Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/flatToGaussian.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/clhep/src/flatToGaussian.cc (Version 11.3.0) and /externals/clhep/src/flatToGaussian.cc (Version 7.0.p1)


  1 // -*- C++ -*-                                      1 
  2 //                                                
  3 // -------------------------------------------    
  4 //                             HEP Random         
  5 //                          --- flatToGaussian    
  6 //                      class implementation f    
  7 // -------------------------------------------    
  8                                                   
  9 // Contains the methods that depend on the 30K    
 10 //                                                
 11 // flatToGaussian (double x)                      
 12 // inverseErf     (double x)                      
 13 // erf      (double x)                            
 14                                                   
 15 // ===========================================    
 16 // M Fischler   - Created 1/25/00.                
 17 //                                                
 18 // ===========================================    
 19                                                   
 20 #include "CLHEP/Random/Stat.h"                    
 21 #include "CLHEP/Units/PhysicalConstants.h"        
 22 #include <iostream>                               
 23 #include <cmath>                                  
 24                                                   
 25 namespace CLHEP {                                 
 26                                                   
 27 double transformSmall (double r);                 
 28                                                   
 29 //                                                
 30 // Table of errInts, for use with transform(r)    
 31 //                                                
 32                                                   
 33 #ifdef Traces                                     
 34 #define Trace1                                    
 35 #define Trace2                                    
 36 #define Trace3                                    
 37 #endif                                            
 38                                                   
 39 // Since all these are this is static to this     
 40 // info is establised a priori and not at each    
 41                                                   
 42 // The main data is of course the gaussTables     
 43 // bookkeeping to know what the tables mean.      
 44                                                   
 45 #define Table0size   200                          
 46 #define Table1size   250                          
 47 #define Table2size   200                          
 48 #define Table3size   250                          
 49 #define Table4size  1000                          
 50 #define TableSize   (Table0size+Table1size+Tab    
 51                                                   
 52 static const int Tsizes[5] =   { Table0size,      
 53          Table1size,                              
 54          Table2size,                              
 55          Table3size,                              
 56          Table4size };                            
 57                                                   
 58 #define Table0step  (2.0E-13)                     
 59 #define Table1step  (4.0E-11)                     
 60 #define Table2step  (1.0E-8)                      
 61 #define Table3step  (2.0E-6)                      
 62 #define Table4step  (5.0E-4)                      
 63                                                   
 64 static const double Tsteps[5] = { Table0step,     
 65          Table1step,                              
 66          Table2step,                              
 67          Table3step,                              
 68          Table4step };                            
 69                                                   
 70 #define Table0offset 0                            
 71 #define Table1offset (2*(Table0size))             
 72 #define Table2offset (2*(Table0size + Table1si    
 73 #define Table3offset (2*(Table0size + Table1si    
 74 #define Table4offset (2*(Table0size + Table1si    
 75                                                   
 76 static const int Toffsets[5] = { Table0offset,    
 77          Table1offset,                            
 78          Table2offset,                            
 79          Table3offset,                            
 80          Table4offset };                          
 81                                                   
 82   // Here comes the big (30K bytes) table, kep    
 83                                                   
 84 static const double gaussTables [2*TableSize]     
 85 #include "CLHEP/Random/gaussTables.cdat"          
 86 };                                                
 87                                                   
 88 double HepStat::flatToGaussian (double r) {       
 89                                                   
 90   double sign = +1.0; // We always compute a n    
 91         // sigmas.  For r > 0 we will multiply    
 92         // sign = -1 to return a positive numb    
 93 #ifdef Trace1                                     
 94 std::cout << "r = " << r << "\n";                 
 95 #endif                                            
 96                                                   
 97   if ( r > .5 ) {                                 
 98     r = 1-r;                                      
 99     sign = -1.0;                                  
100 #ifdef Trace1                                     
101 std::cout << "r = " << r << "sign negative \n"    
102 #endif                                            
103   } else if ( r == .5 ) {                         
104     return 0.0;                                   
105   }                                               
106                                                   
107   // Find a pointer to the proper table entrie    
108   // of the way in the relevant bin dx and the    
109                                                   
110   // Optimize for the case of table 4 by testi    
111   // By removing that case from the for loop b    
112   // several table lookups, but also several i    
113   // now become (compile-time) constants.         
114   //                                              
115   // Past the case of table 4, we need not be     
116   // this will happen only .1% of the time.       
117                                                   
118   const double* tptr = 0;                         
119   double  dx = 0;                                 
120   double  h = 0;                                  
121                                                   
122   // The following big if block will locate tp    
123   // table is applicable:                         
124                                                   
125   int index;                                      
126                                                   
127   if ( r >= Table4step ) {                        
128                                                   
129     index = int((Table4size<<1) * r); // 1 to     
130     if (index <= 0) index = 1;      // in case    
131     if (index >= Table4size) index = Table4siz    
132     dx = (Table4size<<1) * r - index;     // f    
133     h = Table4step;                               
134 #ifdef Trace2                                     
135 std::cout << "index = " << index << " dx = " <    
136 #endif                                            
137     index = (index<<1) + (Table4offset-2);        
138   // at r = table4step+eps, index refers to th    
139   // and at r = .5 - eps, index refers to the     
140   // remember, the table has two numbers per a    
141 #ifdef Trace2                                     
142 std::cout << "offset index = " << index << "\n    
143 #endif                                            
144                                                   
145     tptr = &gaussTables [index];                  
146                                                   
147   } else if (r < Tsteps[0])  {                    
148                                                   
149     // If r is so small none of the tables app    
150     return (sign * transformSmall (r));           
151                                                   
152   } else {                                        
153                                                   
154     for ( int tableN = 3; tableN >= 0; tableN-    
155       if ( r < Tsteps[tableN] ) {continue;}       
156 #ifdef Trace2                                     
157 std::cout << "Using table " << tableN << "\n";    
158 #endif                                            
159       double step = Tsteps[tableN];               
160       index = int(r/step);      // 1 to TableN    
161         // The following two tests should prob    
162         // roundoff might cause index to be ou    
163         // In such a case, the interpolation s    
164         // need to take care that tptr points     
165       if (index == 0) index = 1;                  
166       if (index >= Tsizes[tableN]) index = Tsi    
167       dx =  r/step - index;       // fraction     
168       h  =  step;                                 
169 #ifdef Trace2                                     
170 std::cout << "index = " << index << " dx = " <    
171 #endif                                            
172       index = (index<<1) + Toffsets[tableN] -     
173       tptr = &gaussTables [index];                
174       break;                                      
175     } // end of the for loop which finds tptr,    
176                                                   
177     // The code can only get to here by a brea    
178     // It not get to here without going throug    
179     // because before the for loop we test for    
180                                                   
181   } // End of the big if block.                   
