneEdgeDict( GLUtesselator *tess ) 1154 { 1154 { 1155 ActiveRegion *reg; 1155 ActiveRegion *reg; 1156 #ifndef NDEBUG 1156 #ifndef NDEBUG 1157 int fixedEdges = 0; 1157 int fixedEdges = 0; 1158 #endif 1158 #endif 1159 1159 1160 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN 1160 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ 1161 while( (reg = (ActiveRegion *)dictKey( dict 1161 while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) { 1162 /* 1162 /* 1163 * At the end of all processing, the dict 1163 * At the end of all processing, the dictionary should contain 1164 * only the two sentinel edges, plus at m 1164 * only the two sentinel edges, plus at most one "fixable" edge 1165 * created by ConnectRightVertex(). 1165 * created by ConnectRightVertex(). 1166 */ 1166 */ 1167 if( ! reg->sentinel ) { 1167 if( ! reg->sentinel ) { 1168 assert( reg->fixUpperEdge ); 1168 assert( reg->fixUpperEdge ); 1169 //G.Barrand : fix a Coverity diagnostic : 1169 //G.Barrand : fix a Coverity diagnostic : begin : 1170 //assert( ++fixedEdges == 1 ); 1170 //assert( ++fixedEdges == 1 ); 1171 #ifndef NDEBUG 1171 #ifndef NDEBUG 1172 fixedEdges++; 1172 fixedEdges++; 1173 #endif 1173 #endif 1174 assert( fixedEdges == 1 ); 1174 assert( fixedEdges == 1 ); 1175 //G.Barrand : end. 1175 //G.Barrand : end. 1176 } 1176 } 1177 assert( reg->windingNumber == 0 ); 1177 assert( reg->windingNumber == 0 ); 1178 static_DeleteRegion( tess, reg ); 1178 static_DeleteRegion( tess, reg ); 1179 /* __gl_meshDelete( reg->eUp );*/ 1179 /* __gl_meshDelete( reg->eUp );*/ 1180 } 1180 } 1181 dictDeleteDict( tess->dict ); /* __gl_dictL 1181 dictDeleteDict( tess->dict ); /* __gl_dictListDeleteDict */ 1182 } 1182 } 1183 1183 1184 1184 1185 inline/*static*/ void static_RemoveDegenerate 1185 inline/*static*/ void static_RemoveDegenerateEdges( GLUtesselator *tess ) 1186 /* 1186 /* 1187 * Remove zero-length edges, and contours wit 1187 * Remove zero-length edges, and contours with fewer than 3 vertices. 1188 */ 1188 */ 1189 { 1189 { 1190 GLUhalfEdge *e, *eNext, *eLnext; 1190 GLUhalfEdge *e, *eNext, *eLnext; 1191 GLUhalfEdge *eHead = &tess->mesh->eHead; 1191 GLUhalfEdge *eHead = &tess->mesh->eHead; 1192 1192 1193 /*LINTED*/ 1193 /*LINTED*/ 1194 for( e = eHead->next; e != eHead; e = eNext 1194 for( e = eHead->next; e != eHead; e = eNext ) { 1195 eNext = e->next; 1195 eNext = e->next; 1196 eLnext = e->Lnext; 1196 eLnext = e->Lnext; 1197 1197 1198 if( VertEq( e->Org, e->Dst ) && e->Lnext- 1198 if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) { 1199 /* Zero-length edge, contour has at lea 1199 /* Zero-length edge, contour has at least 3 edges */ 1200 1200 1201 static_SpliceMergeVertices( tess, eLnex 1201 static_SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */ 1202 if ( !__gl_meshDelete( e ) ) longjmp(te 1202 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */ 1203 e = eLnext; 1203 e = eLnext; 1204 eLnext = e->Lnext; 1204 eLnext = e->Lnext; 1205 } 1205 } 1206 if( eLnext->Lnext == e ) { 1206 if( eLnext->Lnext == e ) { 1207 /* Degenerate contour (one or two edges 1207 /* Degenerate contour (one or two edges) */ 1208 1208 1209 if( eLnext != e ) { 1209 if( eLnext != e ) { 1210 if( eLnext == eNext || eLnext == eNext->Sym 1210 if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; } 1211 if ( !__gl_meshDelete( eLnext ) ) longjmp(t 1211 if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1); 1212 } 1212 } 1213 if( e == eNext || e == eNext->Sym ) { e 1213 if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; } 1214 if ( !