Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/externals/clhep/src/RandPoissonQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /externals/clhep/src/RandPoissonQ.cc (Version 11.3.0) and /externals/clhep/src/RandPoissonQ.cc (Version 9.3)


  1 // -*- C++ -*-                                      1 
  2 //                                                
  3 // -------------------------------------------    
  4 //                             HEP Random         
  5 //                         --- RandPoissonQ --    
  6 //                      class implementation f    
  7 // -------------------------------------------    
  8                                                   
  9 // ===========================================    
 10 // M. Fischler    - Implemented new, much fast    
 11 //        applicable for mu < 100                 
 12 //      - Implemented "quick()" methods, shich    
 13 //        new methods for mu < 100 and are a s    
 14 //        approximation for large mu.             
 15 // M. Fischler    - Removed mean=100 from the     
 16 //        uses a value just off the end of the    
 17 // M Fischler     - put and get to/from stream    
 18 // M Fischler     - Utilize RandGaussQ rather     
 19 //        intended by the inclusion of RandGau    
 20 //        introduces a subtle trap in that the    
 21 //        can never be properly captured witho    
 22 //        state of RandGauss!  RandGaussQ is,     
 23 //        stateless except for the engine used    
 24 // M Fischler   - Modified use of wrong engine    
 25 //        is called.  This flaw was preventing    
 26 //        saving and restoring in the instance    
 27 // M Fischler     - fireArray using defaultMea    
 28 // M Fischler       - put/get to/from streams     
 29 //      + storing doubles avoid problems with     
 30 //      4/14/05                                   
 31 // M Fischler   - Modified use of shoot (mean)    
 32 //        shoot(getLocalEngine(), mean) when f    
 33 //        This flaw was causing bad "cross-tal    
 34 //        in CMS, where one used its own engin    
 35 //        used the static generator.  10/18/07    
 36 //                                                
 37 // ===========================================    
 38                                                   
 39 #include "CLHEP/Random/RandPoissonQ.h"            
 40 #include "CLHEP/Random/RandGaussQ.h"              
 41 #include "CLHEP/Random/DoubConv.h"                
 42 #include "CLHEP/Random/Stat.h"                    
 43 #include "CLHEP/Utility/thread_local.h"           
 44 #include <cmath>  // for std::pow()               
 45 #include <iostream>                               
 46 #include <string>                                 
 47 #include <vector>                                 
 48                                                   
 49 namespace CLHEP {                                 
 50                                                   
 51 std::string RandPoissonQ::name() const {return    
 52 HepRandomEngine & RandPoissonQ::engine() {retu    
 53                                                   
 54 // Initialization of static data:  Note that t    
 55 // so that saveEngineStatus properly saves all    
 56                                                   
 57   // The following MUST MATCH the correspondin    
 58   // poissonTables.cc) when poissonTables.cdat    
 59                                                   
 60 const double RandPoissonQ::FIRST_MU = 10;// lo    
 61 const double RandPoissonQ::LAST_MU =  95;// hi    
 62 const double RandPoissonQ::S = 5;        // Sp    
 63 const int RandPoissonQ::BELOW = 30;      // St    
 64 const int RandPoissonQ::ENTRIES = 51;    // Nu    
 65                                                   
 66 const double RandPoissonQ::MAXIMUM_POISSON_DEV    
 67   // Careful -- this is NOT the maximum number    
 68   // a long.  It actually should be some large    
 69   // that.                                        
 70                                                   
 71   // Here comes the big (9K bytes) table, kept    
 72   // ENTRIES * (FIRST_MU - LAST_MU + 1)/S doub    
 73                                                   
 74 static const double poissonTables [ 51 * ( (95    
 75 #include "CLHEP/Random/poissonTables.cdat"        
 76 };                                                
 77                                                   
 78 //                                                
 79 // Constructors and destructors:                  
 80 //                                                
 81                                                   
 82 RandPoissonQ::~RandPoissonQ() {                   
 83 }                                                 
 84                                                   
 85 void RandPoissonQ::setupForDefaultMu() {          
 86                                                   
 87   // The following are useful for quick approx    
 88                                                   
 89   double sig2 = defaultMean * (.9998654 - .083    
 90   sigma = std::sqrt(sig2);                        
 91   // sigma for the Guassian which approximates    
 92   // sqrt (defaultMean).                          