182                                                   
183   // At the end of this if block, we have tptr    
184   // than the smallest step, we have already r    
185                                                   
186   double  y0 = *tptr++;                           
187   double  d0 = *tptr++;                           
188   double  y1 = *tptr++;                           
189   double  d1 = *tptr;                             
190                                                   
191 #ifdef Trace3                                     
192 std::cout << "y0: " << y0 << " y1: " << y1 <<     
193 #endif                                            
194                                                   
195   double  x2 = dx * dx;                           
196   double  oneMinusX = 1 - dx;                     
197   double  oneMinusX2 = oneMinusX * oneMinusX;     
198                                                   
199   double  f0 = (2. * dx + 1.) * oneMinusX2;       
200   double  f1 = (3. - 2. * dx) * x2;               
201   double  g0 =  h * dx * oneMinusX2;              
202   double  g1 =  - h * oneMinusX * x2;             
203                                                   
204 #ifdef Trace3                                     
205 std::cout << "f0: " << f0 << " f1: " << f1 <<     
206 #endif                                            
207                                                   
208   double answer = f0 * y0 + f1 * y1 + g0 * d0     
209                                                   
210 #ifdef Trace1                                     
211 std::cout << "variate is: " << sign*answer <<     
212 #endif                                            
213                                                   
214   return sign * answer;                           
215                                                   
216 } // flatToGaussian                               
217                                                   
218 double transformSmall (double r) {                
219                                                   
220   // Solve for -v in the asymtotic formula        
221   //                                              
222   // errInt (-v) =  exp(-v*v/2)         1         
223   //       ------------ * (1 - ---- + ---- - -    
224   //       v*sqrt(2*pi)        v**2   v**4   v    
225                                                   
226   // The value of r (=errInt(-v)) supplied is     
227   // which is such that v < -7.25.  Since the     
228   // to an absolute error of 1E-16 (double pre    
229   // which on the high side could be of the fo    
230   // v to more than 3-4 digits of accuracy is     
231   // smoothness with the table generator (whic    
232   // also use terms up to 1*3*5* ... *13/v**14    
233   // solution at the level of 1.0e-7.             
234                                                   
235   // This routine is called less than one time    
236   // speed is of no concern.  As a matter of t    
237   // iterations in case they would be infinite    
238                                                   
239   double eps = 1.0e-7;                            
240   double guess = 7.5;                             
241   double v;                                       
242                                                   
243   for ( int i = 1; i < 50; i++ ) {                
244     double vn2 = 1.0/(guess*guess);               
245     double s1 = -13*11*9*7*5*3 * vn2*vn2*vn2*v    
246             s1 +=    11*9*7*5*3 * vn2*vn2*vn2*    
247             s1 +=      -9*7*5*3 * vn2*vn2*vn2*    
248             s1 +=         7*5*3 * vn2*vn2*vn2*    
249             s1 +=          -5*3 * vn2*vn2*vn2;    
250             s1 +=            3 * vn2*vn2    -     
251     v = std::sqrt ( 2.0 * std::log ( s1 / (r*g    
252     if ( std::abs(v-guess) < eps ) break;         
253     guess = v;                                    
254   }                                               
255                                                   
256   return -v;                                      
257                                                   
258 } // transformSmall()                             
259                                                   
260 double HepStat::inverseErf (double t) {           
261                                                   
262   // This uses erf(x) = 2*gaussCDF(sqrt(2)*x)     
263                                                   
264   return std::sqrt(0.5) * flatToGaussian(.5*(t    
265                                                   
266 }                                                 
267                                                   
268 double HepStat::erf (double x) {                  
269                                                   
270 // Math:                                          
271 //                                                
272 // For any given x we can "quickly" find t0 =     
273 //                                                
274 // Then we can find x1 = inverseErf (t0) = inv    
275 //                                                
276 // Expanding in the small epsion,                 
277 //                                                
278 //  x1 = x + epsilon * [deriv(inverseErf(u),u)    
279 //                                                
280 // so epsilon is (x1-x) / [deriv(inverseErf(u)    
281 //                                                
282 // But the derivative of an inverse function i    
283 // function, so                                   
284 // epsilon  = (x1-x) * [deriv(erf(v),v) at v =    
285 //                                                
286 // And the definition of the erf integral make    
287 // Ultimately,                                    
288 //                                                
289 // erf(x) = erfQ(x) - (inverseErf(erfQ(x))-x)     
290 //                                                
291                                                   
292   double t0 = erfQ(x);                            
293   double deriv = std::exp(-x*x) * (2.0 / std::    
294                                                   
295   return t0 - (inverseErf (t0) - x) * deriv;      
296                                                   
297 }                                                 
298                                                   
299                                                   
300 }  // namespace CLHEP                             
301                                                   
302