__gl_meshDelete( e ) ) longjmp(te 1214 if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); 1215 } 1215 } 1216 } 1216 } 1217 } 1217 } 1218 1218 1219 inline/*static*/ int static_InitPriorityQ( GL 1219 inline/*static*/ int static_InitPriorityQ( GLUtesselator *tess ) 1220 /* 1220 /* 1221 * Insert all vertices into the priority queu 1221 * Insert all vertices into the priority queue which determines the 1222 * order in which vertices cross the sweep li 1222 * order in which vertices cross the sweep line. 1223 */ 1223 */ 1224 { 1224 { 1225 PriorityQ *pq; 1225 PriorityQ *pq; 1226 GLUvertex *v, *vHead; 1226 GLUvertex *v, *vHead; 1227 1227 1228 /* __gl_pqSortNewPriorityQ */ 1228 /* __gl_pqSortNewPriorityQ */ 1229 pq = tess->pq = pqNewPriorityQ( (int (*)(PQ 1229 pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq ); 1230 if (pq == NULL) return 0; 1230 if (pq == NULL) return 0; 1231 1231 1232 vHead = &tess->mesh->vHead; 1232 vHead = &tess->mesh->vHead; 1233 for( v = vHead->next; v != vHead; v = v->ne 1233 for( v = vHead->next; v != vHead; v = v->next ) { 1234 v->pqHandle = pqInsert( pq, v ); /* __gl_ 1234 v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */ 1235 if (v->pqHandle == LONG_MAX) break; 1235 if (v->pqHandle == LONG_MAX) break; 1236 } 1236 } 1237 if (v != vHead || !pqInit( pq ) ) { /* __gl 1237 if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */ 1238 pqDeletePriorityQ(tess->pq); /* __gl_pqS 1238 pqDeletePriorityQ(tess->pq); /* __gl_pqSortDeletePriorityQ */ 1239 tess->pq = NULL; 1239 tess->pq = NULL; 1240 return 0; 1240 return 0; 1241 } 1241 } 1242 1242 1243 return 1; 1243 return 1; 1244 } 1244 } 1245 1245 1246 1246 1247 inline/*static*/ void static_DonePriorityQ( G 1247 inline/*static*/ void static_DonePriorityQ( GLUtesselator *tess ) 1248 { 1248 { 1249 pqDeletePriorityQ( tess->pq ); /* __gl_pqSo 1249 pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */ 1250 } 1250 } 1251 1251 1252 1252 1253 inline/*static*/ int static_RemoveDegenerateF 1253 inline/*static*/ int static_RemoveDegenerateFaces( GLUmesh *mesh ) 1254 /* 1254 /* 1255 * Delete any degenerate faces with only two 1255 * Delete any degenerate faces with only two edges. WalkDirtyRegions() 1256 * will catch almost all of these, but it won 1256 * will catch almost all of these, but it won't catch degenerate faces 1257 * produced by splice operations on already-p 1257 * produced by splice operations on already-processed edges. 1258 * The two places this can happen are in Fini 1258 * The two places this can happen are in FinishLeftRegions(), when 1259 * we splice in a "temporary" edge produced b 1259 * we splice in a "temporary" edge produced by ConnectRightVertex(), 1260 * and in CheckForLeftSplice(), where we spli 1260 * and in CheckForLeftSplice(), where we splice already-processed 1261 * edges to ensure that our dictionary invari 1261 * edges to ensure that our dictionary invariants are not violated 1262 * by numerical errors. 1262 * by numerical errors. 1263 * 1263 * 1264 * In both these cases it is *very* dangerous 1264 * In both these cases it is *very* dangerous to delete the offending 1265 * edge at the time, since one of the routine 1265 * edge at the time, since one of the routines further up the stack 1266 * will sometimes be keeping a pointer to tha 1266 * will sometimes be keeping a pointer to that edge. 1267 */ 1267 */ 1268 { 1268 { 1269 GLUface *f, *fNext; 1269 GLUface *f, *fNext; 1270 GLUhalfEdge *e; 1270 GLUhalfEdge *e; 1271 1271 1272 /*LINTED*/ 1272 /*LINTED*/ 1273 for( f = mesh->fHead.next; f != &mesh->fHea 1273 for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) { 1274 fNext = f->next; 1274 fNext = f->next; 1275 e = f->anEdge; 1275 e = f->anEdge; 1276 assert( e->Lnext != e ); 1276 assert( e->Lnext != e ); 1277 1277 1278 if( e->Lnext->Lnext == e ) { 1278 if( e->Lnext->Lnext == e ) { 1279 /* A face with only two edges */ 1279 /* A face with only two edges */ 1280 AddWinding( e->Onext, e ); 1280 AddWinding( e->Onext, e ); 1281 if ( !__gl_meshDelete( e ) ) return 0; 1281 if ( !__gl_meshDelete( e ) ) return 0; 1282 } 1282 } 1283 } 1283 } 1284 return 1; 1284 return 1; 1285 } 1285 } 1286 1286 1287 inline int __gl_computeInterior( GLUtesselato 1287 inline int __gl_computeInterior( GLUtesselator *tess ) 1288 /* 1288 /* 1289 * __gl_computeInterior( tess ) computes the 1289 * __gl_computeInterior( tess ) computes the planar arrangement specified 1290 * by the given contours, and further subdivi 1290 * by the given contours, and further subdivides this arrangement 1291 * into regions. Each region is marked "insi 1291 * into regions. Each region is marked "inside" if it belongs 1292 * to the polygon, according to the rule give 1292 * to the polygon, according to the rule given by tess->windingRule. 