 93   //                                              
 94   // The multiplier corrects for fact that dis    
 95   // [gaussian+.5] increases the second moment    
 96                                                   
 97   double t = 1./(sig2);                           
 98                                                   
 99   a2 = t/6 + t*t/324;                             
100   a1 = std::sqrt (1-2*a2*a2*sig2);                
101   a0 = defaultMean + .5 - sig2 * a2;              
102                                                   
103   // The formula will be a0 + a1*x + a2*x*x wh    
104   // The coeffeicients are chosen to match the    
105   // true Poisson distribution.                   
106   //                                              
107   // Actually, if the correction for discretiz    
108   // a2 could be taken one order higher by add    
109   // the discretization correction is not perf    
110   // on the order to 1/mu**2, so adding a thir    
111                                                   
112 } // setupForDefaultMu()                          
113                                                   
114                                                   
115 //                                                
116 // fire, quick, operator(), and shoot methods:    
117 //                                                
118                                                   
119 long RandPoissonQ::shoot(double xm) {             
120   return shoot(getTheEngine(), xm);               
121 }                                                 
122                                                   
123 double RandPoissonQ::operator()() {               
124   return (double) fire();                         
125 }                                                 
126                                                   
127 double RandPoissonQ::operator()( double mean )    
128   return (double) fire(mean);                     
129 }                                                 
130                                                   
131 long RandPoissonQ::fire(double mean) {            
132   return shoot(getLocalEngine(), mean);           
133 }                                                 
134                                                   
135 long RandPoissonQ::fire() {                       
136   if ( defaultMean < LAST_MU + S ) {              
137     return poissonDeviateSmall ( getLocalEngin    
138   } else {                                        
139     return poissonDeviateQuick ( getLocalEngin    
140   }                                               
141 } // fire()                                       
142                                                   
143 long RandPoissonQ::shoot(HepRandomEngine* anEn    
144                                                   
145   // The following variables, static to this m    
146   // last time a large mean was supplied; they    
147   // if consecutive calls use the same mean.      
148                                                   
149   static CLHEP_THREAD_LOCAL double lastLargeMe    
150           // requiring poissonDeviateQuick()      
151   static CLHEP_THREAD_LOCAL double lastA0;        
152   static CLHEP_THREAD_LOCAL double lastA1;        
153   static CLHEP_THREAD_LOCAL double lastA2;        
154   static CLHEP_THREAD_LOCAL double lastSigma;     
155                                                   
156   if ( mean < LAST_MU + S ) {                     
157     return poissonDeviateSmall ( anEngine, mea    
158   } else {                                        
159     if ( mean != lastLargeMean ) {                
160       // Compute the coefficients defining the    
161       // Gaussian to a Poisson for this mean.     
162       double sig2 = mean * (.9998654 - .08346/    
163       lastSigma = std::sqrt(sig2);                
164       double t = 1./sig2;                         
165       lastA2 = t*(1./6.) + t*t*(1./324.);         
166       lastA1 = std::sqrt (1-2*lastA2*lastA2*si    
167       lastA0 = mean + .5 - sig2 * lastA2;         
168     }                                             
169     return poissonDeviateQuick ( anEngine, las    
170   }                                               
171                                                   
172 } // shoot (anEngine, mean)                       
173                                                   
174 void RandPoissonQ::shootArray(const int size,     
175   for( long* v = vect; v != vect + size; ++v )    
176     *v = shoot(m);                                
177      // Note: We could test for m > 100, and i    
178      // and sigma and call the appropriate for    
179      // But since those are cached anyway, not    
180 }                                                 
181                                                   
182 void RandPoissonQ::shootArray(HepRandomEngine*    
183                              long* vect, doubl    
184   for( long* v = vect; v != vect + size; ++v )    
185     *v = shoot(anEngine,m1);                      
186 }                                                 
187                                                   
188 void RandPoissonQ::fireArray(const int size, l    
189   for( long* v = vect; v != vect + size; ++v )    
190     *v = fire( m );                               
191 }                                                 
192                                                   
193 void RandPoissonQ::fireArray(const int size, l    
194   for( long* v = vect; v != vect + size; ++v )    
195     *v = fire( defaultMean );                     
196 }                                                 
197                                                   
198                                                   
199 // Quick Poisson deviate algorithm used by qui    
200                                                   
201 long RandPoissonQ::poissonDeviateQuick ( HepRa    
202                                                   
203   // Compute the coefficients defining the qua    
204   // Gaussian to a Poisson:                       
205                                                   
206   double sig2 = mu * (.9998654 - .08346/mu);      
207   double sig = std::sqrt(sig2);                   
208   // The multiplier corrects for fact that dis    
209   // [gaussian+.5] increases the second moment    
210                                                   
211   double t = 1./sig2;                             
212                                                   
213   double sa2 = t*(1./6.) + t*t*(1./324.);         
214   double sa1 = std::sqrt (1-2*sa2*sa2*sig2);      
215   double sa0 = mu + .5 - sig2 * sa2;              
216                                                   
217   // The formula will be sa0 + sa1*x + sa2*x*x    
218   // The coeffeicients are chosen to match the    
219   // true Poisson distribution.                   
220                                                   
221   return poissonDeviateQuick ( e, sa0, sa1, sa    
222 }                                                 
223                                                   
224                                                   
225 long RandPoissonQ::poissonDeviateQuick ( HepRa    
226     double A0, double A1, double A2, double si    
227 //                                                
228 // Quick Poisson deviate algorithm used by qui    
229 //                                                
230 // The principle:  For very large mu, a poisso    
231 // by a gaussian: return the integer part of m    
232 // normal.  However, this yelds a miserable ap    
233 // "large" as 100.  The primary problem is tha    
234 // supposed to have a skew of 1/mu**2, and the    
235 // leads to errors of order as big as 1/mu**2.    
236 //                                                
237 // We substitute for the gaussian a quadratic     
238 // The expression looks very nearly like mu +     
239 // The small positive quadratic term causes th    
240 // a positive skew; the -1/6 constant term is     
241 // in the mean.  By adjusting these two and th    
242 // first three moments to high accuracy in 1/m    
243 //                                                
244 // The sigma used is not precisely sqrt(mu) si    
245 // has a second moment which is slightly large    
246 // To compensate, sig is multiplied by a facto    
247                                                   
248   //  double g = RandGauss::shootQuick( e );      
249   double g = RandGaussQ::shoot( e );   // Unit    
250   g *= sig;                                       
251   double p = A2*g*g + A1*g + A0;                  
252   if ( p < 0 ) return 0;  // Shouldn't ever po    
253         // mean should not be less than 100, b    
254         // we check due to paranoia.              
255   if ( p > MAXIMUM_POISSON_DEVIATE ) p = MAXIM    
256                                                   
257   return long(p);                                 
258                                                   
259 } // poissonDeviateQuick ()                       
260                                                   
261                                                   
262                                                   
263 long RandPoissonQ::poissonDeviateSmall (HepRan    
264   long N1;                                        
265   long N2;                                        
266   // The following are for later use to form a    
267   double rRange;      // This will hold the in    
268           // computed N1 and cdf for N1+1.        
269   double rRemainder = 0; // This will hold the    
270                                                   
271   // Coming in, mean should not be more than L    
272   // be paranoid and test for this:               
273                                                   
274   if ( mean > LAST_MU + S ) {                     
275     return RandPoisson::shoot(e, mean);           
276   }                                               
277                                                   
278   if (mean <= 0) {                                
279     return 0;     // Perhaps we ought to balk     
280   }                                               
281                                                   
282   // >>> 1 <<<                                    
283   //  Generate the first random, which we alwa    
284                                                   
285   double r = e->flat();                           
286                                                   
287   // >>> 2 <<<                                    
288   //  For small mean, below the start of the t    
289   //  do the series for cdf directly.             