1293 * Each interior region is guaranteed be mono 1293 * Each interior region is guaranteed be monotone. 1294 */ 1294 */ 1295 { 1295 { 1296 GLUvertex *v, *vNext; 1296 GLUvertex *v, *vNext; 1297 1297 1298 tess->fatalError = TOOLS_GLU_FALSE; 1298 tess->fatalError = TOOLS_GLU_FALSE; 1299 1299 1300 /* Each vertex defines an event for our swe 1300 /* Each vertex defines an event for our sweep line. Start by inserting 1301 * all the vertices in a priority queue. E 1301 * all the vertices in a priority queue. Events are processed in 1302 * lexicographic order, ie. 1302 * lexicographic order, ie. 1303 * 1303 * 1304 * e1 < e2 iff e1.x < e2.x || (e1.x == e 1304 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y) 1305 */ 1305 */ 1306 static_RemoveDegenerateEdges( tess ); 1306 static_RemoveDegenerateEdges( tess ); 1307 if ( !static_InitPriorityQ( tess ) ) return 1307 if ( !static_InitPriorityQ( tess ) ) return 0; /* if error */ 1308 static_InitEdgeDict( tess ); 1308 static_InitEdgeDict( tess ); 1309 1309 1310 /* __gl_pqSortExtractMin */ 1310 /* __gl_pqSortExtractMin */ 1311 while( (v = (GLUvertex *)pqExtractMin( tess 1311 while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) { 1312 for( ;; ) { 1312 for( ;; ) { 1313 vNext = (GLUvertex *)pqMinimum( tess->p 1313 vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */ 1314 if( vNext == NULL || ! VertEq( vNext, v 1314 if( vNext == NULL || ! VertEq( vNext, v )) break; 1315 1315 1316 /* Merge together all vertices at exact 1316 /* Merge together all vertices at exactly the same location. 1317 * This is more efficient than processi 1317 * This is more efficient than processing them one at a time, 1318 * simplifies the code (see ConnectLeft 1318 * simplifies the code (see ConnectLeftDegenerate), and is also 1319 * important for correct handling of ce 1319 * important for correct handling of certain degenerate cases. 1320 * For example, suppose there are two i 1320 * For example, suppose there are two identical edges A and B 1321 * that belong to different contours (s 1321 * that belong to different contours (so without this code they would 1322 * be processed by separate sweep event 1322 * be processed by separate sweep events). Suppose another edge C 1323 * crosses A and B from above. When A 1323 * crosses A and B from above. When A is processed, we split it 1324 * at its intersection point with C. H 1324 * at its intersection point with C. However this also splits C, 1325 * so when we insert B we may compute a 1325 * so when we insert B we may compute a slightly different 1326 * intersection point. This might leav 1326 * intersection point. This might leave two edges with a small 1327 * gap between them. This kind of erro 1327 * gap between them. This kind of error is especially obvious 1328 * when using boundary extraction (GLU_ 1328 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY). 1329 */ 1329 */ 1330 vNext = (GLUvertex *)pqExtractMin( tess 1330 vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/ 1331 static_SpliceMergeVertices( tess, v->an 1331 static_SpliceMergeVertices( tess, v->anEdge, vNext->anEdge ); 1332 } 1332 } 1333 static_SweepEvent( tess, v ); 1333 static_SweepEvent( tess, v ); 1334 } 1334 } 1335 1335 1336 /* Set tess->event for debugging purposes * 1336 /* Set tess->event for debugging purposes */ 1337 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN 1337 /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */ 1338 tess->event = ((ActiveRegion *) dictKey( di 1338 tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org; 1339 DebugEvent( tess ); 1339 DebugEvent( tess ); 1340 static_DoneEdgeDict( tess ); 1340 static_DoneEdgeDict( tess ); 1341 static_DonePriorityQ( tess ); 1341 static_DonePriorityQ( tess ); 1342 1342 1343 if ( !static_RemoveDegenerateFaces( tess->m 1343 if ( !static_RemoveDegenerateFaces( tess->mesh ) ) return 0; 1344 __gl_meshCheckMesh( tess->mesh ); 1344 __gl_meshCheckMesh( tess->mesh ); 1345 1345 1346 return 1; 1346 return 1; 1347 } 1347 } 1348 1348 1349 #endif 1349 #endif