290                                                   
291   // In this case, since we know the series wi    
292   // almost alwaye use a precomputed 1/N array    
293                                                   
294   static const double oneOverN[50] =              
295   {    0,   1.,    1/2.,  1/3.,  1/4.,  1/5.,     
296    1/10.,  1/11.,  1/12., 1/13., 1/14., 1/15.,    
297    1/20.,  1/21.,  1/22., 1/23., 1/24., 1/25.,    
298    1/30.,  1/31.,  1/32., 1/33., 1/34., 1/35.,    
299    1/40.,  1/41.,  1/42., 1/43., 1/44., 1/45.,    
300                                                   
301                                                   
302   if ( mean < FIRST_MU ) {                        
303                                                   
304     long N = 0;                                   
305     double term = std::exp(-mean);                
306     double cdf = term;                            
307                                                   
308     if ( r < (1 - 1.0E-9) ) {                     
309       //                                          
310       // **** This is a normal path: ****         
311       //                                          
312       // Except when r is very close to 1, it     
313       // before the 30-th term in the series,     
314       const double* oneOverNptr = oneOverN;       
315       while( cdf <= r ) {                         
316         N++ ;                                     
317         oneOverNptr++;                            
318         term *= ( mean * (*oneOverNptr) );        
319         cdf  += term;                             
320       }                                           
321       return N;                                   
322       //                                          
323       // **** ****                                
324       //                                          
325     } else { // r is almost 1...                  
326       // For r very near to 1 we would have to    
327       // off the end of the table of 1/N.  Sin    
328       // ignore the table and do the identical    
329       // division.                                
330       double cdf0;                                
331       while ( cdf <= r ) {                        
332         N++ ;                                     
333         term *= ( mean / N );                     
334         cdf0 = cdf;                               
335         cdf  += term;                             
336   if (cdf == cdf0) break; // Can't happen, but    
337       }                                           
338       return N;                                   
339     } // end of if ( r compared to (1 - 1.0E-9    
340                                                   
341   } // End of the code for mean < FIRST_MU        
342                                                   
343   // >>> 3 <<<                                    
344   //  Find the row of the tables corresponding    
345   //  which is no greater than our actual mean    
346                                                   
347   int rowNumber = int((mean - FIRST_MU)/S);       
348   const double * cdfs = &poissonTables [rowNum    
349   double mu = FIRST_MU + rowNumber*S;             
350   double deltaMu = mean - mu;                     
351   int Nmin = int(mu - BELOW);                     
352   if (Nmin < 1) Nmin = 1;                         
353   int Nmax = Nmin + (ENTRIES - 1);                
354                                                   
355                                                   
356   // >>> 4 <<<                                    
357   //  If r is less that the smallest entry in     
358   //  generate the deviate directly from the s    
359                                                   
360   if ( r < cdfs[0] ) {                            
361                                                   
362     // In this case, we are tempted to use the    
363     // generate a second deviate to account fo    
364     // That would be an error, generating a di    
365     // at Nmin + (mean-mu)/2 to be detectable     
366                                                   
367     // Since this case is very rare (never mor    
368     // and can happen where N will be large (u    
369     // we use explicit division so as to avoid    
370     // out of oneOverN table.                     
371                                                   
372     long N = 0;                                   
373     double term = std::exp(-mu);                  
374     double cdf = term;                            
375     double cdf0;                                  
376                                                   
377     while(cdf <= r) {                             
378         N++ ;                                     
379         term *= ( mu / N );                       
380         cdf0 = cdf;                               
381         cdf  += term;                             
382   if (cdf == cdf0) break; // Can't happen, but    
383     }                                             
384     N1 = N;                                       
385     // std::cout << r << "   " << N << "   ";     
386     // DBG_small = true;                          
387     rRange = 0;   // In this case there is alw    
388                                                   
389   } // end of small-r case                        
390                                                   
391                                                   
392   // >>> 5 <<<                                    
393   //  Assuming r lies within the scope of the     
394   //  largest entry not greater than r.  N1 is    
395   //  index a.                                    
396                                                   
397   else if ( r < cdfs[ENTRIES-1] ) {     // r i    
398                                                   
399     //                                            
400     // **** This is the normal code path ****     
401     //                                            
402                                                   
403     int a = 0;                  // Highest val    
404         // is known NOT to be greater than r.     
405     int b = ENTRIES - 1;  // Lowest value of i    
406         // known to exeed r.                      
407                                                   
408     while (b != (a+1) ) {                         
409       int c = (a+b+1)>>1;                         
410       if (r > cdfs[c]) {                          
411         a = c;                                    
412       } else {                                    
413         b = c;                                    
414       }                                           
415     }                                             
416                                                   
417     N1 = Nmin + a;                                
418     rRange = cdfs[a+1] - cdfs[a];                 
419     rRemainder = r - cdfs[a];                     
420                                                   
421     //                                            
422     // **** ****                                  
423     //                                            
424                                                   
425   } // end of medium-r (normal) case              
426                                                   
427                                                   
428   // >>> 6 <<<                                    
429   //  If r exceeds the greatest entry in the t    
430   //  from that cdf, and use the series to com    
431   //  exceeded.                                   
432                                                   
433   else { //     if ( r >= cdfs[ENTRIES-1] ) {     
434                                                   
435     // Here, division must be done explicitly,    
436     // roundoff preventing termination.           
437                                                   
438   //                                              
439   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m    
440   //+++ (where Nmax = mu - BELOW + ENTRIES - 1    
441   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp    
442   //+++ If the sum up to k-1 <= r < sum up to     
443   //+++ Consider k = Nmax in the above stateme    
444   //+++ If cdfs[ENTRIES-2] <= r < cdfs[ENTRIES    
445   //+++ But here r >= cdfs[ENTRIES-1] so N >=     
446   //                                              
447                                                   
448   // Erroneous:                                   
449   //+++ cdfs[ENTRIES-1] is exp(-mu) sum (mu**m    
450   //+++ cdfs[ENTRIES-1]-cdfs[ENTRIES-2] is exp    
451   //+++ If a sum up to k-1 <= r < sum up to k,    
452   //+++ So if cdfs[ENTRIES-1] were > r, N woul    
453   //+++ But here r >= cdfs[ENTRIES-1] so N >=     
454   //                                              
455                                                   
456     //  std::cout << "r = " << r << " mu = " <    
457     long N = Nmax -1;                             
458     double cdf = cdfs[ENTRIES-1];                 
459     double term = cdf - cdfs[ENTRIES-2];          
460     double cdf0;                                  
461     while(cdf <= r) {                             
462         N++ ;                                     
463     //  std::cout << "  N " << N << " term " <    
464     //  term << " cdf " << cdf << "\n";           
465         term *= ( mu / N );                       
466   cdf0  = cdf;                                    
467         cdf  += term;                             
468   if (cdf == cdf0) break; // If term gets so s    
469         // terminate using that value of N sin    
470         // would never reach r.                   
471     }                                             
472     N1 = N;                                       
473     rRange = 0;   // We can't validly omit the    
474                                                   
475   //      N = Nmax -1;                            
476   //      cdf = cdfs[ENTRIES-1];                  
477   //      term = cdf - cdfs[ENTRIES-2];           
478   //      for (int isxz=0; isxz < 100; isxz++)    
479   //          N++ ;                               
480   //          term *= ( mu / N );                 
481   //    cdf0  = cdf;                              
482   //          cdf  += term;                       
483   //      }                                       
484   //      std::cout.precision(20);                
485   //      std::cout << "Final sum is " << cdf     
486                                                   
487   } // end of large-r case                        
488                                                   
489                                                   
490                                                   
491   // >>> 7 <<<                                    
492   //  Form a second random, s, based on the po    
493   //  of this table entry to the next entry.      
494                                                   
495   // However, if this range is very small, the    
496   // randomness.  In that situation, we genera    
497                                                   
498   double s;                                       
499                                                   
500   static const double MINRANGE = .01;   // Sac    
501                 // randomness when using r to     
502           // a second random s.  Leads to up t    
503           // .09 extra randoms each time.         
504                                                   
505   if ( rRange > MINRANGE ) {                      
506     //                                            
507     // **** This path taken 90% of the time **    
508     //                                            
509     s = rRemainder / rRange;                      
510   } else {                                        
511     s = e->flat();  // extra true random neede    
512   }                                               
513                                                   
514   // >>> 8 <<<                                    
515   //  Use the direct summation method to form     
516   //  from deltaMu and s.                         
517                                                   
518   N2 = 0;                                         
519   double term = std::exp(-deltaMu);               
520   double cdf = term;                              
521                                                   
522   if ( s < (1 - 1.0E-10) ) {                      
523       //                                          
524       // This is the normal path:                 
525       //                                          
526       const double* oneOverNptr = oneOverN;       
527       while( cdf <= s ) {                         
528         N2++ ;                                    
529         oneOverNptr++;                            
530         term *= ( deltaMu * (*oneOverNptr) );     
531         cdf  += term;                             
532       }                                           
533   } else { // s is almost 1...                    
534       while( cdf <= s ) {                         
535         N2++ ;                                    
536         term *= ( deltaMu / N2 );                 
537         cdf  += term;                             
538       }                                           
539   } // end of if ( s compared to (1 - 1.0E-10)    
540                                                   
541   // >>> 9 <<<                                    
542   //  The result is the sum of those two devia    
543                                                   
544     // if (DBG_small) {                           
545     //   std::cout << N2 << "   " << N1+N2 <<     
546     //   DBG_small = false;                       
547     // }                                          
548                                                   
549   return N1 + N2;                                 
550                                                   
551 } // poissonDeviate()                             
552                                                   
553 std::ostream & RandPoissonQ::put ( std::ostrea    
554   long pr=os.precision(20);                       
555   std::vector<unsigned long> t(2);                
556   os << " " << name() << "\n";                    
557   os << "Uvec" << "\n";                           
558   t = DoubConv::dto2longs(a0);                    
559   os << a0 << " " << t[0] << " " << t[1] << "\    
560   t = DoubConv::dto2longs(a1);                    
561   os << a1 << " " << t[0] << " " << t[1] << "\    
562   t = DoubConv::dto2longs(a2);                    
563   os << a2 << " " << t[0] << " " << t[1] << "\    
564   t = DoubConv::dto2longs(sigma);                 
565   os << sigma << " " << t[0] << " " << t[1] <<    
566   RandPoisson::put(os);                           
567   os.precision(pr);                               
568   return os;                                      
569 #ifdef REMOVED                                    
570   int pr=os.precision(20);                        
571   os << " " << name() << "\n";                    
572   os << a0 << " " << a1 << " " << a2 << "\n";     
573   os << sigma << "\n";                            
574   RandPoisson::put(os);                           
575   os.precision(pr);                               
576   return os;                                      
577 #endif                                            
578 }                                                 
579                                                   
580 std::istream & RandPoissonQ::get ( std::istrea    
581   std::string inName;                             
582   is >> inName;                                   
583   if (inName != name()) {                         
584     is.clear(std::ios::badbit | is.rdstate());    
585     std::cerr << "Mismatch when expecting to r    
586             << name() << " distribution\n"        
587         << "Name found was " << inName            
588         << "\nistream is left in the badbit st    
589     return is;                                    
590   }                                               
591   if (possibleKeywordInput(is, "Uvec", a0)) {     
592     std::vector<unsigned long> t(2);              
593     is >> a0 >> t[0] >> t[1]; a0 = DoubConv::l    
594     is >> a1 >> t[0] >> t[1]; a1 = DoubConv::l    
595     is >> a2 >> t[0] >> t[1]; a2 = DoubConv::l    
596     is >> sigma >> t[0] >> t[1]; sigma = DoubC    
597     RandPoisson::get(is);                         
598     return is;                                    
599   }                                               
600   // is >> a0 encompassed by possibleKeywordIn    
601   is >> a1 >> a2 >> sigma;                        
602   RandPoisson::get(is);                           
603   return is;                                      
604 }                                                 
605                                                   
606 }  // namespace CLHEP                             
607                                                   
608